Altered Brain Arginine Metabolism and Polyamine System in a P301S Tauopathy Mouse Model: A Time-Course Study
Abstract
:1. Introduction
2. Results
2.1. L-Arginine and Its Downstream Metabolites
2.1.1. L-Arginine
2.1.2. L-Citrulline
2.1.3. L-Ornithine
2.1.4. Agmatine
2.1.5. Glutamine
2.1.6. Glutamate
2.1.7. Glutamine/Glutamate Ratio
2.1.8. GABA
2.1.9. Putrescine
2.1.10. Spermidine
2.1.11. Spermine
2.1.12. Spermidine/Spermine Ratio
2.2. mRNA Expression of the Enzymes Involved in Polyamine Synthesis and Retro-Conversion
2.2.1. Arginase
2.2.2. ODC
2.2.3. ADC
2.2.4. AGMAT
2.2.5. SPDS
2.2.6. SMS
2.2.7. SMOX
2.2.8. SSAT1
2.2.9. PAO
2.3. Protein Expression of the Enzymes Involved in L-Arginine Metabolism
2.4. Neurochemical and Behavioural Correlations
3. Discussion
3.1. Altered Brain Arginine Metabolism in PS19 Mice
3.2. Upregulated Arginase-Polyamine Pathway in PS19 Mice
3.3. Polyamine System Dysfunction in PS19 Mice
3.4. Conclusions
4. Materials and Methods
4.1. Animals
4.2. Brain Tissue Collection
4.3. HPLC and LC/MS Assays
4.4. RNA Extraction, cDNA Synthesis and RT-qPCR
4.5. Western Blot
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arendt, T.; Stieler, J.T.; Holzer, M. Tau and Tauopathies. Brain Res. Bull. 2016, 126, 238–292. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Mandelkow, E. Tau in Physiology and Pathology. Nat. Rev. Neurosci. 2016, 17, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A Protein Factor Essential for Microtubule Assembly. Proc. Natl. Acad. Sci. USA 1975, 72, 1858–1862. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, G.G. Tauopathies. Handb. Clin. Neurol. 2017, 145, 355–368. [Google Scholar] [CrossRef]
- Lebouvier, T.; Pasquier, F.; Buée, L. Update on Tauopathies. Curr. Opin. Neurol. 2017, 30, 589–598. [Google Scholar] [CrossRef]
- Irwin, D.J.; Cairns, N.J.; Grossman, M.; McMillan, C.T.; Lee, E.B.; Van Deerlin, V.M.; Lee, V.M.; Trojanowski, J.Q. Frontotemporal Lobar Degeneration: Defining Phenotypic Diversity Through Personalized Medicine. Acta Neuropathol. 2015, 129, 469–491. [Google Scholar] [CrossRef]
- Yoshiyama, Y.; Higuchi, M.; Zhang, B.; Huang, S.M.; Iwata, N.; Saido, T.C.; Maeda, J.; Suhara, T.; Trojanowski, J.Q.; Lee, V.M. Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model. Neuron 2007, 53, 337–351. [Google Scholar] [CrossRef] [Green Version]
- López-González, I.; Aso, E.; Carmona, M.; Armand-Ugon, M.; Blanco, R.; Naudí, A.; Cabré, R.; Portero-Otin, M.; Pamplona, R.; Ferrer, I. Neuroinflammatory Gene Regulation, Mitochondrial Function, Oxidative Stress, and Brain Lipid Modifications with Disease Progression in Tau P301S Transgenic Mice as a Model of Frontotemporal Lobar Degeneration-Tau. J. Neuropathol. Exp. Neurol. 2015, 74, 975–999. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Guo, Y.; Feng, X.; Jia, M.; Ai, N.; Dong, Y.; Zheng, Y.; Fu, L.; Yu, B.; Zhang, H.; et al. The Behavioural and Neuropathologic Sexual Dimorphism and Absence of MIP-3α in Tau P301S Mouse Model of Alzheimer’s Disease. J. Neuroinflamm. 2020, 17, 72. [Google Scholar] [CrossRef]
- Bussian, T.J.; Aziz, A.; Meyer, C.F.; Swenson, B.L.; van Deursen, J.M.; Baker, D.J. Clearance of Senescent Glial Cells Prevents Tau-dependent Pathology and Cognitive Decline. Nature 2018, 562, 578–582. [Google Scholar] [CrossRef]
- Takeuchi, H.; Iba, M.; Inoue, H.; Higuchi, M.; Takao, K.; Tsukita, K.; Karatsu, Y.; Iwamoto, Y.; Miyakawa, T.; Suhara, T.; et al. P301S Mutant Human Tau Transgenic Mice Manifest Early Symptoms of Human Tauopathies with Dementia and Altered Sensorimotor Gating. PLoS ONE 2011, 6, e21050. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Mein, H.; Jing, Y.; Zhang, H.; Liu, P. Behavioural Functions and Cerebral Blood Flow in a P301S Tauopathy Mouse Model: A Time-Course Study. Int. J. Mol. Sci. 2021, 22, 9727. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Martinez, P.; Perkins, A.; Taylor, X.; Jury, N.; McKinzie, D.; Lasagna-Reeves, C.A. Pathological Tau and Reactive Astrogliosis are Associated with Distinct Functional Deficits in a Mouse Model of Tauopathy. Neurobiol. Aging 2022, 109, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Morris, S.M., Jr. Arginine Metabolism: Nitric Oxide and Beyond. Biochem. J. 1998, 336 Pt 1, 1–17. [Google Scholar] [CrossRef]
- Morris, S.M., Jr. Arginine Metabolism Revisited. J. Nutr. 2016, 146, 2579s–2586s. [Google Scholar] [CrossRef]
- Wiesinger, H. Arginine Metabolism and the Synthesis of Nitric Oxide in the Nervous System. Prog. Neurobiol. 2001, 64, 365–391. [Google Scholar] [CrossRef]
- Nakanishi, S.; Cleveland, J.L. Polyamine Homeostasis in Development and Disease. Med. Sci. 2021, 9, 28. [Google Scholar] [CrossRef]
- Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904–14912. [Google Scholar] [CrossRef] [Green Version]
- Williams, K.; Dawson, V.L.; Romano, C.; Dichter, M.A.; Molinoff, P.B. Characterization of Polyamines Having Agonist, Antagonist, and Inverse Agonist Effects at the Polyamine Recognition Site of the NMDA Receptor. Neuron 1990, 5, 199–208. [Google Scholar] [CrossRef]
- Williams, K. Interactions of Polyamines with Ion Channels. Biochem. J. 1997, 325 Pt 2, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Bowie, D.; Mayer, M.L. Inward Rectification of Both AMPA and Kainate Subtype Glutamate Receptors Generated by Polyamine-Mediated Ion Channel Block. Neuron 1995, 15, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Kirkpatrick, L.L.; Schilling, A.B.; Helseth, D.L.; Chabot, N.; Keillor, J.W.; Johnson, G.V.; Brady, S.T. Transglutaminase and Polyamination of Tubulin: Posttranslational Modification for Stabilizing Axonal Microtubules. Neuron 2013, 78, 109–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamon, L.; Savarin, P.; Curmi, P.A.; Pastré, D. Rapid Assembly and Collective Behavior of Microtubule Bundles in the Presence of Polyamines. Biophys. J. 2011, 101, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Savarin, P.; Barbet, A.; Delga, S.; Joshi, V.; Hamon, L.; Lefevre, J.; Nakib, S.; De Bandt, J.P.; Moinard, C.; Curmi, P.A.; et al. A Central Role for Polyamines in Microtubule Assembly in Cells. Biochem. J. 2010, 430, 151–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandusky-Beltran, L.A.; Kovalenko, A.; Placides, D.S.; Ratnasamy, K.; Ma, C.; Hunt, J.B., Jr.; Liang, H.; Calahatian, J.I.T.; Michalski, C.; Fahnestock, M.; et al. Aberrant AZIN2 and Polyamine Metabolism Precipitates Tau Neuropathology. J. Clin. Investig. 2021, 131, e126299. [Google Scholar] [CrossRef]
- Sandusky-Beltran, L.A.; Kovalenko, A.; Ma, C.; Calahatian, J.I.T.; Placides, D.S.; Watler, M.D.; Hunt, J.B.; Darling, A.L.; Baker, J.D.; Blair, L.J.; et al. Spermidine/spermine-N(1)-acetyltransferase Ablation Impacts Tauopathy-induced Polyamine Stress Response. Alzheimer’s Res. Ther. 2019, 11, 58. [Google Scholar] [CrossRef]
- Dudkowska, M.; Lai, J.; Gardini, G.; Stachurska, A.; Grzelakowska-Sztabert, B.; Colombatto, S.; Manteuffel-Cymborowska, M. Agmatine Modulates the in vivo Biosynthesis and Interconversion of Polyamines and Cell Proliferation. Biochim. Biophys. Acta 2003, 1619, 159–166. [Google Scholar] [CrossRef]
- Vemula, P.; Jing, Y.; Zhang, H.; Hunt, J.B., Jr.; Sandusky-Beltran, L.A.; Lee, D.C.; Liu, P. Altered Brain Arginine Metabolism in a Mouse Model of Tauopathy. Amino Acids 2019, 51, 513–528. [Google Scholar] [CrossRef]
- Inoue, K.; Tsutsui, H.; Akatsu, H.; Hashizume, Y.; Matsukawa, N.; Yamamoto, T.; Toyo’oka, T. Metabolic Profiling of Alzheimer’s Disease Brains. Sci. Rep. 2013, 3, 2364. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, U.V.; Varma, V.R.; Griswold, M.E.; Blackshear, C.T.; An, Y.; Oommen, A.M.; Varma, S.; Troncoso, J.C.; Pletnikova, O.; O’Brien, R.; et al. Dysregulation of Multiple Metabolic Networks Related to Brain Transmethylation and Polyamine Pathways in Alzheimer Disease: A Targeted Metabolomic and Transcriptomic study. PLoS Med. 2020, 17, e1003012. [Google Scholar] [CrossRef]
- Liu, P.; Fleete, M.S.; Jing, Y.; Collie, N.D.; Curtis, M.A.; Waldvogel, H.J.; Faull, R.L.; Abraham, W.C.; Zhang, H. Altered Arginine Metabolism in Alzheimer’s Disease Brains. Neurobiol. Aging 2014, 35, 1992–2003. [Google Scholar] [CrossRef] [PubMed]
- Tabor, C.W.; Tabor, H.; Bachrach, U. Identification of the Aminoaldehydes Produced by the Oxidation of Spermine and Spermidine with Purified Plasma Amine Oxidase. J. Biol. Chem. 1964, 239, 2194–2203. [Google Scholar] [CrossRef]
- Igarashi, K.; Uemura, T.; Kashiwagi, K. Acrolein Toxicity at Advanced Age: Present and Future. Amino Acids 2018, 50, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Cason, A.L.; Ikeguchi, Y.; Skinner, C.; Wood, T.C.; Holden, K.R.; Lubs, H.A.; Martinez, F.; Simensen, R.J.; Stevenson, R.E.; Pegg, A.E.; et al. X-linked Spermine Synthase Gene (SMS) Defect: The First Polyamine Deficiency Syndrome. Eur. J. Hum. Genet. 2003, 11, 937–944. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, C.E.; Wang, X.; Stevenson, R.E.; Pegg, A.E. Spermine Synthase Deficiency Resulting in X-linked Intellectual Disability (Snyder-Robinson Syndrome). Methods Mol. Biol. 2011, 720, 437–445. [Google Scholar] [CrossRef]
- Wang, X.; Ikeguchi, Y.; McCloskey, D.E.; Nelson, P.; Pegg, A.E. Spermine Synthesis is Required for Normal Viability, Growth, and Fertility in the Mouse. J. Biol. Chem. 2004, 279, 51370–51375. [Google Scholar] [CrossRef] [Green Version]
- Bak, L.K.; Schousboe, A.; Waagepetersen, H.S. The Glutamate/GABA-Glutamine Cycle: Aspects of Transport, Neurotransmitter Homeostasis and Ammonia Transfer. J. Neurochem. 2006, 98, 641–653. [Google Scholar] [CrossRef]
- Hunt, J.B., Jr.; Nash, K.R.; Placides, D.; Moran, P.; Selenica, M.L.; Abuqalbeen, F.; Ratnasamy, K.; Slouha, N.; Rodriguez-Ospina, S.; Savlia, M.; et al. Sustained Arginase 1 Expression Modulates Pathological Tau Deposits in a Mouse Model of Tauopathy. J. Neurosci. 2015, 35, 14842–14860. [Google Scholar] [CrossRef] [Green Version]
- Walton, H.S.; Dodd, P.R. Glutamate-glutamine Cycling in Alzheimer’s Disease. Neurochem. Int. 2007, 50, 1052–1066. [Google Scholar] [CrossRef]
- Meier, S.; Bell, M.; Lyons, D.N.; Rodriguez-Rivera, J.; Ingram, A.; Fontaine, S.N.; Mechas, E.; Chen, J.; Wolozin, B.; LeVine, H., 3rd; et al. Pathological Tau Promotes Neuronal Damage by Impairing Ribosomal Function and Decreasing Protein Synthesis. J. Neurosci. 2016, 36, 1001–1007. [Google Scholar] [CrossRef] [Green Version]
- Evans, H.T.; Benetatos, J.; van Roijen, M.; Bodea, L.G.; Götz, J. Decreased Synthesis of Ribosomal Proteins in Tauopathy Revealed by Non-canonical Amino Acid Labelling. EMBO J. 2019, 38, e101174. [Google Scholar] [CrossRef] [PubMed]
- Evans, H.T.; Taylor, D.; Kneynsberg, A.; Bodea, L.G.; Götz, J. Altered Ribosomal Function and Protein Synthesis Caused by Tau. Acta Neuropathol. Commun. 2021, 9, 110. [Google Scholar] [CrossRef] [PubMed]
- Koren, S.A.; Hamm, M.J.; Meier, S.E.; Weiss, B.E.; Nation, G.K.; Chishti, E.A.; Arango, J.P.; Chen, J.; Zhu, H.; Blalock, E.M.; et al. Tau Drives Translational Selectivity by Interacting with Ribosomal Proteins. Acta Neuropathol. 2019, 137, 571–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, H.G.; Muller, M. Increased Immunostaining for L-ornithine Decarboxylase Occurs in Neocortical Neurons of Alzheimer’s Disease Patients. Neurosci. Lett. 1995, 186, 123–126. [Google Scholar] [CrossRef]
- Dionisio-Santos, D.A.; Behrouzi, A.; Olschowka, J.A.; O’Banion, M.K. Evaluating the Effect of Interleukin-4 in the 3xTg Mouse Model of Alzheimer’s Disease. Front. Neurosci. 2020, 14, 441. [Google Scholar] [CrossRef] [PubMed]
- Kahana, C. Regulation of Cellular Polyamine Levels and Cellular Proliferation by Antizyme and Antizyme Inhibitor. Essays Biochem. 2009, 46, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Kanamoto, R.; Kameji, T.; Iwashita, S.; Igarashi, K.; Hayashi, S. Spermidine-induced Destabilization of Ornithine Decarboxylase (ODC) is Mediated by Accumulation of Antizyme in ODC-Overproducing Variant Cells. J. Biol. Chem. 1993, 268, 9393–9399. [Google Scholar] [CrossRef]
- Satriano, J. Agmatine: At the Crossroads of the Arginine Pathways. Ann. N. Y. Acad. Sci. 2003, 1009, 34–43. [Google Scholar] [CrossRef]
- van Veen, S.; Martin, S.; Van den Haute, C.; Benoy, V.; Lyons, J.; Vanhoutte, R.; Kahler, J.P.; Decuypere, J.P.; Gelders, G.; Lambie, E.; et al. ATP13A2 Deficiency Disrupts Lysosomal Polyamine Export. Nature 2020, 578, 419–424. [Google Scholar] [CrossRef]
- Gilad, G.M.; Gilad, V.H. Overview of the Brain Polyamine-stress-response: Regulation, Development, and Modulation by Lithium and Role in Cell Survival. Cell Mol. Neurobiol. 2003, 23, 637–649. [Google Scholar] [CrossRef]
- Polis, B.; Karasik, D.; Samson, A.O. Alzheimer’s Disease as a Chronic Maladaptive Polyamine Stress Response. Aging 2021, 13, 10770–10795. [Google Scholar] [CrossRef] [PubMed]
- Gilad, G.M.; Gilad, V.H. Brain Polyamine Stress Response: Recurrence After Repetitive Stressor and Inhibition by Lithium. J. Neurochem. 1996, 67, 1992–1996. [Google Scholar] [CrossRef] [PubMed]
- Fogel-Petrovic, M.; Vujcic, S.; Miller, J.; Porter, C.W. Differential Post-transcriptional Control of Ornithine Decarboxylase and Spermidine-spermine N1-acetyltransferase by Polyamines. FEBS Lett. 1996, 391, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Perez-Leal, O.; Barrero, C.A.; Clarkson, A.B.; Casero, R.A., Jr.; Merali, S. Polyamine-regulated Translation of Spermidine/spermine-N1-acetyltransferase. Mol. Cell Biol. 2012, 32, 1453–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashedinia, M.; Lari, P.; Abnous, K.; Hosseinzadeh, H. Protective Effect of Crocin on Acrolein-induced Tau Phosphorylation in the Rat Brain. Acta Neurobiol. Exp. 2015, 75, 208–219. [Google Scholar]
- Huang, Y.J.; Jin, M.H.; Pi, R.B.; Zhang, J.J.; Ouyang, Y.; Chao, X.J.; Chen, M.H.; Liu, P.Q.; Yu, J.C.; Ramassamy, C.; et al. Acrolein Induces Alzheimer’s Disease-like Pathologies in vitro and in vivo. Toxicol. Lett. 2013, 217, 184–191. [Google Scholar] [CrossRef]
- Zambrano, C.A.; Egaña, J.T.; Núñez, M.T.; Maccioni, R.B.; González-Billault, C. Oxidative Stress Promotes Tau Dephosphorylation in Neuronal Cells: The Roles of Cdk5 and PP1. Free. Radic. Biol. Med. 2004, 36, 1393–1402. [Google Scholar] [CrossRef]
- Chun, H.; Im, H.; Kang, Y.J.; Kim, Y.; Shin, J.H.; Won, W.; Lim, J.; Ju, Y.; Park, Y.M.; Kim, S.; et al. Severe Reactive Astrocytes Precipitate Pathological Hallmarks of Alzheimer’s Disease via H2O2− Production. Nat. Neurosci. 2020, 23, 1555–1566. [Google Scholar] [CrossRef]
- Phadwal, K.; Kurian, D.; Salamat, M.K.F.; MacRae, V.E.; Diack, A.B.; Manson, J.C. Spermine Increases Acetylation of Tubulins and Facilitates Autophagic Degradation of Prion Aggregates. Sci. Rep. 2018, 8, 10004. [Google Scholar] [CrossRef] [Green Version]
- De Sarro, G.B.; Bagetta, G.; Spagnolo, C.; Nisticò, G. Antagonists of N-methyl-D-aspartate Receptors Block Seizures Induced by Putrescine in the Deep Prepiriform Cortex. Neuropharmacology 1993, 32, 43–50. [Google Scholar] [CrossRef]
- Sparapani, M.; Dall’Olio, R.; Gandolfi, O.; Ciani, E.; Contestabile, A. Neurotoxicity of Polyamines and Pharmacological Neuroprotection in Cultures of Rat Cerebellar Rranule Cells. Exp. Neurol. 1997, 148, 157–166. [Google Scholar] [CrossRef] [PubMed]
- de Vera, N.; Martínez, E.; Sanfeliu, C. Spermine Induces Cell Death in Cultured Human Embryonic Cerebral Cortical Neurons Through N-methyl-D-aspartate Receptor Activation. J. Neurosci. Res. 2008, 86, 861–872. [Google Scholar] [CrossRef]
- Munir, M.; Subramaniam, S.; McGonigle, P. Polyamines Modulate the Neurotoxic Effects of NMDA in vivo. Brain Res. 1993, 616, 163–170. [Google Scholar] [CrossRef]
- Fiori, L.M.; Turecki, G. Implication of the Polyamine System in Mental Disorders. J. Psychiatry Neurosci. 2008, 33, 102–110. [Google Scholar] [PubMed]
- Vaquero-Lorenzo, C.; Riaza Bermudo-Soriano, C.; Perez-Rodriguez, M.M.; Diaz-Hernandez, M.; López-Castromán, J.; Fernandez-Piqueras, J.; Saiz-Ruiz, J.; Baca-Garcia, E. Positive Association Between SAT-1 -1415T/C Polymorphism and Anxiety. Am. J. Med. Genet. 2009, 150b, 515–519. [Google Scholar] [CrossRef]
- Fiori, L.M.; Wanner, B.; Jomphe, V.; Croteau, J.; Vitaro, F.; Tremblay, R.E.; Bureau, A.; Turecki, G. Association of Polyaminergic Loci with Anxiety, Mood Disorders, and Attempted Suicide. PLoS ONE 2010, 5, e15146. [Google Scholar] [CrossRef]
- Hayashi, Y.; Tanaka, J.; Morizumi, Y.; Kitamura, Y.; Hattori, Y. Polyamine Levels in Brain and Plasma After Acute Restraint or Water-immersion Restraint Stress in Mice. Neurosci. Lett. 2004, 355, 57–60. [Google Scholar] [CrossRef]
- Sakurada, T.; Onodera, K.; Tadano, T.; Kisara, K. Effects of Polyamines on the Central Nervous System. Jpn. J. Pharmacol. 1975, 25, 653–661. [Google Scholar] [CrossRef]
- Braak, H.; Braak, E. Neuropathological Stageing of Alzheimer-related Changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef]
- Lisman, J.; Buzsaki, G.; Eichenbaum, H.; Nadel, L.; Ranganath, C.; Redish, A.D. Viewpoints: How the Hippocampus Contributes to Memory, Navigation and Cognition. Nat. Neurosci. 2017, 20, 1434–1447. [Google Scholar] [CrossRef]
- Dickerson, B.C.; Bakkour, A.; Salat, D.H.; Feczko, E.; Pacheco, J.; Greve, D.N.; Grodstein, F.; Wright, C.I.; Blacker, D.; Rosas, H.D.; et al. The Cortical Signature of Alzheimer’s Disease: Regionally Specific Cortical Thinning Relates to Symptom Severity in Very Mild to Mild AD Dementia and is Detectable in Asymptomatic Amyloid-positive Individuals. Cereb. Cortex 2009, 19, 497–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moodley, K.K.; Chan, D. The Hippocampus in Neurodegenerative Disease. Front. Neurol. Neurosci. 2014, 34, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Echávarri, C.; Aalten, P.; Uylings, H.B.; Jacobs, H.I.; Visser, P.J.; Gronenschild, E.H.; Verhey, F.R.; Burgmans, S. Atrophy in the Parahippocampal Gyrus as an Early Biomarker of Alzheimer’s Disease. Brain Struct. Funct. 2011, 215, 265–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braak, H.; Del Tredici, K.; Bohl, J.; Bratzke, H.; Braak, E. Pathological Changes in the Parahippocampal Region in Select Non-Alzheimer’s Dementias. Ann. N. Y. Acad. Sci. 2000, 911, 221–239. [Google Scholar] [CrossRef] [PubMed]
- Vemula, P.K.; Jing, Y.; Cicolini, J.; Zhang, H.; Mockett, B.G.; Abraham, W.C.; Liu, P. Altered Brain Arginine Metabolism with Age in the APP(swe)/PSEN1(dE9) Mouse Model of Alzheimer’s Disease. Neurochem. Int. 2020, 140, 104798. [Google Scholar] [CrossRef]
- Hariharan, A.; Jing, Y.; Collie, N.D.; Zhang, H.; Liu, P. Altered Neurovascular Coupling and Brain Arginine Metabolism in Endothelial Nitric Oxide Synthase Deficient Mice. Nitric Oxide 2019, 87, 60–72. [Google Scholar] [CrossRef]
- Zhang, J.; Jing, Y.; Zhang, H.; Liu, P. Effects of Sex and Estrous Cycle on the Brain and Plasma Arginine Metabolic Profile in Rats. Amino Acids 2021, 53, 1441–1454. [Google Scholar] [CrossRef]
- Liu, P.; Jing, Y.; Collie, N.D.; Campbell, S.A.; Zhang, H. Pre-aggregated Aβ(25-35) Alters Arginine Metabolism in the Rat Hippocampus and Prefrontal Cortex. Neuroscience 2011, 193, 269–282. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mein, H.; Jing, Y.; Ahmad, F.; Zhang, H.; Liu, P. Altered Brain Arginine Metabolism and Polyamine System in a P301S Tauopathy Mouse Model: A Time-Course Study. Int. J. Mol. Sci. 2022, 23, 6039. https://doi.org/10.3390/ijms23116039
Mein H, Jing Y, Ahmad F, Zhang H, Liu P. Altered Brain Arginine Metabolism and Polyamine System in a P301S Tauopathy Mouse Model: A Time-Course Study. International Journal of Molecular Sciences. 2022; 23(11):6039. https://doi.org/10.3390/ijms23116039
Chicago/Turabian StyleMein, Hannah, Yu Jing, Faraz Ahmad, Hu Zhang, and Ping Liu. 2022. "Altered Brain Arginine Metabolism and Polyamine System in a P301S Tauopathy Mouse Model: A Time-Course Study" International Journal of Molecular Sciences 23, no. 11: 6039. https://doi.org/10.3390/ijms23116039
APA StyleMein, H., Jing, Y., Ahmad, F., Zhang, H., & Liu, P. (2022). Altered Brain Arginine Metabolism and Polyamine System in a P301S Tauopathy Mouse Model: A Time-Course Study. International Journal of Molecular Sciences, 23(11), 6039. https://doi.org/10.3390/ijms23116039