Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium–Sulfur Batteries
Abstract
:1. Introduction
2. Synthesis Strategies and Properties of Nanostructured MXenes
2.1. Synthesis Strategies
2.2. Superior Properties for LSBs
3. MXenes in Li–S Batteries
3.1. MXenes as Sulfur Hosts
3.1.1. Pure MXenes as Sulfur Hosts
3.1.2. Modified MXenes as Sulfur Hosts
3.1.3. MXene-Based Composites as Sulfur Hosts
3.2. MXenes as Interlayers
4. Summary and Future Perspectives
- Various preparation methods have been developed for the most studied Ti-based MXene so far, including HF etching, fluorine salt etching, electrochemical etching, molten salt replacement, etc. The properties of MXene, such as conductivity, terminal adsorption and structural diversity can be achieved by changing the preparation route. Among the LSBs, only HF and LiF/HCl have been widely used. The remaining etching methods lack profound studies on the modification of MXene properties, especially for MXene surface termination properties, which have a significant impact on the inhibition of the LSBs shuttle effect.
- After exfoliation, the monolayer MXene is easy to oxidize due to the exposure of surface metal atoms and will also self-restack due to van der Waals interaction forces. Whether it is the cathode or the interlayer of LSBs, the preparation process is indispensable to contact with air. The restacking of MXene results in a smaller SSA, which leads to the agglomeration of the active material sulfur loaded on the MXene sheet layer and the reduced sulfur utilization will directly lead to the reduction of the battery cycle life.
- The surface terminations of MXene, -OH, -F, -O and -Cl, have been shown to have the ability to adsorb LiPSs as well as having catalytic activity. However, the principles of their specific adsorption mechanisms are still under researched. Advanced techniques such as theoretical calculations, in situ characterization and COMSOL simulations are effective ways to solve these problems. Moreover, the precise control of the functional groups during the synthesis of MXene is difficult. How to enhance the adsorption of controllable terminations on LiPSs, without losing the high conductivity of MXene is a more severe challenge.
- Modified MXene is underused in LSBs. Modified carbon-based materials have been shown to be effective in enhancing the electrochemical properties of LSBs. Heteroatom modification makes the electrical conductivity, mechanical properties and easy oxidation of MXene change to a certain extent. It interacts with LiPSs in a different way. It is necessary to explore the mechanism of modified MXene in the sulfur host of LSBs as well as in the interlayer.
- The number of precursor MAX phases is up to more than 100, while only thirty kinds of MXene have been successfully etched, and there are even fewer MXene that can be exfoliated into monolayers; only Ti-based MXene has been widely studied in LSBs. Thus, our current knowledge of the MXene family is only limited to the surface, and there is still a very broad research space to be developed.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LIBs | lithium-ion batteries |
LSBs | lithium sulfur batteries |
2D | two-dimensional |
DFT | density functional theory |
SSA | specific surface area |
PVD | physical vapor deposition |
GO | graphene oxide |
rGO | reduced graphene oxide |
CNTs | carbon nanotubes |
ZIF | zeolitic imidazolate frameworks |
CF | Carbon fiber |
COFs | Covalent organic frameworks |
PP | polypropylene separators |
S/C | sulfur-carbon |
iCONs | ionic covalent organic nanosheets |
DMFC | direct methanol fuel cells |
References
- Larcher, D.; Tarascon, J.M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghani-Sanij, A.R.; Tharumalingam, E.; Dusseault, M.B.; Fraser, R. Study of energy storage systems and environmental challenges of batteries. Renew. Sustain. Energy Rev. 2019, 104, 192–208. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22, 587–603. [Google Scholar] [CrossRef]
- Susai, F.A.; Sclar, H.; Shilina, Y.; Penki, T.R.; Raman, R.; Maddukuri, S.; Maiti, S.; Halalay, I.C.; Luski, S.; Markovsky, B.; et al. Horizons for Li-Ion Batteries Relevant to Electro-Mobility: High-Specific-Energy Cathodes and Chemically Active Separators. Adv. Mater. 2018, 30, 1801348. [Google Scholar] [CrossRef]
- Ryou, M.-H.; Lee, D.J.; Lee, J.-N.; Lee, Y.M.; Park, J.-K.; Choi, J.W. Excellent Cycle Life of Lithium-Metal Anodes in Lithium-Ion Batteries with Mussel-Inspired Polydopamine-Coated Separators. Adv. Energy Mater. 2012, 2, 645–650. [Google Scholar] [CrossRef]
- Ryou, M.-H.; Lee, Y.M.; Lee, Y.; Winter, M.; Bieker, P. Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating. Adv. Funct. Mater. 2015, 25, 834–841. [Google Scholar] [CrossRef]
- Fu, A.; Wang, C.; Pei, F.; Cui, J.; Fang, X.; Zheng, N. Recent Advances in Hollow Porous Carbon Materials for Lithium–Sulfur Batteries. Small 2019, 15, 1804786. [Google Scholar] [CrossRef]
- Balach, J.; Linnemann, J.; Jaumann, T.; Giebeler, L. Metal-based nanostructured materials for advanced lithium–sulfur batteries. J. Mater. Chem. A 2018, 6, 23127–23168. [Google Scholar] [CrossRef] [Green Version]
- Van Noorden, R. Sulphur back in vogue for batteries. Nature 2013, 498, 416–417. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Tan, G.; Yuan, Y.; Wang, B.; Ma, L.; Xie, J.; Li, Z.; Wu, T.; Ren, Y.; Shahbazian-Yassar, R.; et al. Consolidating Lithiothermic-Ready Transition Metals for Li2S-Based Cathodes. Adv. Mater. 2020, 32, 2002403. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Lu, J.; Amine, K. Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries. Adv. Energy Mater. 2015, 5, 1500408. [Google Scholar] [CrossRef]
- Mikhaylik, Y.V.; Akridge, J.R. Polysulfide Shuttle Study in the Li/S Battery System. J. Electrochem. Soc. 2004, 151, A1969. [Google Scholar] [CrossRef]
- Busche, M.R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J. Systematical electrochemical study on the parasitic shuttle-effect in lithium–sulfur-cells at different temperatures and different rates. J. Power Sources 2014, 259, 289–299. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, X.; Zhou, Y.; Ma, B.; Natarajan, A. Three-dimensionally interconnected Co9S8/MWCNTs composite cathode host for lithium–sulfur batteries. J. Energy Chem. 2020, 46, 22–29. [Google Scholar] [CrossRef]
- Wang, H.; He, S.-A.; Cui, Z.; Xu, C.; Zhu, J.; Liu, Q.; He, G.; Luo, W.; Zou, R. Enhanced kinetics and efficient activation of sulfur by ultrathin MXene coating S-CNTs porous sphere for highly stable and fast charging lithium–sulfur batteries. Chem. Eng. J. 2021, 420, 129693. [Google Scholar] [CrossRef]
- Yao, W.; Zheng, W.; Xu, J.; Tian, C.; Han, K.; Sun, W.; Xiao, S. ZnS-SnS@ NC Heterostructure as Robust Lithiophilicity and Sulfiphilicity Mediator toward High-Rate and Long-Life Lithium–Sulfur Batteries. ACS Nano 2021, 15, 7114–7130. [Google Scholar] [CrossRef]
- Yuan, C.; Zeng, P.; Cheng, C.; Yan, T.; Liu, G.; Wang, W.; Hu, J.; Li, X.; Zhu, J.; Zhang, L. Boosting the Rate Performance of Li–S Batteries via Highly Dispersed Cobalt Nanoparticles Embedded into Nitrogen-Doped Hierarchical Porous Carbon. CCS Chem. 2021, 2826–2838. [Google Scholar] [CrossRef]
- Huang, J.-Q.; Zhang, Q.; Wei, F. Multi-functional separator/interlayer system for high-stable lithium–sulfur batteries: Progress and prospects. Energy Storage Mater. 2015, 1, 127–145. [Google Scholar] [CrossRef]
- Wei, C.; Tao, Y.; An, Y.; Tian, Y.; Zhang, Y.; Feng, J.; Qian, Y. Recent Advances of Emerging 2D MXene for Stable and Dendrite-Free Metal Anodes. Adv. Funct. Mater. 2020, 30, 2004613. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, J.; Wang, C.; Hu, R.; Du, X.; Tang, B.; Qu, H.; Wu, H.; Liu, X.; Zhou, X.; et al. Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries. J. Energy Chem. 2020, 51, 154–160. [Google Scholar] [CrossRef]
- Lian, J.; Guo, W.; Fu, Y. Isomeric Organodithiol Additives for Improving Interfacial Chemistry in Rechargeable Li–S Batteries. J. Am. Chem. Soc. 2021, 143, 11063–11071. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Seo, D.H.; Kaiser, M.R.; Zhang, C.; Han, Z.J.; Bendavid, A.; Guo, X.; Yick, S.; Murdock, A.T.; Su, D. WO3 nanolayer coated 3D-graphene/sulfur composites for high performance lithium/sulfur batteries. J. Mater. Chem. A 2019, 7, 4596–4603. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, W.; Zhu, X.; Zhang, L.; Li, Q.; Ding, F.; Liu, Z.; Sun, J. Vanadium dioxide-graphene composite with ultrafast anchoring behavior of polysulfides for lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 15733–15741. [Google Scholar] [CrossRef]
- Wei, H.; Ding, Y.; Li, H.; Zhang, Q.; Hu, N.; Wei, L.; Yang, Z. MoS2 quantum dots decorated reduced graphene oxide as a sulfur host for advanced lithium–sulfur batteries. Electrochim. Acta 2019, 327, 134994. [Google Scholar] [CrossRef]
- Usachov, D.; Vilkov, O.; Gruneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V.; Preobrajenski, A.; Dudin, P.; Barinov, A.; Oehzelt, M. Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett. 2011, 11, 5401–5407. [Google Scholar] [CrossRef]
- Song, J.; Yu, Z.; Gordin, M.L.; Wang, D. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium–sulfur batteries. Nano Lett. 2016, 16, 864–870. [Google Scholar] [CrossRef]
- Duan, L.; Zhao, L.; Cong, H.; Zhang, X.; Lü, W.; Xue, C. Plasma Treatment for Nitrogen-Doped 3D Graphene Framework by a Conductive Matrix with Sulfur for High-Performance Li-S Batteries. Small 2019, 15, 1804347. [Google Scholar] [CrossRef]
- Zhao, Y.; Bakenova, Z.; Zhang, Y.; Peng, H.; Xie, H.; Bakenov, Z. High performance sulfur/nitrogen-doped graphene cathode for lithium/sulfur batteries. Ionics 2015, 21, 1925–1930. [Google Scholar] [CrossRef]
- Xu, J.; Su, D.; Zhang, W.; Bao, W.; Wang, G. A nitrogen–sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium–sulfur batteries. J. Mater. Chem. A 2016, 4, 17381–17393. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.; Wang, Y.; Liang, X.; Sun, Y.; Cheng, S.; Chen, C.; Xiang, H. Simultaneously exfoliated boron-doped graphene sheets to encapsulate sulfur for applications in lithium–sulfur batteries. ACS Sustain. Chem. Eng. 2018, 6, 9661–9670. [Google Scholar] [CrossRef]
- Xie, Y.; Meng, Z.; Cai, T.; Han, W.-Q. Effect of boron-doping on the graphene aerogel used as cathode for the lithium–sulfur battery. ACS Appl. Mater. Interfaces 2015, 7, 25202–25210. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.; Wang, Y.; Zhang, L.; Yao, S.; Qian, X.; Xi, X.; Xiao, K.; Deng, K.; Shen, X.; Lu, R. Mechanism of polysulfide immobilization on defective graphene sheets with N-substitution. Carbon 2016, 110, 207–214. [Google Scholar] [CrossRef]
- Sgroi, M.F.; Pullini, D.; Pruna, A.I. Lithium Polysulfide Interaction with Group III Atoms-Doped Graphene: A Computational Insight. Batteries 2020, 6, 46. [Google Scholar] [CrossRef]
- Vélez, P.; Para, M.L.; Luque, G.L.; Barraco, D.; Leiva, E.P. Modeling of substitutionally modified graphene structures to prevent the shuttle mechanism in lithium–sulfur batteries. Electrochim. Acta 2019, 309, 402–414. [Google Scholar] [CrossRef]
- Tian, J.; Xing, F.; Gao, Q. Graphene-Based Nanomaterials as the Cathode for Lithium–sulfur Batteries. Molecules 2021, 26, 2507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Y.; Niu, Z.; Chen, J. Advanced nanostructured carbon-based materials for rechargeable lithium–sulfur batteries. Carbon 2019, 141, 400–416. [Google Scholar] [CrossRef]
- Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem., Int. Ed. 2018, 57, 6115–6119. [Google Scholar] [CrossRef]
- Pang, S.-Y.; Wong, Y.-T.; Yuan, S.; Liu, Y.; Tsang, M.-K.; Yang, Z.; Huang, H.; Wong, W.-T.; Hao, J. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 2019, 141, 9610–9616. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Liang, X.; Ren, X.; Guan, W.; Gao, M.; Yang, Y.; Yang, Q.; Gao, L.; Li, Y.; Ma, T. Recent Progress in MXene-Based Materials: Potential High-Performance Electrocatalysts. Adv. Funct. Mater. 2020, 30, 2003437. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Zhang, H.B.; Chen, W.; Zhao, Z.; Wang, Q.W.; Yu, Z.Z. Ultrastrong and Highly Conductive MXene-Based Films for High-Performance Electromagnetic Interference Shielding. Adv. Electron. Mater. 2020, 6, 1901094. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, R.; Feng, Y.; Ouyang, H.; Zhou, N.; Zhang, X.; Wei, Y. Recent development and prospects of surface modification and biomedical applications of MXenes. Nanoscale 2020, 12, 1325–1338. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Zhu, Q.; Miao, J.; Zhang, P.; Wan, P.; He, L.; Xu, B. Flexible 3D porous MXene foam for high-performance lithium-ion batteries. Small 2019, 15, 1904293. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, Y.; Zhao, X.; Liu, K.; Yin, H.; Fan, L.Z. Prelithiated V2C MXene: A High-Performance Electrode for Hybrid Magnesium/Lithium-Ion Batteries by Ion Cointercalation. Small 2020, 16, 1906076. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Huang, S.; Yuan, Z.; Zhu, J.; Zhao, Z.; Niu, Z. Direct Self-Assembly of MXene on Zn Anodes for Dendrite-Free Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 2861–2865. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Tian, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. Rational Design of Sulfur-Doped Three-Dimensional Ti3C2Tx MXene/ZnS Heterostructure as Multifunctional Protective Layer for Dendrite-Free Zinc-Ion Batteries. ACS Nano 2021, 15, 15259–15273. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Shen, D.; Liu, H.; Chen, H.; Liu, Q.; Lu, B. A Sb2S3 nanoflower/MXene composite as an anode for potassium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 57907–57915. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rui, B.; Wei, W.; Nie, P.; Chang, L.; Le, Z.; Liu, M.; Wang, H.; Wang, L.; Zhang, X. Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. J. Power Sources 2020, 449, 227481. [Google Scholar] [CrossRef]
- Yan, J.; Ren, C.E.; Maleski, K.; Hatter, C.B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264. [Google Scholar] [CrossRef]
- Yang, W.; Yang, J.; Byun, J.J.; Moissinac, F.P.; Xu, J.; Haigh, S.J.; Domingos, M.; Bissett, M.A.; Dryfe, R.A.; Barg, S. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 2019, 31, 1902725. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Garsuch, A.; Nazar, L.F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. 2015, 127, 3979–3983. [Google Scholar] [CrossRef]
- Liang, X.; Nazar, L.F. MXene Materials as Electrodes for Lithium–sulfur Batteries. In 2D Metal Carbides and Nitrides (MXenes); Springer: Berlin/Heidelberg, Germany, 2019; pp. 381–398. [Google Scholar]
- Zhang, Y.; Ma, C.; He, W.; Zhang, C.; Zhou, L.; Wang, G.; Wei, W. MXene and MXene-based materials for lithium–sulfur batteries. Prog. Nat. Sci. Mater. Int. 2021, 31, 501–513. [Google Scholar] [CrossRef]
- Pandey, M.; Deshmukh, K.; Pasha, S.K. MXene-based materials for lithium–sulfur and multivalent rechargeable batteries. In Mxenes and their Composites; Elsevier: Amsterdam, The Netherlands, 2022; pp. 343–369. [Google Scholar]
- Zhao, Q.; Zhu, Q.; Liu, Y.; Xu, B. Status and Prospects of MXene-Based Lithium-Sulfur Batteries. Adv. Funct. Mater. 2021, 31, 2100457. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Meng, X.; Wang, R. MXene-engineered lithium–sulfur batteries. J. Mater. Chem. A 2019, 7, 22730–22743. [Google Scholar] [CrossRef]
- Chaudhari, N.K.; Jin, H.; Kim, B.; San Baek, D.; Joo, S.H.; Lee, K. MXene: An emerging two-dimensional material for future energy conversion and storage applications. J. Mater. Chem. A 2017, 5, 24564–24579. [Google Scholar] [CrossRef]
- Verger, L.; Xu, C.; Natu, V.; Cheng, H.-M.; Ren, W.; Barsoum, M.W. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 2019, 23, 149–163. [Google Scholar] [CrossRef]
- Xiong, D.; Li, X.; Bai, Z.; Lu, S. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 2018, 14, 1703419. [Google Scholar] [CrossRef] [Green Version]
- Ghidiu, M.; Naguib, M.; Shi, C.; Mashtalir, O.; Pan, L.; Zhang, B.; Yang, J.; Gogotsi, Y.; Billinge, S.J.; Barsoum, M.W. Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun. 2014, 50, 9517–9520. [Google Scholar] [CrossRef]
- Naguib, M.; Halim, J.; Lu, J.; Cook, K.M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969. [Google Scholar] [CrossRef]
- Naguib, M.; Mochalin, V.N.; Barsoum, M.W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Yushin, G.N.; Hoffman, E.N.; Nikitin, A.; Ye, H.; Barsoum, M.W.; Gogotsi, Y. Synthesis of nanoporous carbide-derived carbon by chlorination of titanium silicon carbide. Carbon 2005, 43, 2075–2082. [Google Scholar] [CrossRef]
- Sang, X.; Xie, Y.; Lin, M.-W.; Alhabeb, M.; Van Aken, K.L.; Gogotsi, Y.; Kent, P.R.; Xiao, K.; Unocic, R.R. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 2016, 10, 9193–9200. [Google Scholar] [CrossRef] [PubMed]
- Naguib, M.; Unocic, R.R.; Armstrong, B.L.; Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans. 2015, 44, 9353–9358. [Google Scholar] [CrossRef]
- Ghidiu, M.; Lukatskaya, M.R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M.W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 2014, 516, 78–81. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, A.; Chen, J.; Jia, J.; Zhou, W.; Wang, L.; Hu, Q. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 2017, 416, 781–789. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, J.; Wang, S.; Wang, B.; Shen, C.; Wang, L.; Hu, Q.; Huang, Q.; Zhou, A. Preparation of high-purity V2C MXene and electrochemical properties as Li-ion batteries. J. Electrochem. Soc. 2017, 164, A709. [Google Scholar] [CrossRef]
- Sun, W.; Shah, S.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M. Electrochemical etching of Ti2AlC to Ti2CTx (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5, 21663–21668. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, P.; Wang, F.; Ricciardulli, A.G.; Lohe, M.R.; Blom, P.W.; Feng, X. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. 2018, 130, 15717–15721. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, P.; Liu, Z.; Park, S.; Lohe, M.R.; Wu, Y.; Shaygan Nia, A.; Yang, S.; Feng, X. Ambient-Stable Two-Dimensional Titanium Carbide (MXene) Enabled by Iodine Etching. Angew. Chem. Int. Ed. 2021, 60, 8689–8693. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Luo, K.; Li, Y.; Chang, K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737. [Google Scholar] [CrossRef] [Green Version]
- Kamysbayev, V.; Filatov, A.S.; Hu, H.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R.F.; Talapin, D.V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983. [Google Scholar] [CrossRef]
- Li, Y.; Shao, H.; Lin, Z.; Lu, J.; Liu, L.; Duployer, B.; Persson, P.O.; Eklund, P.; Hultman, L.; Li, M. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Wu, Y.; Zhang, J.; Li, G.; Huang, H.; Zhang, X.; Jiang, Q. Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mater. Lett. 2015, 160, 537–540. [Google Scholar] [CrossRef]
- Jiang, X.; Kuklin, A.V.; Baev, A.; Ge, Y.; Ågren, H.; Zhang, H.; Prasad, P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58. [Google Scholar]
- Ying, G.; Dillon, A.D.; Fafarman, A.T.; Barsoum, M.W. Transparent, conductive solution processed spincast 2D Ti2CTx (Mxene) films. Mater. Res. Lett. 2017, 5, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Borysiuk, V.N.; Mochalin, V.N.; Gogotsi, Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+ 1Cn (MXenes). Nanotechnology 2015, 26, 265705. [Google Scholar] [CrossRef] [Green Version]
- Ling, Z.; Ren, C.E.; Zhao, M.-Q.; Yang, J.; Giammarco, J.M.; Qiu, J.; Barsoum, M.W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681. [Google Scholar] [CrossRef] [Green Version]
- Rao, D.; Zhang, L.; Wang, Y.; Meng, Z.; Qian, X.; Liu, J.; Shen, X.; Qiao, G.; Lu, R. Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 2017, 121, 11047–11054. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J. Functional group-dependent anchoring effect of titanium carbide-based MXenes for lithium–sulfur batteries: A computational study. Appl. Surf. Sci. 2017, 412, 591–598. [Google Scholar] [CrossRef]
- Sim, E.S.; Chung, Y.-C. Non-uniformly functionalized titanium carbide-based MXenes as an anchoring material for Li-S batteries: A first-principles calculation. Appl. Surf. Sci. 2018, 435, 210–215. [Google Scholar] [CrossRef]
- Liu, X.; Shao, X.; Li, F.; Zhao, M. Anchoring effects of S-terminated Ti2C MXene for lithium–sulfur batteries: A first-principles study. Appl. Surf. Sci. 2018, 455, 522–526. [Google Scholar] [CrossRef]
- Lin, H.; Yang, D.-D.; Lou, N.; Zhu, S.-G.; Li, H.-Z. Functionalized titanium nitride-based MXenes as promising host materials for lithium–sulfur batteries: A first principles study. Ceram. Int. 2019, 45, 1588–1594. [Google Scholar] [CrossRef]
- Li, N.; Meng, Q.; Zhu, X.; Li, Z.; Ma, J.; Huang, C.; Song, J.; Fan, J. Lattice constant-dependent anchoring effect of MXenes for lithium–sulfur (Li–S) batteries: A DFT study. Nanoscale 2019, 11, 8485–8493. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, M.; Chen, Y.; Hou, B.; Zhang, N.; Chen, B.; Yang, N.; Chen, K.; Li, J.; An, L. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 7870–7876. [Google Scholar] [CrossRef]
- Zhao, T.; Zhai, P.; Yang, Z.; Wang, J.; Qu, L.; Du, F.; Wang, J. Self-supporting Ti3C2Tx foam/S cathodes with high sulfur loading for high-energy-density lithium–sulfur batteries. Nanoscale 2018, 10, 22954–22962. [Google Scholar] [CrossRef]
- Tang, H.; Li, W.; Pan, L.; Tu, K.; Du, F.; Qiu, T.; Yang, J.; Cullen, C.P.; McEvoy, N.; Zhang, C. A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater. 2019, 29, 1901907. [Google Scholar] [CrossRef]
- Tang, H.; Li, W.; Pan, L.; Cullen, C.P.; Liu, Y.; Pakdel, A.; Long, D.; Yang, J.; McEvoy, N.; Duesberg, G.S. In Situ Formed Protective Barrier Enabled by Sulfur@Titanium Carbide (MXene) Ink for Achieving High-Capacity, Long Lifetime Li-S Batteries. Adv. Sci. 2018, 5, 1800502. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Yang, Z.; Li, Z.; Li, P.; Wang, R. Synchronous Gains of Areal and Volumetric Capacities in Lithium–Sulfur Batteries Promised by Flower-like Porous Ti3C2Tx Matrix. ACS Nano 2019, 13, 3404–3412. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, Z.; Li, P.; Meng, X.; Wang, R. Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium–sulfur batteries. ACS Nano 2019, 13, 3608–3617. [Google Scholar] [CrossRef] [PubMed]
- Ogoke, O.; Hwang, S.; Hultman, B.; Chen, M.; Karakalos, S.; He, Y.; Ramsey, A.; Su, D.; Alexandridis, P.; Wu, G. Large-diameter and heteroatom-doped graphene nanotubes decorated with transition metals as carbon hosts for lithium–sulfur batteries. J. Mater. Chem. A 2019, 7, 13389–13399. [Google Scholar] [CrossRef]
- Bao, W.; Liu, L.; Wang, C.; Choi, S.; Wang, D.; Wang, G. Facile synthesis of crumpled nitrogen-doped mxene nanosheets as a new sulfur host for lithium–sulfur batteries. Adv. Energy Mater. 2018, 8, 1702485. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Sun, Z.; Fan, Z.; Cai, W.; Shao, Y.; Sheng, G.; Wang, M.; Song, L.; Liu, Z.; Zhang, Q. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li–S chemistry. Nano Energy 2020, 70, 104555. [Google Scholar] [CrossRef]
- Ji, J.; Sha, Y.; Li, Z.; Gao, X.; Zhang, T.; Zhou, S.; Qiu, T.; Zhou, S.; Zhang, L.; Ling, M. Selective adsorption and electrocatalysis of polysulfides through hexatomic nickel clusters embedded in N-doped graphene toward high-performance Li-S batteries. Research 2020, 2020, 5714349. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.-W.; Hu, R.-M.; Chen, Z.-B.; Shang, J.-X. Single-atom Fe and N co-doped graphene for lithium–sulfur batteries: A density functional theory study. Mater. Res. Express 2019, 6, 095620. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, S.; Hu, R.; Gu, J.; Cui, Y.; Li, B.; Chen, W.; Liu, C.; Shang, J.; Yang, S. Catalytic Conversion of Polysulfides on Single Atom Zinc Implanted MXene toward High-Rate Lithium-Sulfur Batteries. Adv. Funct. Mater. 2020, 30, 2002471. [Google Scholar] [CrossRef]
- Bao, W.; Xie, X.; Xu, J.; Guo, X.; Song, J.; Wu, W.; Su, D.; Wang, G. Confined sulfur in 3 D MXene/reduced graphene oxide hybrid nanosheets for lithium–sulfur battery. Chem.-Eur. J. 2017, 23, 12613–12619. [Google Scholar] [CrossRef]
- Song, J.; Guo, X.; Zhang, J.; Chen, Y.; Zhang, C.; Luo, L.; Wang, F.; Wang, G. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries. J. Mater. Chem. A 2019, 7, 6507–6513. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z.; Yan, X.; Zhang, S.; Wu, Z.; Zhuang, Z.; Han, W.-Q. Rational design of porous N-Ti3C2 MXene@ CNT microspheres for high cycling stability in Li–S battery. Nano-Micro Lett. 2020, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Zhu, G.; Jiang, H.; Chen, Q.; Zhao, T. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium–sulfur batteries. Energy Storage Mater. 2020, 33, 147–157. [Google Scholar] [CrossRef]
- Gan, R.; Yang, N.; Dong, Q.; Fu, N.; Wu, R.; Li, C.; Liao, Q.; Li, J.; Wei, Z. Enveloping ultrathin Ti3C2 nanosheets on carbon fibers: A high-density sulfur loaded lithium–sulfur battery cathode with remarkable cycling stability. J. Mater. Chem. A 2020, 8, 7253–7260. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, Z.; Yang, C.; Xu, Z.; Zhang, S.; Zhang, X.; Li, Y.; Lai, J.; Sun, Z.; Yang, Y. Rational Design of MXene/1T-2H MoS2-C Nanohybrids for High-Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2018, 28, 1707578. [Google Scholar] [CrossRef]
- Qiu, S.-Y.; Wang, C.; Jiang, Z.-X.; Zhang, L.-S.; Gu, L.-L.; Wang, K.-X.; Gao, J.; Zhu, X.-D.; Wu, G. Rational design of MXene@ TiO2 nanoarray enabling dual lithium polysulfide chemisorption towards high–performance lithium–sulfur batteries. Nanoscale 2020, 12, 16678–16684. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, Z.; Xi, B.; Yu, Z.; Zhou, Z. Ni3S2 anchored to N/S co-doped reduced graphene oxide with highly pleated structure as a sulfur host for lithium–sulfur batteries. J. Mater. Chem. A 2020, 8, 3834–3844. [Google Scholar] [CrossRef]
- Ma, X.Z.; Jin, B.; Wang, H.Y.; Hou, J.Z.; Zhong, X.B.; Wang, H.H.; Xin, P.M. S–TiO2 composite cathode materials for lithium/sulfur batteries. J. Electroanal. Chem. 2015, 736, 127–131. [Google Scholar] [CrossRef]
- Salhabi, E.H.M.; Zhao, J.; Wang, J.; Yang, M.; Wang, B.; Wang, D. Hollow Multi–Shelled Structural TiO2−x with Multiple Spatial Confinement for Long-Life Lithium–Sulfur Batteries. Angew. Chem. 2019, 131, 9176–9180. [Google Scholar] [CrossRef]
- Du, C.; Wu, J.; Yang, P.; Li, S.; Xu, J.; Song, K. Embedding S@ TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium–sulfur batteries. Electrochim. Acta 2019, 295, 1067–1074. [Google Scholar] [CrossRef]
- Wen, C.; Zheng, X.; Li, X.; Yuan, M.; Li, H.; Sun, G. Rational design of 3D hierarchical MXene@ AlF3/Ni (OH)2 nanohybrid for high-performance lithium–sulfur batteries. Chem. Eng. J. 2021, 409, 128102. [Google Scholar] [CrossRef]
- Meng, R.; Deng, Q.; Peng, C.; Chen, B.; Liao, K.; Li, L.; Yang, Z.; Yang, D.; Zheng, L.; Zhang, C. Two-dimensional organic-inorganic heterostructures of in situ-grown layered COF on Ti3C2 MXene nanosheets for lithium–sulfur batteries. Nano Today 2020, 35, 100991. [Google Scholar] [CrossRef]
- Song, J.; Su, D.; Xie, X.; Guo, X.; Bao, W.; Shao, G.; Wang, G. Immobilizing polysulfides with MXene-functionalized separators for stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 29427–29433. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zheng, S.; Qin, J.; Zhao, X.; Shi, H.; Wang, X.; Chen, J.; Wu, Z.-S. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 2018, 12, 2381–2388. [Google Scholar] [CrossRef]
- Li, N.; Xie, Y.; Peng, S.; Xiong, X.; Han, K. Ultra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries: Thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 2020, 42, 116–125. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Cao, W.; Liu, Y.; Ye, H.; Han, K. Impeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium–sulfur batteries. Colloids Surf. A 2019, 573, 128–136. [Google Scholar] [CrossRef]
- Xiong, D.; Huang, S.; Fang, D.; Yan, D.; Li, G.; Yan, Y.; Chen, S.; Liu, Y.; Li, X.; Von Lim, Y. Porosity Engineering of MXene Membrane towards Polysulfide Inhibition and Fast Lithium Ion Transportation for Lithium–Sulfur Batteries. Small 2021, 17, 2007442. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, C.; Geng, C.; Wu, S.; Li, H.; Lv, W.; Tao, Y.; Chen, Z.; Zhou, G.; Li, J. Capture and Catalytic Conversion of Polysulfides by In Situ Built TiO2–MXene Heterostructures for Lithium–Sulfur Batteries. Adv. Energy Mater. 2019, 9, 1900219. [Google Scholar] [CrossRef]
- Liu, P.; Qu, L.; Tian, X.; Yi, Y.; Xia, J.; Wang, T.; Nan, J.; Yang, P.; Wang, T.; Fang, B. Ti3C2Tx/Graphene Oxide Free-Standing Membranes as Modified Separators for Lithium–Sulfur Batteries with Enhanced Rate Performance. ACS Appl. Energy Mater. 2020, 3, 2708–2718. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, S.; Jia, X.; Yang, J.; Li, Y.; Liao, J.; Song, H. Freestanding sandwich-like hierarchically TiS2–TiO2/Mxene bi-functional interlayer for stable Li–S batteries. Carbon 2022, 188, 533–542. [Google Scholar] [CrossRef]
- Li, P.; Lv, H.; Li, Z.; Meng, X.; Lin, Z.; Wang, R.; Li, X. The Electrostatic Attraction and Catalytic Effect Enabled by Ionic–Covalent Organic Nanosheets on MXene for Separator Modification of Lithium–Sulfur Batteries. Adv. Mater. 2021, 33, 2007803. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Lv, H.; Chen, S.; Lorger, S.; Srot, V.; Oschatz, M.; van Aken, P.A.; Wu, X.; Maier, J.; Yu, Y. Natural vermiculite enables high-performance in lithium–sulfur batteries via electrical double layer effects. Adv. Funct. Mater. 2019, 29, 1902820. [Google Scholar] [CrossRef]
- Wang, J.; Zhai, P.; Zhao, T.; Li, M.; Yang, Z.; Zhang, H.; Huang, J. Laminar MXene-Nafion-modified separator with highly inhibited shuttle effect for long-life lithium–sulfur batteries. Electrochim. Acta 2019, 320, 134558. [Google Scholar] [CrossRef]
- Sgroi, M.F.; Zedde, F.; Barbera, O.; Stassi, A.; Sebastián, D.; Lufrano, F.; Baglio, V.; Aricò, A.S.; Bonde, J.L.; Schuster, M. Cost analysis of direct methanol fuel cell stacks for mass production. Energies 2016, 9, 1008. [Google Scholar] [CrossRef]
Cathode | Separator | Sulfur Loading (mg·cm−2) | Sulfur Content (wt.%) | Initial Capacity (mAh·g−1)/Rate | Retain Capacity (mAh·g−1)/Cycles/Rate | Rate Capacity (mAh·g−1)/Rate | Ref. |
---|---|---|---|---|---|---|---|
70S/d-Ti2C | PP | 1 | 70 | 1200/0.2 C | 723/650/0.5 C | 660/4 C | [53] |
S/L-Ti3C2 | PP | - | 57.6 | 1291/200 mAh·g−1 | 970/100/200 mAh·g−1 | 620/3200 mA·g−1 | [88] |
Ti3C2Tx foam/S-1.5 | PP | 1.5 | - | 1226.4/0.2 C | 375.8/1000/1 C | 711/5 C | [89] |
Ti3C2Tx/S paper | PP | 1.88–2.26 | - | 1383/0.1 C | 923.51/1500/1 C | 1075/2 C | [90] |
S@Ti3C2Tx ink | PP | - | 50 | 1350/0.1 C | 1170/175/2 C | 1161/2 C | [91] |
crumpled N-Ti3C2Tx/S | PP | 1.5 | - | 1144/0.2 C | 610/1000/2 C | 770/2 C | [95] |
S/P-NTC | PP | 1.4–1.6 | 80 | 1072/0.5 C | 360.47/600/5 C | 792/3 C | [96] |
S@SA-Zn-MXene | PP | 1.7 | 90 | 1136/0.2 C | 706/400/1 C | 517/6 C | [99] |
Ti3C2Tx/RGO | PP | 1.5 | 70.4 | 1190.2/0.2 C | 878.4/300/0.5 C | 750/5 C | [100] |
MX/G-30 | PP | 1.57 | 45 | 1259/0.1 C | 596/500/1 C | 977/1 C | [101] |
N-Ti3C2 MXene@CNTs/S | PP | 1.5 | 70 | 1339.2/0.1 C | 775/1000/1 C | 640.5/4 C | [102] |
Co-CNT@MXene/S | PP | 2–2.5 | 70 | 1210/0.2 C | 401.85/840/1 C | 765/1 C | [103] |
Ti3C2@CF-S | PP | 4 | - | 1512.7/0.1 C | 459.6/1000/2 C | - | [104] |
MXene/1T-2H MoS2-C-S | PP | 2–4 | 79.6 | 1194.7/0.1 C | 799.3/300/0.5 C | 677.2/2 C | [105] |
MXene@TiO2/S | PP | 1.2 | 75 | 1481.5/0.5 C | 612.7/500/2 C | 774.7/2 C | [106] |
S/CB | MXene-PP | 1.2 | 68 | 1046.9/0.2 C | 550/500/0.5 C | 743.1/1 C | [113] |
a-Ti3C2-S | d-Ti3C2/PP | 0.7–1 | - | 1062/0.2 C | 632/50/0.5 C | 288/10 C | [114] |
CNTs/S | Ti3C2Tx/GO@PP | 3–4 | 70 | 1621.5/0.1 C | 575.7/200/1 C | 640/5 C | [119] |
S/CNTs | Ti3C2Tx/CNTs 10%-PP | 1.2 | 70 | ≈1100/0.1 C | 640/200/1 C | 640/2 C | [115] |
S/CNTs | CNTs/MXene-PP | 0.8–2.5 | 70 | 1415/0.1 C | 614/600/1 C | 728/2 C | [116] |
S/KB | PM (0.4 M)-CNT | 0.91 | 85 | 1105/0.1 C | 535/500/1 C | 677.6/2 C | [117] |
S/CMK-3 | Ti3C2Tx (4 h)-GN | 1.2 | 70 | 800/2 C | 576/1000/2 C | 663/2 C | [118] |
- | TOS/MX/TOS | - | - | 961.7/0.2 C | 632.8/500/1 C | 804.5/1 C | [120] |
CNT/S | Ti3C2@iCON-PP | 1.2 | - | 1417/0.05 C | 706/2000/2 C | 687/5 C | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Ji, G.; Han, X.; Xing, F.; Gao, Q. Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium–Sulfur Batteries. Int. J. Mol. Sci. 2022, 23, 6329. https://doi.org/10.3390/ijms23116329
Tian J, Ji G, Han X, Xing F, Gao Q. Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium–Sulfur Batteries. International Journal of Molecular Sciences. 2022; 23(11):6329. https://doi.org/10.3390/ijms23116329
Chicago/Turabian StyleTian, Jingkun, Guangmin Ji, Xue Han, Fei Xing, and Qiqian Gao. 2022. "Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium–Sulfur Batteries" International Journal of Molecular Sciences 23, no. 11: 6329. https://doi.org/10.3390/ijms23116329
APA StyleTian, J., Ji, G., Han, X., Xing, F., & Gao, Q. (2022). Advanced Nanostructured MXene-Based Materials for High Energy Density Lithium–Sulfur Batteries. International Journal of Molecular Sciences, 23(11), 6329. https://doi.org/10.3390/ijms23116329