Gallic Acid Alleviates Visceral Pain and Depression via Inhibition of P2X7 Receptor
Abstract
:1. Introduction
2. Results
2.1. Molecular Docking of Gallic Acid to P2X7 Receptors
2.2. The Effect of Gallic Acid on Hyperalgesia Threshold of Rats with Comorbid Visceral Pain and Depression
2.3. The Effect of Gallic Acid on Depression Levels of Rats with Comorbid Visceral Pain and Depression
2.4. Confirming Established Rat Visceral Pain Model by H&E Staining
2.5. Effects of Gallic Acid on P2X7 Expression in the Hippocampi, Spinal Cords, and DRGs of Rats with Comorbid Visceral Pain and Depression
2.6. Effects of Gallic acid on ERK1/2 Phosphorylation in the Hippocampi, Spinal Cords, and DRGs of Rats with Comorbid Visceral Pain and Depression
2.7. Effects of Gallic Acid on Serum IL-1β, IL-10, and TNF-α in Rats with Comorbid Visceral Pain and Depression
2.8. Effects of Gallic Acid on mRNA Levels of IL-1β, IL-10, TNF-α, and BDNF in the Hippocampus of Rats with Comorbid Visceral Pain and Depression
3. Discussion
4. Material and Methods
4.1. Molecular Docking
4.2. Animal and Treatment
4.3. Drugs and Chemicals
4.4. Neonatal CRD
4.5. Adult CRD
4.6. Sucrose Preference Test (SCPT)
4.7. Open Field Test (OFT)
4.8. Forced Swimming Test (FST)
4.9. Tissue Extraction
4.10. Western Blotting
4.11. Enzyme-Linked Immunosorbent Assay (ELISA)
4.12. Quantitative Real-Time PCR (qRT-PCR)
4.13. Hematoxylin–Eosin Staining (H&E Staining)
4.14. Double-Label Immunofluorescence
4.15. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, J.; Zhang, B.; Chen, J.; Cheng, J.; Wang, J.; Zheng, X.; Lan, Y.; Zhang, X. SAHA Alleviates Diarrhea-Predominant Irritable Bowel Syndrome Through Regulation of the p-STAT3/SERT/5-HT Signaling Pathway. J. Inflamm. Res. 2022, 15, 1745–1756. [Google Scholar] [CrossRef] [PubMed]
- Moloney, R.D.; Johnson, A.; Mahony, S.O.; Dinan, T.; Meerveld, B.G.-V.; Cryan, J.F. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neurosci. Ther. 2015, 22, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Louwies, T.; Ligon, C.O.; Johnson, A.C.; Meerveld, B.G. Targeting epigenetic mechanisms for chronic visceral pain: A valid approach for the development of novel therapeutics. Neurogastroenterol. Motil. 2018, 31, e13500. [Google Scholar] [CrossRef] [PubMed]
- Saha, L. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine. World J. Gastroenterol. 2014, 20, 6759–6773. [Google Scholar] [CrossRef]
- Radovanovic-Dinic, B.; Tesic-Rajkovic, S.; Grgov, S.; Petrovic, G.; Zivković, V. Irritable bowel syndrome—From etiopathogenesis to therapy. Biomed. Pap. 2018, 162, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Enck, P.; Aziz, Q.; Barbara, G.; Farmer, A.D.; Fukudo, S.; Mayer, E.A.; Niesler, B.; Quigley, E.M.M.; Rajilic-Stojanovic, M.; Schemann, M.; et al. Irritable bowel syndrome. Nat. Rev. Dis. Prim. 2016, 2, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Dothel, G.; Barbaro, M.R.; Boudin, H.; Vasina, V.; Cremon, C.; Gargano, L.; Bellacosa, L.; De Giorgio, R.; Le Berre-Scoul, C.; Aubert, P.; et al. Nerve Fiber Outgrowth Is Increased in the Intestinal Mucosa of Patients with Irritable Bowel Syndrome. Gastroenterology 2015, 148, 1002–1011.e4. [Google Scholar] [CrossRef]
- Vermeulen, W.; De Man, J.G.; Pelckmans, P.A.; De Winter, B.Y. Neuroanatomy of lower gastrointestinal pain disorders. World J. Gastroenterol. 2014, 20, 1005–1020. [Google Scholar] [CrossRef]
- Elsenbruch, S. Abdominal pain in Irritable Bowel Syndrome: A review of putative psychological, neural and neuro-immune mechanisms. Brain Behav. Immun. 2011, 25, 386–394. [Google Scholar] [CrossRef]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.-S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Ochoa-Cortes, F.; Liñán-Rico, A.; Jacobson, K.A.; Christofi, F.L. Potential for Developing Purinergic Drugs for Gastrointestinal Diseases. Inflamm. Bowel Dis. 2014, 20, 1259–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, Z.J.; Wu, L.Y.; Zhou, C.L.; Dou, C.Z.; Shi, Y.; Liu, H.R.; Wu, H.G. Effect of electroacupuncture on P2X3 receptor regulation in the peripheral and central nervous systems of rats with visceral pain caused by irritable bowel syndrome. Purinergic Signal. 2015, 11, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galligan, J.J. Enteric P2X receptors as potential targets for drug treatment of the irritable bowel syndrome. J. Cereb. Blood Flow Metab. 2004, 141, 1294–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Y.; Feng, C.; Wu, J.; Wu, Y.; Liu, D.; Wu, J.; Dai, F.; Zhang, J. P2Y1, P2Y2, and TRPV1 Receptors Are Increased in Diarrhea-Predominant Irritable Bowel Syndrome and P2Y2 Correlates with Abdominal Pain. Am. J. Dig. Dis. 2016, 61, 2878–2886. [Google Scholar] [CrossRef]
- Liu, S.; Shi, Q.; Zhu, Q.; Zou, T.; Li, G.; Huang, A.; Wu, B.; Peng, L.; Song, M.; Wu, Q.; et al. P2X7 receptor of rat dorsal root ganglia is involved in the effect of moxibustion on visceral hyperalgesia. Purinergic Signal. 2014, 11, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.-Y.; Shenoy, M.; Winston, J.H.; Mittal, S.; Pasricha, P.J. P2X receptor-mediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity. Gut 2008, 57, 1230–1237. [Google Scholar] [CrossRef]
- Adinolfi, E.; Giuliani, A.L.; De Marchi, E.; Pegoraro, A.; Orioli, E.; Di Virgilio, F. The P2X7 receptor: A main player in inflammation. Biochem. Pharmacol. 2018, 151, 234–244. [Google Scholar] [CrossRef]
- Liu, P.-Y.; Lee, I.-H.; Tan, P.-H.; Wang, Y.-P.; Tsai, C.-F.; Lin, H.-C.; Lee, F.-Y.; Lu, C.-L. P2X7 Receptor Mediates Spinal Microglia Activation of Visceral Hyperalgesia in a Rat Model of Chronic Pancreatitis. Cell. Mol. Gastroenterol. Hepatol. 2015, 1, 710–720.e5. [Google Scholar] [CrossRef] [Green Version]
- Dell’Antonio, G.; Quattrini, A.; Cin, E.D.; Fulgenzi, A.; Ferrero, M.E. Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis Care Res. 2002, 46, 3378–3385. [Google Scholar] [CrossRef]
- Jarvis, M.F. The neural–glial purinergic receptor ensemble in chronic pain states. Trends Neurosci. 2010, 33, 48–57. [Google Scholar] [CrossRef]
- Chessell, I.P.; Hatcher, J.P.; Bountra, C.; Michel, A.D.; Hughes, J.P.; Green, P.; Egerton, J.; Murfin, M.; Richardson, J.; Peck, W.L.; et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005, 114, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Staniland, A.A.; Marchand, F.; Kaan, T.K.Y.; McMahon, S.; Malcangio, M. P2X7-Dependent Release of Interleukin-1 and Nociception in the Spinal Cord following Lipopolysaccharide. J. Neurosci. 2010, 30, 573–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gölöncsér, F.; Baranyi, M.; Balázsfi, D.; Demeter, K.; Haller, J.; Freund, T.F.F.; Zelena, D.; Sperlágh, B. Regulation of Hippocampal 5-HT Release by P2X7 Receptors in Response to Optogenetic Stimulation of Median Raphe Terminals of Mice. Front. Mol. Neurosci. 2017, 10, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Csölle, C.; Baranyi, M.; Zsilla, G.; Kittel, Á.; Gölöncsér, F.; Illes, P.; Papp, E.; Vizi, E.S.; Sperlágh, B. Neurochemical Changes in the Mouse Hippocampus Underlying the Antidepressant Effect of Genetic Deletion of P2X7 Receptors. PLoS ONE 2013, 8, e66547. [Google Scholar] [CrossRef] [Green Version]
- Mayhew, J.; Graham, B.; Biber, K.; Nilsson, M.; Walker, F. Purinergic modulation of glutamate transmission: An expanding role in stress-linked neuropathology. Neurosci. Biobehav. Rev. 2018, 93, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Iwata, M.; Ota, K.T.; Li, X.-Y.; Sakaue, F.; Li, N.; Dutheil, S.; Banasr, M.; Duric, V.; Yamanashi, T.; Kaneko, K.; et al. Psychological Stress Activates the Inflammasome via Release of Adenosine Triphosphate and Stimulation of the Purinergic Type 2X7 Receptor. Biol. Psychiatry 2015, 80, 12–22. [Google Scholar] [CrossRef]
- Otrokocsi, L.; Kittel, Á.; Sperlágh, B. P2X7 Receptors Drive Spine Synapse Plasticity in the Learned Helplessness Model of Depression. Int. J. Neuropsychopharmacol. 2017, 20, 813–822. [Google Scholar] [CrossRef]
- Guan, S.; Shen, Y.; Ge, H.; Xiong, W.; He, L.; Liu, L.; Yin, C.; Wei, X.; Gao, Y. Dihydromyricetin Alleviates Diabetic Neuropathic Pain and Depression Comorbidity Symptoms by Inhibiting P2X7 Receptor. Front. Psychiatry 2019, 10, 770. [Google Scholar] [CrossRef]
- Mansouri, M.T.; Soltani, M.; Naghizadeh, B.; Farbood, Y.; Mashak, A.; Sarkaki, A. A possible mechanism for the anxiolytic-like effect of gallic acid in the rat elevated plus maze. Pharmacol. Biochem. Behav. 2013, 117, 40–46. [Google Scholar] [CrossRef]
- Guo, P.; Anderson, J.D.; Bozell, J.J.; Zivanovic, S. The effect of solvent composition on grafting gallic acid onto chitosan via carbodiimide. Carbohydr. Polym. 2016, 140, 171–180. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomed. Pharmacother. 2020, 133, 110985. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress. Molecules 2021, 26, 7115. [Google Scholar] [CrossRef] [PubMed]
- Zamudio-Cuevas, Y.; Andonegui-Elguera, M.A.; Aparicio-Juárez, A.; Aguillón-Solís, E.; Martínez-Flores, K.; Ruvalcaba-Paredes, E.; Velasquillo-Martínez, C.; Ibarra, C.; Martínez-López, V.; Gutiérrez, M.; et al. The enzymatic poly(gallic acid) reduces pro-inflammatory cytokines in vitro, a potential application in inflammatory diseases. Inflammation 2020, 44, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Luo, T.; Weng, A.; Huang, X.; Yao, Y.; Fu, Z.; Li, Y.; Liu, A.; Li, X.; Chen, D.; et al. Gallic Acid Alleviates Gouty Arthritis by Inhibiting NLRP3 Inflammasome Activation and Pyroptosis Through Enhancing Nrf2 Signaling. Front. Immunol. 2020, 11, 580593. [Google Scholar] [CrossRef]
- Nouri, A.; Heibati, F.; Heidarian, E. Gallic acid exerts anti-inflammatory, anti-oxidative stress, and nephroprotective effects against paraquat-induced renal injury in male rats. Naunyn-Schmiedebergs Arch. Fur Exp. Pathol. Und Pharmakol. 2020, 394, 1–9. [Google Scholar] [CrossRef]
- Hsiang, C.-Y.; Hseu, Y.-C.; Chang, Y.-C.; Kumar, K.S.; Ho, T.-Y.; Yang, H.-L. Toona sinensis and its major bioactive compound gallic acid inhibit LPS-induced inflammation in nuclear factor-κB transgenic mice as evaluated by in vivo bioluminescence imaging. Food Chem. 2013, 136, 426–434. [Google Scholar] [CrossRef]
- Bensaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M.; Bensaad, L.A.; Kim, K.H.; Quah, C.C.; Kim, W.R.; Shahimi, M. Anti-inflammatory potential of ellagic acid, gallic acid and punicalagin A&B isolated from Punica granatum. BMC Complement. Altern. Med. 2017, 17, 47. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Nie, G.; Belton, P.S.; Tang, H.; Zhao, B. Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem. Int. 2005, 48, 263–274. [Google Scholar] [CrossRef]
- Chhillar, R.; Dhingra, D. Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam. Clin. Pharmacol. 2012, 27, 409–418. [Google Scholar] [CrossRef]
- Samad, N.; Jabeen, S.; Imran, I.; Zulfiqar, I.; Bilal, K. Protective effect of gallic acid against arsenic-induced anxiety−/depression- like behaviors and memory impairment in male rats. Metab. Brain Dis. 2019, 34, 1091–1102. [Google Scholar] [CrossRef]
- Nabavi, S.; Habtemariam, S.; Di Lorenzo, A.; Sureda, A.; Khanjani, S.; Daglia, M. Post-Stroke Depression Modulation and in Vivo Antioxidant Activity of Gallic Acid and Its Synthetic Derivatives in a Murine Model System. Nutrients 2016, 8, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aboubakr, A.; Cohen, M.S. Functional Bowel Disease. Clin. Geriatr. Med. 2020, 37, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Bair, M.J.; Robinson, R.L.; Katon, W.; Kroenke, K. Depression and pain comorbidity: A literature review. Arch. Intern. Med. 2003, 163, 2433–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, L.S.; Jones, W.J.; Shen, J.; Robinson, R.L.; Weinberger, M.; Kroenke, K. Prevalence and impact of depression and pain in neurology outpatients. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1587–1589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilderink, P.H.; Burger, H.; Deeg, D.J.; Beekman, A.T.; Voshaar, R.C.O. The Temporal Relation Between Pain and Depression: Results from the longitudinal aging study Amsterdam. Psychosom. Med. 2012, 74, 945–951. [Google Scholar] [CrossRef]
- Dworkin, R.H.; Gitlin, M.J. Clinical Aspects of Depression in Chronic Pain Patients. Clin. J. Pain 1991, 7, 79–94. [Google Scholar] [CrossRef]
- Bair, M.J.; Robinson, R.L.; Eckert, G.J.; Stang, P.E.; Croghan, T.W.; Kroenke, K. Impact of Pain on Depression Treatment Response in Primary Care. Psychosom. Med. 2004, 66, 17–22. [Google Scholar] [CrossRef]
- Gil, D.W.; Wang, J.; Gu, C.; Donello, J.E.; Cabrera, S.M.; Al-Chaer, E.D. Role of sympathetic nervous system in rat model of chronic visceral pain. Neurogastroenterol. Motil. 2015, 28, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, X.; Liu, K.; Gong, L.; Li, J.; Yao, W.; Liu, C.; Yu, S.; Li, Y.; Yao, Z.; et al. Brain-derived neurotrophic factor exerts antinociceptive effects by reducing excitability of colon-projecting dorsal root ganglion neurons in the colorectal distention-evoked visceral pain model. J. Neurosci. Res. 2012, 90, 2328–2334. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, B.-X.; Hua, R.; Kang, J.; Shao, B.-M.; Carbonaro, T.M.; Zhang, Y.-M. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats. Neuropharmacology 2016, 102, 295–303. [Google Scholar] [CrossRef]
- Meerveld, B.G.-V.; Johnson, A.C. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front. Syst. Neurosci. 2017, 11, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maya, S.; Prakash, T.; Madhu, K. Assessment of neuroprotective effects of Gallic acid against glutamate-induced neurotoxicity in primary rat cortex neuronal culture. Neurochem. Int. 2018, 121, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Akinrinde, A.; Adebiyi, O. Neuroprotection by luteolin and gallic acid against cobalt chloride-induced behavioural, morphological and neurochemical alterations in Wistar rats. NeuroToxicology 2019, 74, 252–263. [Google Scholar] [CrossRef] [PubMed]
- Maya, S.; Prakash, T.; Goli, D. Evaluation of neuroprotective effects of wedelolactone and gallic acid on aluminium-induced neurodegeneration: Relevance to sporadic amyotrophic lateral sclerosis. Eur. J. Pharmacol. 2018, 835, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.; Yousef, A.I.; El-Twab, S.M.A.; Reheim, E.S.A.; Ashour, M.B. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab. Brain Dis. 2017, 32, 1279–1286. [Google Scholar] [CrossRef]
- Diaz, A.; Muñoz-Arenas, G.; Caporal-Hernandez, K.; Vázquez-Roque, R.; Lopez-Lopez, G.; Kozina, A.; Espinosa, B.; Flores, G.; Treviño, S.; Guevara, J. Gallic acid improves recognition memory and decreases oxidative-inflammatory damage in the rat hippocampus with metabolic syndrome. Synapse 2020, 75, e22186. [Google Scholar] [CrossRef]
- Adedara, I.A.; Owumi, S.E.; Oyelere, A.K.; Farombi, E.O. Neuroprotective role of gallic acid in aflatoxin B 1 -induced behavioral abnormalities in rats. J. Biochem. Mol. Toxicol. 2020, 35, e22684. [Google Scholar] [CrossRef]
- Yang, R.; Li, Z.; Zou, Y.; Yang, J.; Li, L.; Xu, X.; Schmalzing, G.; Nie, H.; Li, G.; Liu, S.; et al. Gallic Acid Alleviates Neuropathic Pain Behaviors in Rats by Inhibiting P2X7 Receptor-Mediated NF-κB/STAT3 Signaling Pathway. Front. Pharmacol. 2021, 12, 680139. [Google Scholar] [CrossRef]
- Di Virgilio, F.; Dal Ben, D.; Sarti, A.C.; Giuliani, A.L.; Falzoni, S. The P2X7 Receptor in Infection and Inflammation. Immunity 2017, 47, 15–31. [Google Scholar] [CrossRef] [Green Version]
- Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 2002, 10, 417–426. [Google Scholar] [CrossRef]
- Ferrari, D.; Pizzirani, C.; Adinolfi, E.; Lemoli, R.M.; Curti, A.; Idzko, M.; Panther, E.; Di Virgilio, F. The P2X7Receptor: A Key Player in IL-1 Processing and Release. J. Immunol. 2006, 176, 3877–3883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, V.B.; Hart, J.; Wewers, M.D. ATP-stimulated release of interleukin (IL)-1beta and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J. Biol. Chem. 2001, 276, 3820–3826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinarello, C.A. The IL-1 family and inflammatory diseases. Clin. Exp. Rheumatol. 2002, 20, S1–S13. [Google Scholar]
- Mayer, E.A.; Raybould, H.E. Role of visceral afferent mechanisms in functional bowel disorders. Gastroenterology 1990, 99, 1688–1704. [Google Scholar] [CrossRef]
- Xu, Y.; Sheng, H.; Bao, Q.; Wang, Y.; Lu, J.; Ni, X. NLRP3 inflammasome activation mediates estrogen deficiency-induced depression- and anxiety-like behavior and hippocampal inflammation in mice. Brain Behav. Immun. 2016, 56, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Adeyemo, M.; Karagiannidis, I.; Videlock, E.J.; Bowe, C.; Shih, W.; Presson, A.P.; Yuan, P.-Q.; Cortina, G.; Gong, H.; et al. Serum and Colonic Mucosal Immune Markers in Irritable Bowel Syndrome. Am. J. Gastroenterol. 2012, 107, 262–272. [Google Scholar] [CrossRef] [Green Version]
- Roman, M.; Irwin, M.R. Novel neuroimmunologic therapeutics in depression: A clinical perspective on what we know so far. Brain Behav. Immun. 2019, 83, 7–21. [Google Scholar] [CrossRef]
- Troubat, R.; Barone, P.; Leman, S.; DeSmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; et al. Neuroinflammation and depression: A review. Eur. J. Neurosci. 2020, 53, 151–171. [Google Scholar] [CrossRef]
- Mondal, A.C.; Fatima, M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: Role of antidepressants treatment. Int. J. Neurosci. 2018, 129, 283–296. [Google Scholar] [CrossRef]
- Phillips, C. Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast. 2017, 2017, 260130. [Google Scholar] [CrossRef]
- Johnson, G.L.; Lapadat, R. Mitogen-Activated Protein Kinase Pathways Mediated by ERK, JNK, and p38 Protein Kinases. Science 2002, 298, 1911–1912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.-Y.; Huang, Y.; Yang, Y.-T.; Zhang, D.; Zhao, Y.; Hong, J.; Liu, J.; Wu, L.-J.; Zhang, C.-H.; Wu, H.-G.; et al. Moxibustion eases chronic inflammatory visceral pain through regulating MEK, ERK and CREB in rats. World J. Gastroenterol. 2017, 23, 6220–6230. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Yang, Q.; Tian, T.; Chang, Y.; Li, Y.; Duan, L.-R.; Li, H.; Wang, S.-W. Gastroprotective effect of gallic acid against ethanol-induced gastric ulcer in rats: Involvement of the Nrf2/HO-1 signaling and anti-apoptosis role. Biomed. Pharmacother. 2020, 126, 110075. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G.; Boeynaems, J.-M. Purinergic signalling and immune cells. Purinergic Signal. 2014, 10, 529–564. [Google Scholar] [CrossRef] [Green Version]
- Lara, R.; Adinolfi, E.; Harwood, C.A.; Philpott, M.; Barden, J.A.; Di Virgilio, F.; McNulty, S. P2X7 in Cancer: From Molecular Mechanisms to Therapeutics. Front. Pharmacol. 2020, 11, 793. [Google Scholar] [CrossRef]
- Verderio, C.; Matteoli, M. ATP mediates calcium signaling between astrocytes and microglial cells: Modulation by IFN-gamma. J. Immunol. 2001, 166, 6383–6391. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.-S. Role of inflammasomes in inflammatory autoimmune rheumatic diseases. Korean J. Physiol. Pharmacol. 2018, 22, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Greenspan, J.D.; Craft, R.M.; LeResche, L.; Arendt-Nielsen, L.; Berkley, K.J.; Fillingim, R.; Gold, M.; Holdcroft, A.; Lautenbacher, S.; Mayer, E.A.; et al. Studying sex and gender differences in pain and analgesia: A consensus report. Pain 2007, 132 (Suppl. S1), S26–S45. [Google Scholar] [CrossRef] [Green Version]
- Al–Chaer, E.D.; Kawasaki, M.; Pasricha, P.J. A new model of chronic visceral hypersensitivity in adult rats induced by colon irritation during postnatal development. Gastroenterology 2000, 119, 1276–1285. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Ge, H.; Sun, M.; Gao, Y. Selecting an Appropriate Animal Model of Depression. Int. J. Mol. Sci. 2019, 20, 4827. [Google Scholar] [CrossRef] [Green Version]
Mode | Affinity | Dist from Best Mode | |
---|---|---|---|
(kcal/mol) | rmsdl.b. | rmsdu.b. | |
1 | −6.4 | 0.000 | 0.000 |
2 | −6.3 | 16.856 | 18.085 |
3 | −6.1 | 1.228 | 3.775 |
4 | −5.7 | 17.977 | 19.492 |
5 | −5.6 | 10.916 | 13.051 |
6 | −5.6 | 10.910 | 13.236 |
7 | −5.6 | 10.866 | 12.913 |
8 | −5.6 | 9.819 | 11.322 |
9 | −5.5 | 27.190 | 27.842 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, L.; Tang, L.; Zhang, M.; Wang, C.; Li, S.; Wen, Y.; Tu, H.; Tian, H.; Wei, J.; Liang, P.; et al. Gallic Acid Alleviates Visceral Pain and Depression via Inhibition of P2X7 Receptor. Int. J. Mol. Sci. 2022, 23, 6159. https://doi.org/10.3390/ijms23116159
Wen L, Tang L, Zhang M, Wang C, Li S, Wen Y, Tu H, Tian H, Wei J, Liang P, et al. Gallic Acid Alleviates Visceral Pain and Depression via Inhibition of P2X7 Receptor. International Journal of Molecular Sciences. 2022; 23(11):6159. https://doi.org/10.3390/ijms23116159
Chicago/Turabian StyleWen, Lequan, Lirui Tang, Mingming Zhang, Congrui Wang, Shujuan Li, Yuqing Wen, Hongcheng Tu, Haokun Tian, Jingyi Wei, Peiwen Liang, and et al. 2022. "Gallic Acid Alleviates Visceral Pain and Depression via Inhibition of P2X7 Receptor" International Journal of Molecular Sciences 23, no. 11: 6159. https://doi.org/10.3390/ijms23116159
APA StyleWen, L., Tang, L., Zhang, M., Wang, C., Li, S., Wen, Y., Tu, H., Tian, H., Wei, J., Liang, P., Yang, C., Li, G., & Gao, Y. (2022). Gallic Acid Alleviates Visceral Pain and Depression via Inhibition of P2X7 Receptor. International Journal of Molecular Sciences, 23(11), 6159. https://doi.org/10.3390/ijms23116159