Neuroinflammation in Friedreich’s Ataxia
Abstract
:1. Introduction
2. Neuroinflammation and Iron Dysmetabolism
3. Neuroinflammation in FRDA
3.1. Microglia in FRDA
3.2. Astrocytes in FRDA
3.3. Myelinating Glial Cells in FRDA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Williams, C.T.; De Jesus, O. Friedreich Ataxia. In StatPearls; StatPearls Publishing: Treasure Island, FL, Australia, 2022. [Google Scholar]
- Monfort, B.; Want, K.; Gervason, S.; D’Autréaux, B. Recent Advances in the Elucidation of Frataxin Biochemical Function Open Novel Perspectives for the Treatment of Friedreich’s Ataxia. Front. Neurosci. 2022, 16, 838335. [Google Scholar] [CrossRef] [PubMed]
- Fox, N.G.; Yu, X.; Feng, X.; Bailey, H.J.; Martelli, A.; Nabhan, J.F.; Strain-Damerell, C.; Bulawa, C.; Yue, W.W.; Han, S. Structure of the Human Frataxin-Bound Iron-Sulfur Cluster Assembly Complex Provides Insight into Its Activation Mechanism. Nat. Commun. 2019, 10, 2210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, D.; Patra, S.; Bridwell-Rabb, J.; Barondeau, D.P. Mechanism of Frataxin “Bypass” in Human Iron-Sulfur Cluster Biosynthesis with Implications for Friedreich’s Ataxia. J. Biol. Chem. 2019, 294, 9276–9284. [Google Scholar] [CrossRef] [PubMed]
- Llorens, J.V.; Soriano, S.; Calap-Quintana, P.; Gonzalez-Cabo, P.; Moltó, M.D. The Role of Iron in Friedreich’s Ataxia: Insights From Studies in Human Tissues and Cellular and Animal Models. Front. Neurosci. 2019, 13, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvador, G.A.; Uranga, R.M.; Giusto, N.M. Iron and Mechanisms of Neurotoxicity. Int. J. Alzheimers Dis. 2010, 2011, 720658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.; Lefevre, S.; Sliwa, D.; Seguin, A.; Camadro, J.-M.; Lesuisse, E. Friedreich Ataxia: Molecular Mechanisms, Redox Considerations, and Therapeutic Opportunities. Antioxid. Redox Signal. 2010, 13, 651–690. [Google Scholar] [CrossRef] [Green Version]
- Harding, I.H.; Lynch, D.R.; Koeppen, A.H.; Pandolfo, M. Central Nervous System Therapeutic Targets in Friedreich Ataxia. Hum. Gene Ther. 2020, 31, 1226–1236. [Google Scholar] [CrossRef]
- Ransohoff, R.M. How Neuroinflammation Contributes to Neurodegeneration. Science 2016, 353, 777–783. [Google Scholar] [CrossRef]
- Koeppen, A.H.; Morral, J.A.; Davis, A.N.; Qian, J.; Petrocine, S.V.; Knutson, M.D.; Gibson, W.M.; Cusack, M.J.; Li, D. The Dorsal Root Ganglion in Friedreich’s Ataxia. Acta Neuropathol. 2009, 118, 763–776. [Google Scholar] [CrossRef]
- Lu, C.; Schoenfeld, R.; Shan, Y.; Tsai, H.-J.; Hammock, B.; Cortopassi, G. Frataxin Deficiency Induces Schwann Cell Inflammation and Death. Biochim. Biophys. Acta 2009, 1792, 1052–1061. [Google Scholar] [CrossRef] [Green Version]
- Vela, D. The Dual Role of Hepcidin in Brain Iron Load and Inflammation. Front. Neurosci. 2018, 12, 740. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.-Y.; Liu, L.; Wang, F.-X.; Yang, Y.-R.; Hao, J.-W.; Wang, P.-F.; Zhong, Q.; Zhou, K.; Xiong, A.; Zhu, W.-Y.; et al. Toll-Like Receptor 4/MyD88-Mediated Signaling of Hepcidin Expression Causing Brain Iron Accumulation, Oxidative Injury, and Cognitive Impairment After Intracerebral Hemorrhage. Circulation 2016, 134, 1025–1038. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.N.; Rangel, M. The (Bio)Chemistry of Non-Transferrin-Bound Iron. Molecules 2022, 27, 1784. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.; Zucca, F.A.; Duyn, J.H.; Crichton, R.R.; Zecca, L. The Role of Iron in Brain Ageing and Neurodegenerative Disorders. Lancet Neurol. 2014, 13, 1045–1060. [Google Scholar] [CrossRef] [Green Version]
- Leitner, D.F.; Connor, J.R. Functional Roles of Transferrin in the Brain. Biochim. Biophys. Acta 2012, 1820, 393–402. [Google Scholar] [CrossRef]
- Urrutia, P.J.; Bórquez, D.A.; Núñez, M.T. Inflaming the Brain with Iron. Antioxidants 2021, 10, 61. [Google Scholar] [CrossRef]
- Gilhus, N.E.; Deuschl, G. Neuroinflammation—A Common Thread in Neurological Disorders. Nat. Rev. Neurol. 2019, 15, 429–430. [Google Scholar] [CrossRef]
- Ransohoff, R.M. A Polarizing Question: Do M1 and M2 Microglia Exist? Nat. Neurosci. 2016, 19, 987–991. [Google Scholar] [CrossRef]
- D’Ambrosi, N.; Cozzolino, M.; Carrì, M.T. Neuroinflammation in Amyotrophic Lateral Sclerosis: Role of Redox (Dys)Regulation. Antioxid. Redox Signal. 2018, 29, 15–36. [Google Scholar] [CrossRef]
- Yauger, Y.J.; Bermudez, S.; Moritz, K.E.; Glaser, E.; Stoica, B.; Byrnes, K.R. Iron Accentuated Reactive Oxygen Species Release by NADPH Oxidase in Activated Microglia Contributes to Oxidative Stress in Vitro. J. Neuroinflamm. 2019, 16, 41. [Google Scholar] [CrossRef]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef] [PubMed]
- Carletti, B.; Piemonte, F. Friedreich’s Ataxia: A Neuronal Point of View on the Oxidative Stress Hypothesis. Antioxidants 2014, 3, 592–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosito, M.; Testi, C.; Parisi, G.; Cortese, B.; Baiocco, P.; Di Angelantonio, S. Exploring the Use of Dimethyl Fumarate as Microglia Modulator for Neurodegenerative Diseases Treatment. Antioxidants 2020, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Nnah, I.C.; Wessling-Resnick, M. Brain Iron Homeostasis: A Focus on Microglial Iron. Pharmaceuticals 2018, 11, E129. [Google Scholar] [CrossRef] [Green Version]
- Imai, T.; Tsuji, S.; Matsubara, H.; Ohba, T.; Sugiyama, T.; Nakamura, S.; Hara, H.; Shimazawa, M. Deferasirox, a Trivalent Iron Chelator, Ameliorates Neuronal Damage in Hemorrhagic Stroke Models. Naunyn Schmiedebergs Arch. Pharmacol. 2021, 394, 73–84. [Google Scholar] [CrossRef]
- Pagani, F.; Testi, C.; Grimaldi, A.; Corsi, G.; Cortese, B.; Basilico, B.; Baiocco, P.; De Panfilis, S.; Ragozzino, D.; Di Angelantonio, S. Dimethyl Fumarate Reduces Microglia Functional Response to Tissue Damage and Favors Brain Iron Homeostasis. Neuroscience 2020, 439, 241–254. [Google Scholar] [CrossRef]
- Lloyd, A.F.; Miron, V.E. The Pro-Remyelination Properties of Microglia in the Central Nervous System. Nat. Rev. Neurol. 2019, 15, 447–458. [Google Scholar] [CrossRef]
- Santos, E.N.; Fields, R.D. Regulation of Myelination by Microglia. Sci. Adv. 2021, 7, eabk1131. [Google Scholar] [CrossRef]
- Sofroniew, M.V. Molecular Dissection of Reactive Astrogliosis and Glial Scar Formation. Trends Neurosci. 2009, 32, 638–647. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhang, Y.; Zhang, J.-H.; Han, K.; Zhang, X.; Bai, X.; You, L.-H.; Yu, P.; Shi, Z.; Chang, Y.-Z.; et al. Astrocyte Hepcidin Ameliorates Neuronal Loss through Attenuating Brain Iron Deposition and Oxidative Stress in APP/PS1 Mice. Free Radic. Biol. Med. 2020, 158, 84–95. [Google Scholar] [CrossRef]
- Zhang, X.; Gou, Y.-J.; Zhang, Y.; Li, J.; Han, K.; Xu, Y.; Li, H.; You, L.-H.; Yu, P.; Chang, Y.-Z.; et al. Hepcidin Overexpression in Astrocytes Alters Brain Iron Metabolism and Protects against Amyloid-β Induced Brain Damage in Mice. Cell Death Discov. 2020, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.R.; Farmer, G. Mitochondrial and Metabolic Dysfunction in Friedreich Ataxia: Update on Pathophysiological Relevance and Clinical Interventions. Neuronal Signal. 2021, 5, NS20200093. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Corben, L.A.; Bilal, H.; Vivash, L.; Delatycki, M.B.; Egan, G.F.; Harding, I.H. Neuroinflammation in the Cerebellum and Brainstem in Friedreich Ataxia: An [18F]-FEMPA PET Study. Mov. Disord. 2022, 37, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Koeppen, A.H.; Michael, S.C.; Knutson, M.D.; Haile, D.J.; Qian, J.; Levi, S.; Santambrogio, P.; Garrick, M.D.; Lamarche, J.B. The Dentate Nucleus in Friedreich’s Ataxia: The Role of Iron-Responsive Proteins. Acta Neuropathol. 2007, 114, 163–173. [Google Scholar] [CrossRef] [Green Version]
- Kemp, K.C.; Cook, A.J.; Redondo, J.; Kurian, K.M.; Scolding, N.J.; Wilkins, A. Purkinje Cell Injury, Structural Plasticity and Fusion in Patients with Friedreich’s Ataxia. Acta Neuropathol. Commun. 2016, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Franco, C.; Genis, L.; Navarro, J.A.; Perez-Domper, P.; Fernandez, A.M.; Schneuwly, S.; Torres Alemán, I. A Role for Astrocytes in Cerebellar Deficits in Frataxin Deficiency: Protection by Insulin-like Growth Factor I. Mol. Cell Neurosci. 2017, 80, 100–110. [Google Scholar] [CrossRef]
- Koeppen, A.H.; Ramirez, R.L.; Yu, D.; Collins, S.E.; Qian, J.; Parsons, P.J.; Yang, K.X.; Chen, Z.; Mazurkiewicz, J.E.; Feustel, P.J. Friedreich’s Ataxia Causes Redistribution of Iron, Copper, and Zinc in the Dentate Nucleus. Cerebellum 2012, 11, 845–860. [Google Scholar] [CrossRef] [Green Version]
- Rocca, C.J.; Goodman, S.M.; Dulin, J.N.; Haquang, J.H.; Gertsman, I.; Blondelle, J.; Smith, J.L.M.; Heyser, C.J.; Cherqui, S. Transplantation of Wild-Type Mouse Hematopoietic Stem and Progenitor Cells Ameliorates Deficits in a Mouse Model of Friedreich’s Ataxia. Sci. Transl. Med. 2017, 9, eaaj2347. [Google Scholar] [CrossRef] [Green Version]
- Kemp, K.C.; Cerminara, N.; Hares, K.; Redondo, J.; Cook, A.J.; Haynes, H.R.; Burton, B.R.; Pook, M.; Apps, R.; Scolding, N.J.; et al. Cytokine Therapy-Mediated Neuroprotection in a Friedreich’s Ataxia Mouse Model. Ann. Neurol. 2017, 81, 212–226. [Google Scholar] [CrossRef]
- Hayashi, G.; Shen, Y.; Pedersen, T.L.; Newman, J.W.; Pook, M.; Cortopassi, G. Frataxin Deficiency Increases Cyclooxygenase 2 and Prostaglandins in Cell and Animal Models of Friedreich’s Ataxia. Hum. Mol. Genet. 2014, 23, 6838–6847. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Acosta, A.; Giménez-Cassina, A.; Díaz-Nido, J.; Loria, F. The Smoothened Agonist SAG Reduces Mitochondrial Dysfunction and Neurotoxicity of Frataxin-Deficient Astrocytes. J. Neuroinflamm. 2022, 19, 93. [Google Scholar] [CrossRef] [PubMed]
- Smith, F.M.; Kosman, D.J. Molecular Defects in Friedreich’s Ataxia: Convergence of Oxidative Stress and Cytoskeletal Abnormalities. Front. Mol. Biosci. 2020, 7, 569293. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; McMackin, M.Z.; Shan, Y.; Raetz, A.; David, S.; Cortopassi, G. Frataxin Deficiency Promotes Excess Microglial DNA Damage and Inflammation That Is Rescued by PJ34. PLoS ONE 2016, 11, e0151026. [Google Scholar] [CrossRef] [PubMed]
- Navarro, J.A.; Ohmann, E.; Sanchez, D.; Botella, J.A.; Liebisch, G.; Molto, M.D.; Ganfornina, M.D.; Schmitz, G.; Schneuwly, S. Altered Lipid Metabolism in a Drosophila Model of Friedreich’s Ataxia. Hum. Mol. Genet. 2010, 19, 2828–2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loría, F.; Díaz-Nido, J. Frataxin Knockdown in Human Astrocytes Triggers Cell Death and the Release of Factors That Cause Neuronal Toxicity. Neurobiol. Dis. 2015, 76, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarro, J.A.; Botella, J.A.; Metzendorf, C.; Lind, M.I.; Schneuwly, S. Mitoferrin Modulates Iron Toxicity in a Drosophila Model of Friedreich’s Ataxia. Free Radic. Biol. Med. 2015, 85, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Zeitlberger, A.M.; Thomas-Black, G.; Garcia-Moreno, H.; Foiani, M.; Heslegrave, A.J.; Zetterberg, H.; Giunti, P. Plasma Markers of Neurodegeneration Are Raised in Friedreich’s Ataxia. Front. Cell Neurosci. 2018, 12, 366. [Google Scholar] [CrossRef] [Green Version]
- Koeppen, A.H.; Becker, A.B.; Qian, J.; Gelman, B.B.; Mazurkiewicz, J.E. Friedreich Ataxia: Developmental Failure of the Dorsal Root Entry Zone. J. Neuropathol. Exp. Neurol. 2017, 76, 969–977. [Google Scholar] [CrossRef]
- Cerrato, V. Cerebellar Astrocytes: Much More Than Passive Bystanders In Ataxia Pathophysiology. J. Clin. Med. 2020, 9, 757. [Google Scholar] [CrossRef] [Green Version]
- Sandi, C.; Sandi, M.; Jassal, H.; Ezzatizadeh, V.; Anjomani-Virmouni, S.; Al-Mahdawi, S.; Pook, M.A. Generation and Characterisation of Friedreich Ataxia YG8R Mouse Fibroblast and Neural Stem Cell Models. PLoS ONE 2014, 9, e89488. [Google Scholar] [CrossRef] [Green Version]
- Khodagholi, F.; Shaerzadeh, F.; Montazeri, F. Mitochondrial Aconitase in Neurodegenerative Disorders: Role of a Metabolism- Related Molecule in Neurodegeneration. Curr. Drug Targets 2018, 19, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Franco, C.; Fernández, S.; Torres-Alemán, I. Frataxin Deficiency Unveils Cell-Context Dependent Actions of Insulin-like Growth Factor I on Neurons. Mol. Neurodegener. 2012, 7, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edenharter, O.; Schneuwly, S.; Navarro, J.A. Mitofusin-Dependent ER Stress Triggers Glial Dysfunction and Nervous System Degeneration in a Drosophila Model of Friedreich’s Ataxia. Front. Mol. Neurosci. 2018, 11, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delatycki, M.B.; Bidichandani, S.I. Friedreich Ataxia-Pathogenesis and Implications for Therapies. Neurobiol. Dis. 2019, 132, 104606. [Google Scholar] [CrossRef]
FRDA Model | Neuroinflammatory Features | References |
---|---|---|
Patients | Increased glial activation in cerebellum and brainstem | [34] |
Increased ferritin signals in cerebellar microglia and astrocytes | [35] | |
Microglia with enlarged perikarya and thicker processes | [36] | |
Astroglia intrusion into dorsal roots | [37] | |
Hypertrophic cerebellar microglia positive for SOD1 enzyme | [38] | |
Increased GFAP plasma levels | [39] | |
KIKO mice | Increased cerebellar microgliosis and astrocytosis after LPS stimulation; increased oxidative damage and DNA repair proteins | [40] |
Increased cerebellar COX2 | [41] | |
YG8R mice | Increased cerebellar microglial activation after LPS; increased COX2 | [41] |
Increased satellite cell proliferation, astrocytosis and influx of OX42 positive cells in the spinal cord and cerebellum | [42] | |
FGKO mice | Severe ataxia after frataxin deletion in astrocytes during development | [43] |
Microglial cell lines | Increased DNA damage after frataxin knockdown | [40] |
Mouse primary astrocytes | Increased ROS production after frataxin knockdown | [44] |
Human astrocytes in vitro | Impaired mitochondrial activity and superoxide formation; increased release of inflammatory molecules and toxicity for neurons after frataxin knockdown | [45,46] |
iPSC-derived YG8R astrocytes | Reduced aconitase and DNA repair enzymes; increased sensitivity to oxidative stress | [45] |
Schwann cells in vitro | Decreased proliferation and increased inflammatory genes after frataxin knockdown | [11] |
Drosophila melanogaster | Locomotor dysfunction, brain degeneration and lipid metabolism defects after frataxin knockdown in glia | [47,48] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Apolloni, S.; Milani, M.; D’Ambrosi, N. Neuroinflammation in Friedreich’s Ataxia. Int. J. Mol. Sci. 2022, 23, 6297. https://doi.org/10.3390/ijms23116297
Apolloni S, Milani M, D’Ambrosi N. Neuroinflammation in Friedreich’s Ataxia. International Journal of Molecular Sciences. 2022; 23(11):6297. https://doi.org/10.3390/ijms23116297
Chicago/Turabian StyleApolloni, Savina, Martina Milani, and Nadia D’Ambrosi. 2022. "Neuroinflammation in Friedreich’s Ataxia" International Journal of Molecular Sciences 23, no. 11: 6297. https://doi.org/10.3390/ijms23116297
APA StyleApolloni, S., Milani, M., & D’Ambrosi, N. (2022). Neuroinflammation in Friedreich’s Ataxia. International Journal of Molecular Sciences, 23(11), 6297. https://doi.org/10.3390/ijms23116297