Function of Graphene Oxide as the “Nanoquencher” for Hg2+ Detection Using an Exonuclease I-Assisted Biosensor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Strategy for Ultrasensitive Detection of Hg2+
2.2. Characterization of pGO25000
2.3. Fluorescence Quenching of FAM–ssDNA by pGO25000
2.4. Fluorescence Detection of Hg2+
2.5. Sensitivity of Hg2+ Detection
2.6. Selectivity of Hg2+
2.7. Application in Real Samples
3. Experimental
3.1. Chemicals and Materials
3.2. Apparatus
3.3. Preparation of pGO25000
3.4. Fluorescence Quenching Assay
3.5. Study of Exo I Activity in Hg2+ Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boening, D.W. Ecological effects, transport, and fate of mercury: A general review. Chemosphere 2000, 40, 1335–1351. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T.D. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.L.; Zhan, J.H. Recent developments on nanomaterials-based optical sensors for Hg2+ detection. Sci. China-Mater. 2015, 58, 223–240. [Google Scholar] [CrossRef] [Green Version]
- Covaci, E.; Senila, M.; Tanaselia, C.; Angyus, S.B.; Ponta, M.; Darvasi, E.; Frentiu, M.; Frentiu, T. A highly sensitive eco-scale method for mercury determination in water and food using photochemical vapor generation and miniaturized instrumentation for capacitively coupled plasma microtorch optical emission spectrometry. J. Anal. At. Spectrom. 2018, 33, 799–808. [Google Scholar] [CrossRef]
- Baika, L.M.; Dos Santos, E.J.; Herrmann, A.B.; Grassi, M.T. Simultaneous determination of As, Hg, Sb, and Se in mineral fertilizers using ultrasonic extraction and CVG-ICP OES. Anal. Methods 2016, 8, 8362–8367. [Google Scholar] [CrossRef]
- Xing, Y.Q.; Han, J.; Wu, X.; Pierce, D.T.; Zhao, J.X. Aggregation-based determination of mercury(II) using DNA-modified single gold nanoparticle, T-Hg(II)-T interaction, and single-particle ICP-MS. Microchim. Acta 2020, 187, 56. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.H.M.; Chan, I.H.S.; Kong, A.P.S.; Osaki, R.; Cheung, R.C.K.; Ho, C.S.; Wong, G.W.K.; Tong, P.C.Y.; Chan, J.C.N.; Lam, C.W.K. Cold-vapour atomic absorption spectrometry underestimates total mercury in blood and urine compared to inductively-coupled plasma mass spectrometry: An important factor for determining mercury reference intervals. Pathology 2009, 41, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.J.; Nie, H.G.; Jiang, J.H.; Shen, G.L.; Yu, R.Q. Electrochemical Sensor for Mercury(II) Based on Conformational Switch Mediated by Interstrand Cooperative Coordination. Anal. Chem. 2009, 81, 5724–5730. [Google Scholar] [CrossRef]
- Liu, W.; Yang, L.J.; Yu, K.L.; Li, Y.Y. Enzyme-Assisted Cyclic Signal Amplification by Using Carbon Nanomaterials for Hg2+ Detection. ChemistrySelect 2020, 5, 4267–4272. [Google Scholar] [CrossRef]
- Xie, S.B.; Tang, C.Y.; Liu, H.; Zhang, T.E.; Tang, Y.; Teng, L.M.; Zhang, J. An electroanalytical platform for nereistoxin-related insecticide detection based on DNA conformational switching and exonuclease III assisted target recycling. Analyst 2020, 145, 946–952. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.W.; Lan, Y.F.; Zhang, C.; Jia, J.; Niu, W.F.; Wei, Y.L.; Fu, S.L.; Yun, K.M. A label-free Exonuclease I-assisted fluorescence aptasensor for highly selective and sensitive detection of silver ions. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2021, 260, 119927. [Google Scholar] [CrossRef]
- Xing, X.J.; Zhou, Y.; Liu, X.G.; Pang, D.W.; Tang, H.W. Graphene Oxide and Metal-Mediated Base Pairs Based “Molecular Beacon” Integrating with Exonuclease I for Fluorescence Turn-on Detection of Biothiols. Small 2014, 10, 3412–3420. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C. Construction of DNA Biosensors for Mercury (II) Ion Detection Based on Enzyme-Driven Signal Amplification Strategy. Biomolecules 2021, 11, 399. [Google Scholar] [CrossRef]
- Wei, Y.L.; Chen, Y.X.; Li, H.H.; Shuang, S.M.; Dong, C.; Wang, G.F. An exonuclease I-based label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection with a wide concentration range. Biosens. Bioelectron. 2015, 63, 311–316. [Google Scholar] [CrossRef]
- Lan, Y.F.; Qin, G.J.; Wei, Y.L.; Wang, L.; Dong, C. Exonuclease I-assisted fluorescence aptasensor for tetrodotoxin. Ecotoxicol. Environ. Saf. 2020, 194, 110417. [Google Scholar] [CrossRef]
- Zhang, J.X.; Ma, X.; Chen, W.H.; Bai, Y.F.; Xue, P.L.; Chen, K.H.; Chen, W.; Bian, L.J. Bifunctional single-labelled oligonucleotide probe for detection of trace Ag(I) and Pb(II) based on cytosine-Ag(I)-cytosine mismatches and G-quadruplex. Anal. Chim. Acta 2021, 1151, 338258. [Google Scholar] [CrossRef]
- Wang, H.M.; Hou, S.N.; Wang, Q.Q.; Wang, Z.W.; Fan, X.; Zhai, J. Dual-response for Hg2+ and Ag+ ions based on biomimetic funnel-shaped alumina nanochannels. J. Mater. Chem. B 2015, 3, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Q.; Yang, M.; Fu, X. Exonuclease III-assisted Dual-Cycle Isothermal Signal Amplification for Highly Sensitive “Turn-on” Type Detection of Mercury Ion (II). Chin. J. Anal. Chem. 2019, 47, 899–906. [Google Scholar]
- Yuan, M.; Zhu, Y.G.; Lou, X.H.; Chen, C.; Wei, G.; Lan, M.B.; Zhao, J.L. Sensitive label-free oligonucleotide-based microfluidic detection of mercury (II) ion by using exonuclease I. Biosens. Bioelectron. 2012, 31, 330–336. [Google Scholar] [CrossRef]
- Huang, H.L.; Shi, S.; Zheng, X.Y.; Yao, T.M. Sensitive detection for coralyne and mercury ions based on homo-A/T DNA by exonuclease signal amplification. Biosens. Bioelectron. 2015, 71, 439–444. [Google Scholar] [CrossRef]
- Sahin, S.; Caglayan, M.O.; Ustundag, Z. A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020, 220, 121437. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Ma, J.X.; Chen, X.D.; Xiu, F.R.; Chen, Y.T.; Lu, Y.W. Practical aptamer-based assay of heavy metal mercury ion in contaminated environmental samples: Convenience and sensitivity. Anal. Bioanal. Chem. 2020, 412, 439–448. [Google Scholar] [CrossRef]
- Tan, L.; Chen, Z.; Zhang, C.; Wei, X.; Lou, T.; Zhao, Y. Colorimetric Detection of Hg2+ Based on the Growth of Aptamer-Coated AuNPs: The Effect of Prolonging Aptamer Strands. Small 2017, 13, 1603370. [Google Scholar] [CrossRef]
- Zhang, L.B.; Tao, L.; Li, B.L.; Jing, L.; Wang, E.K. Carbon nanotube-DNA hybrid fluorescent sensor for sensitive and selective detection of mercury(II) ion. Chem. Commun. 2010, 46, 1476–1478. [Google Scholar] [CrossRef]
- Wang, Y.H.; Deng, H.H.; Liu, Y.H.; Shi, X.Q.; Liu, A.L.; Peng, H.P.; Hong, G.L.; Chen, W. Partially reduced graphene oxide as highly efficient DNA nanoprobe. Biosens. Bioelectron. 2016, 80, 140–145. [Google Scholar] [CrossRef]
- Li, H.L.; Zhai, J.F.; Sun, X.P. Nano-C-60 as a novel, effective fluorescent sensing platform for mercury(II) ion detection at critical sensitivity and selectivity. Nanoscale 2011, 3, 2155–2157. [Google Scholar] [CrossRef]
- Liu, Y.; Kannegulla, A.; Wu, B.; Cheng, L.J. Quantum Dot Fullerene-Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection. ACS Appl. Mater. Interfaces 2018, 10, 18524–18531. [Google Scholar] [CrossRef]
- Guo, R.B.; Chen, B.; Li, F.L.; Weng, S.H.; Zheng, Z.F.; Chen, M.; Wu, W.; Lin, X.H.; Yang, C.Y. Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sens. Actuator B-Chem. 2018, 264, 193–201. [Google Scholar] [CrossRef]
- Cui, X.; Zhu, L.; Wu, J.; Hou, Y.; Wang, P.Y.; Wang, Z.N.; Yang, M. A fluorescent biosensor based on carbon dots-labeled oligodeoxyribonucleotide and graphene oxide for mercury (II) detection. Biosens. Bioelectron. 2015, 63, 506–512. [Google Scholar] [CrossRef]
- Zhang, H.; Jia, S.; Lv, M.; Shi, J.; Zuo, X.; Su, S.; Wang, L.; Huang, W.; Fan, C.; Huang, Q. Size-Dependent Programming of the Dynamic Range of Graphene Oxide–DNA Interaction-Based Ion Sensors. Anal. Chem. 2014, 86, 4047–4051. [Google Scholar] [CrossRef]
- Bayraktutan, T.; Meral, K. Merocyanine 540 adsorbed on polyethylenimine-functionalized graphene oxide nanocomposites as a turn-on fluorescent sensor for bovine serum albumin. Phys. Chem. Chem. Phys. 2016, 18, 23400–23406. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.A.; Lau, C.; Chen, G.L.; Lu, J.Z. Hybridization-initiated exonuclease resistance strategy for simultaneous detection of multiple microRNAs. Talanta 2018, 190, 248–254. [Google Scholar] [CrossRef]
- Oh, B.; Lee, C.H. Development of Man-rGO for Targeted Eradication of Macrophage Ablation. Mol. Pharm. 2015, 12, 3226–3236. [Google Scholar] [CrossRef] [PubMed]
- Eigler, S.; Dotzer, C.; Hirsch, A. Visualization of defect densities in reduced graphene oxide. Carbon 2012, 50, 3666–3673. [Google Scholar] [CrossRef]
- Jiang, F.W.; Zhao, W.J.; Wu, Y.M.; Wu, Y.H.; Liu, G.; Dong, J.D.; Zhou, K.H. A polyethyleneimine-grafted graphene oxide hybrid nanomaterial: Synthesis and anti-corrosion applications. Appl. Surf. Sci. 2019, 479, 963–973. [Google Scholar] [CrossRef]
- Tong, W.; Zhang, Y.; Zhang, Q.; Luan, X.; Duan, Y.; Pan, S.; Lv, F.; An, Q. Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface. Carbon 2015, 94, 590–598. [Google Scholar] [CrossRef]
- Yuan, Z.; Tai, H.L.; Ye, Z.B.; Liu, C.H.; Xie, G.Z.; Du, X.S.; Jiang, Y.D. Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film. Sens. Actuators B-Chem. 2016, 234, 145–154. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.J. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Chen, J.H.; Xing, H.T.; Guo, H.X.; Weng, W.; Hu, S.R.; Li, S.X.; Huang, Y.H.; Sun, X.; Su, Z.B. Investigation on the adsorption properties of Cr(vi) ions on a novel graphene oxide (GO) based composite adsorbent. J. Mater. Chem. A 2014, 2, 12561–12570. [Google Scholar] [CrossRef]
- Pan, N.; Li, L.; Ding, J.; Wang, R.B.; Jin, Y.D.; Xia, C.Q. A Schiff base/quaternary ammonium salt bifunctional graphene oxide as an efficient adsorbent for removal of Th(IV)/U(VI). J. Colloid Interface Sci. 2017, 508, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Khatri, P.K.; Choudhary, S.; Singh, R.; Jain, S.L.; Khatri, O.P. Grafting of a rhenium-oxo complex on Schiff base functionalized graphene oxide: An efficient catalyst for the oxidation of amines. Dalton Trans. 2014, 43, 8054–8061. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Yao, Y.G.; Li, Z.; Liu, Y.; Li, Z.; Wong, C.P. Solvent-Assisted Thermal Reduction of Graphite Oxide. J. Phys. Chem. C 2010, 114, 14819–14825. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, Y.; Yang, Y.; Zou, K.; Wu, R.; Xia, K.; Xie, S. Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution. Appl. Surf. Sci. 2019, 471, 88–95. [Google Scholar] [CrossRef]
- Li, F.; Yang, Z.; Weng, H.; Chen, G.; Lin, M.; Zhao, C. High efficient separation of U(VI) and Th(IV) from rare earth elements in strong acidic solution by selective sorption on phenanthroline diamide functionalized graphene oxide. Chem. Eng. J. 2018, 332, 340–350. [Google Scholar] [CrossRef]
- Ding, S.; Cargill, A.A.; Das, S.R.; Medintz, I.L.; Claussen, J.C. Biosensing with Förster Resonance Energy Transfer Coupling between Fluorophores and Nanocarbon Allotropes. Sensors 2015, 15, 14766–14787. [Google Scholar] [CrossRef] [Green Version]
- Nitu, F.R.; Burns, J.S.; Ionita, M. Oligonucleotide Detection and Optical Measurement with Graphene Oxide in the Presence of Bovine Serum Albumin Enabled by Use of Surfactants and Salts. Coatings 2020, 10, 420. [Google Scholar] [CrossRef]
- Reina, G.; Chau, N.D.Q.; Nishina, Y.; Bianco, A. Graphene oxide size and oxidation degree govern its supramolecular interactions with siRNA. Nanoscale 2018, 10, 5965–5974. [Google Scholar] [CrossRef] [Green Version]
- Sjöback, R.; Nygren, J.; Kubista, M. Absorption and fluorescence properties of fluorescein. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1995, 51, L7–L21. [Google Scholar] [CrossRef]
- Le Guern, F.; Mussard, V.; Gaucher, A.; Rottman, M.; Prim, D. Fluorescein Derivatives as Fluorescent Probes for pH Monitoring along Recent Biological Applications. Int. J. Mol. Sci. 2020, 21, 9217. [Google Scholar] [CrossRef]
- Nolan, E.M.; Lippard, S.J. Tools and tactics for the optical detection of mercuric ion. Chem. Rev. 2008, 108, 3443–3480. [Google Scholar] [CrossRef]
Nanomaterials | Fluorescence Quenching Ability (μg/mL·nM) | Quenching Efficiency | Liner Range (μM) | LOD (nM) | Reference |
---|---|---|---|---|---|
GO | 0.4 μg/mL·nM | 90% | 0–1.0 | / | [9] |
SWCNTs | 0.4 μg/mL nM | 72% | 0.05–8.0 | 14.5 | [24] |
MWCNTs | 0.2 μg/mL nM | 91% | 0–0.5 | / | [9] |
C60 | 3.0 μg/mL nM | 88.4% | 0.03–0.15 | 0.5 | [26] |
pRGO3 | 0.075 μg/mL nM | 97% | / | / | [25] |
P-CDs | 0.125 μg/mL nM | 79~84% | / | / | [28] |
pGO25000 | 0.002 μg/mL nM | 95.5% | 0–0.25 | 3.93 | This work |
Added/nM | Repeats | F/F0 | Calculated Value/nM | Avg./nM | Recovery |
---|---|---|---|---|---|
25 | 1 | 0.900 | 25.9 | 24.9 | 99.6% |
2 | 0.904 | 24.6 | |||
3 | 0.905 | 24.3 | |||
50 | 1 | 0.819 | 52.1 | 49.9 | 99.8% |
2 | 0.825 | 50.1 | |||
3 | 0.833 | 47.5 | |||
200 | 1 | 0.340 | 206.6 | 202.2 | 101.1% |
2 | 0.357 | 201.1 | |||
3 | 0.364 | 198.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, T.; Li, X.; Jin, X.; Wu, Z.; Chen, X.; Qiu, J. Function of Graphene Oxide as the “Nanoquencher” for Hg2+ Detection Using an Exonuclease I-Assisted Biosensor. Int. J. Mol. Sci. 2022, 23, 6326. https://doi.org/10.3390/ijms23116326
Sun T, Li X, Jin X, Wu Z, Chen X, Qiu J. Function of Graphene Oxide as the “Nanoquencher” for Hg2+ Detection Using an Exonuclease I-Assisted Biosensor. International Journal of Molecular Sciences. 2022; 23(11):6326. https://doi.org/10.3390/ijms23116326
Chicago/Turabian StyleSun, Ting, Xian Li, Xiaochuan Jin, Ziyi Wu, Xiachao Chen, and Jieqiong Qiu. 2022. "Function of Graphene Oxide as the “Nanoquencher” for Hg2+ Detection Using an Exonuclease I-Assisted Biosensor" International Journal of Molecular Sciences 23, no. 11: 6326. https://doi.org/10.3390/ijms23116326
APA StyleSun, T., Li, X., Jin, X., Wu, Z., Chen, X., & Qiu, J. (2022). Function of Graphene Oxide as the “Nanoquencher” for Hg2+ Detection Using an Exonuclease I-Assisted Biosensor. International Journal of Molecular Sciences, 23(11), 6326. https://doi.org/10.3390/ijms23116326