Blocking ERK-DAPK1 Axis Attenuates Glutamate Excitotoxicity in Epilepsy
Abstract
:1. Introduction
2. Results
2.1. DAPK1 Is Activated by ERK-Induced Phosphorylation after KA Insult
2.2. ERK Inhibitor Reduces DAPK1 Phosphorylation, Seizure Severity and Neuronal Cell Death
2.3. Uncoupling DAPK1 from ERK Attenuates KA-Induced Seizures and Neuronal Apoptosis
2.4. The ERK-DAPK1 Axis Is Activated after Glutamate Exposure
2.5. Tat-DM- or DAPK1 Phosphorylation-Deficient Forms Attenuate Neuronal Apoptosis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animal Models
4.3. Cell Culture
4.4. KA Dosing Regimens
4.5. Electrode Implantation and EEG Recording
4.6. TUNEL Assay
4.7. Cell Apoptosis Assay
4.8. Immunoprecipitation and Immunoblotting Analysis
4.9. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef]
- Englot, D.J.; Morgan, V.L.; Chang, C. Impaired vigilance networks in temporal lobe epilepsy: Mechanisms and clinical implications. Epilepsia 2020, 61, 189–202. [Google Scholar] [CrossRef]
- Englot, D.J.; Konrad, P.E.; Morgan, V.L. Regional and global connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. Epilepsia 2016, 57, 1546–1557. [Google Scholar] [CrossRef] [Green Version]
- Alvim, M.K.; Coan, A.C.; Campos, B.M.; Yasuda, C.L.; Oliveira, M.C.; Morita, M.E.; Cendes, F. Progression of gray matter atrophy in seizure-free patients with temporal lobe epilepsy. Epilepsia 2016, 57, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, J.; Carreno, M.; Bargallo, N.; Setoain, X.; Rubi, S.; Rumià, J.; Falcón, C.; Calvo, A.; Martí-Fuster, B.; Padilla, N.; et al. Combined (18)F-FDG-PET and diffusion tensor imaging in mesial temporal lobe epilepsy with hippocampal sclerosis. Neuroimage Clin. 2016, 12, 976–989. [Google Scholar] [CrossRef] [Green Version]
- Benevides, M.L.; Costa Nunes, J.; Guarnieri, R.; Pauli, C.; Wolf, P.; Lunardi, M.; Kondageski, C.; Linhares, M.N.; Lin, K.; Walz, R. Quality of life long after temporal lobe epilepsy surgery. Acta Neurol. Scand. 2021, 143, 629–636. [Google Scholar] [CrossRef]
- Kwan, P.; Schachter, S.C.; Brodie, M.J. Drug-resistant epilepsy. N. Engl. J. Med. 2011, 365, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Xu, C.; Wang, Y.; Lin, W.; Wang, Y.; Chen, L.; Cheng, H.; Xu, L.; Hu, T.; Zhao, J.; et al. A disinhibitory nigra-parafascicular pathway amplifies seizure in temporal lobe epilepsy. Nat. Commun. 2020, 11, 923. [Google Scholar] [CrossRef] [PubMed]
- Douglass, L.M.; Salpekar, J. Surgical options for patients with Lennox-Gastaut syndrome. Epilepsia 2014, 55 (Suppl. 4), 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, H.S.; Kashiwagi, S.; Tew, J.M., Jr.; Berger, T.S. Surgical management of epilepsy associated with cerebral arteriovenous malformations. J. Neurosurg. 1990, 72, 216–223. [Google Scholar] [CrossRef] [Green Version]
- Engel, J., Jr. The current place of epilepsy surgery. Curr. Opin. Neurol. 2018, 31, 192–197. [Google Scholar] [CrossRef]
- Kwan, P.; Brodie, M.J. Early identification of refractory epilepsy. N. Engl. J. Med. 2000, 342, 314–319. [Google Scholar] [CrossRef]
- Kwan, P.; Arzimanoglou, A.; Berg, A.T.; Brodie, M.J.; Allen Hauser, W.; Mathern, G.; Moshé, S.L.; Perucca, E.; Wiebe, S.; French, J. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010, 51, 1069–1077. [Google Scholar] [CrossRef] [PubMed]
- Herzberg, L. Carbamazepine and bradycardia. Lancet 1978, 1, 1097–1098. [Google Scholar] [CrossRef]
- Benassi, E.; Bo, G.P.; Cocito, L.; Maffini, M.; Loeb, C. Carbamazepine and cardiac conduction disturbances. Ann. Neurol. 1987, 22, 280–281. [Google Scholar] [CrossRef]
- Druschky, A.; Hilz, M.J.; Hopp, P.; Platsch, G.; Radespiel-Troger, M.; Druschky, K.; Kuwert, T.; Stefan, H.; Neundörfer, B. Interictal cardiac autonomic dysfunction in temporal lobe epilepsy demonstrated by [(123)I]metaiodobenzylguanidine-SPECT. Brain 2001, 124, 2372–2382. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Nair, P.P.; Aghoram, R.; Wadwekar, V.; Wagh, S.; Balachandran, M.; Priya, D.I.; Meher, R.; Nandwani, S.; Nair, N.S. Interictal autonomic changes in persons with epilepsy (PWE) on carbamazepine (CBZ) versus other anti-seizure drug monotherapy: A cross-sectional study. Epilepsy Behav. 2021, 125, 108396. [Google Scholar] [CrossRef] [PubMed]
- Fialho, G.L.; Wolf, P.; Walz, R.; Lin, K. Increased cardiac stiffness is associated with autonomic dysfunction in patients with temporal lobe epilepsy. Epilepsia 2018, 59, e85–e90. [Google Scholar] [CrossRef] [PubMed]
- Patsalos, P.N.; Stephenson, T.J.; Krishna, S.; Elyas, A.A.; Lascelles, P.T.; Wiles, C.M. Side-effects induced by carbamazepine-10,11-epoxide. Lancet 1985, 2, 1432. [Google Scholar] [CrossRef]
- Nkoom, M.; Lu, G.; Liu, J.; Dong, H. Biological uptake, depuration and biochemical effects of diclofenac and carbamazepine in Carassius carassius. Ecotoxicol. Environ. Saf. 2020, 205, 111106. [Google Scholar] [CrossRef] [PubMed]
- Tomson, T.; Battino, D.; Perucca, E. Valproic acid after five decades of use in epilepsy: Time to reconsider the indications of a time-honoured drug. Lancet Neurol. 2016, 15, 210–218. [Google Scholar] [CrossRef]
- Stephens, J.R.; Levy, R.H. Valproate hepatotoxicity syndrome: Hypotheses of pathogenesis. Pharm. Weekbl. Sci. 1992, 14, 118–121. [Google Scholar] [CrossRef]
- Arfman, I.J.; Wammes-van der Heijden, E.A.; Ter Horst, P.G.J.; Lambrechts, D.A.; Wegner, I.; Touw, D.J. Therapeutic Drug Monitoring of Antiepileptic Drugs in Women with Epilepsy Before, During, and After Pregnancy. Clin. Pharmacokinet. 2020, 59, 427–445. [Google Scholar] [CrossRef]
- Tiboni, G.M.; Ponzano, A.; Ferrone, A.; Franceschelli, S.; Speranza, L.; Patruno, A. Valproic acid alters nitric oxide status in neurulating mouse embryos. Reprod. Toxicol. 2021, 99, 152–159. [Google Scholar] [CrossRef]
- Bialik, S.; Kimchi, A. The death-associated protein kinases: Structure, function, and beyond. Annu. Rev. Biochem. 2006, 75, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Shiloh, R.; Bialik, S.; Kimchi, A. The DAPK family: A structure-function analysis. Apoptosis 2014, 19, 286–297. [Google Scholar] [CrossRef]
- Fujita, Y.; Yamashita, T. Role of DAPK in neuronal cell death. Apoptosis 2014, 19, 339–345. [Google Scholar] [CrossRef]
- Kim, N.; Chen, D.; Zhou, X.Z.; Lee, T.H. Death-Associated Protein Kinase 1 Phosphorylation in Neuronal Cell Death and Neurodegenerative Disease. Int. J. Mol. Sci. 2019, 20, 3131. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zhou, X.Z.; Lee, T.H. Death-Associated Protein Kinase 1 as a Promising Drug Target in Cancer and Alzheimer’s Disease. Recent Pat. Anti-Cancer Drug Discov. 2019, 14, 144–157. [Google Scholar] [CrossRef]
- Yamamoto, M.; Takahashi, H.; Nakamura, T.; Hioki, T.; Nagayama, S.; Ooashi, N.; Sun, X.; Ishii, T.; Kudo, Y.; Nakajima-Iijima, S.; et al. Developmental changes in distribution of death-associated protein kinase mRNAs. J. Neurosci. Res. 1999, 58, 674–683. [Google Scholar] [CrossRef]
- Zhang, T.; Xia, Y.; Hu, L.; Chen, D.; Gan, C.L.; Wang, L.; Mei, Y.; Lan, G.; Shui, X.; Tian, Y.; et al. Death-associated protein kinase 1 mediates Abeta42 aggregation-induced neuronal apoptosis and tau dysregulation in Alzheimer’s disease. Int. J. Biol. Sci. 2022, 18, 693–706. [Google Scholar] [CrossRef]
- Tu, W.; Xu, X.; Peng, L.; Zhong, X.; Zhang, W.; Soundarapandian, M.M.; Belal, C.; Wang, M.; Jia, N.; Zhang, W.; et al. DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell 2010, 140, 222–234. [Google Scholar] [CrossRef] [Green Version]
- Pei, L.; Wang, S.; Jin, H.; Bi, L.; Wei, N.; Yan, H.; Yang, X.; Yao, C.; Xu, M.; Shu, S.; et al. A Novel Mechanism of Spine Damages in Stroke via DAPK1 and Tau. Cereb. Cortex 2015, 25, 4559–4571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.X.; Han, Y.; Xu, L.Z.; Yuan, K.; Zhang, R.X.; Sun, C.Y.; Xu, D.F.; Yuan, M.; Deng, J.H.; Meng, S.Q.; et al. Uncoupling DAPK1 from NMDA receptor GluN2B subunit exerts rapid antidepressant-like effects. Mol. Psychiatry 2018, 23, 597–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Deng, M.F.; Xiong, W.; Xie, A.J.; Guo, J.; Liang, Z.H.; Hu, B.; Chen, J.-G.; Zhu, X.; Man, H.-Y.; et al. MicroRNA-26a/Death-Associated Protein Kinase 1 Signaling Induces Synucleinopathy and Dopaminergic Neuron Degeneration in Parkinson’s Disease. Biol. Psychiatry 2019, 85, 769–781. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.M.; You, M.H.; Chen, C.H.; Lee, S.; Hong, Y.; Hong, Y.; Kimchi, A.; Zhou, X.Z.; Lee, T.H. Death-associated protein kinase 1 has a critical role in aberrant tau protein regulation and function. Cell Death Dis. 2014, 5, e1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.M.; You, M.H.; Chen, C.H.; Suh, J.; Tanzi, R.E.; Lee, T.H. Inhibition of death-associated protein kinase 1 attenuates the phosphorylation and amyloidogenic processing of amyloid precursor protein. Hum. Mol. Genet. 2016, 25, 2498–2513. [Google Scholar] [CrossRef] [Green Version]
- You, M.H.; Kim, B.M.; Chen, C.H.; Begley, M.J.; Cantley, L.C.; Lee, T.H. Death-associated protein kinase 1 phosphorylates NDRG2 and induces neuronal cell death. Cell Death Differ. 2017, 24, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Mei, Y.; Kim, N.; Lan, G.; Gan, C.L.; Fan, F.; Zhang, T.; Xia, Y.; Wang, L.; Lin, C.; et al. Melatonin directly binds and inhibits death-associated protein kinase 1 function in Alzheimer’s disease. J. Pineal Res. 2020, 69, e12665. [Google Scholar] [CrossRef] [PubMed]
- Henshall, D.C.; Schindler, C.K.; So, N.K.; Lan, J.Q.; Meller, R.; Simon, R.P. Death-associated protein kinase expression in human temporal lobe epilepsy. Ann. Neurol. 2004, 55, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.; Hossain, M.; Mishra, S.; Gonzalez-Martinez, J.; Najm, I.; Ghosh, C. Expression and Functional Relevance of Death-Associated Protein Kinase in Human Drug-Resistant Epileptic Brain: Focusing on the Neurovascular Interface. Mol. Neurobiol. 2019, 56, 4904–4915. [Google Scholar] [CrossRef]
- Gan, C.L.; Zou, Y.; Xia, Y.; Zhang, T.; Chen, D.; Lan, G.; Mei, Y.; Wang, L.; Shui, X.; Hu, L.; et al. Inhibition of Death-associated Protein Kinase 1 protects against Epileptic Seizures in mice. Int. J. Biol. Sci. 2021, 17, 2356–2366. [Google Scholar] [CrossRef]
- Araki, T.; Shinoda, S.; Schindler, C.K.; Quan-Lan, J.; Meller, R.; Taki, W.; Simon, R.P.; Henshall, D.C. Expression, interaction, and proteolysis of death-associated protein kinase and p53 within vulnerable and resistant hippocampal subfields following seizures. Hippocampus 2004, 14, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Henshall, D.C.; Araki, T.; Schindler, C.K.; Shinoda, S.; Lan, J.Q.; Simon, R.P. Expression of death-associated protein kinase and recruitment to the tumor necrosis factor signaling pathway following brief seizures. J. Neurochem. 2003, 86, 1260–1270. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Wang, W.J.; Kuo, J.C.; Tsai, H.C.; Lin, J.R.; Chang, Z.F.; Chen, R.H. Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J. 2005, 24, 294–304. [Google Scholar] [CrossRef] [Green Version]
- Nateri, A.S.; Raivich, G.; Gebhardt, C.; Da Costa, C.; Naumann, H.; Vreugdenhil, M.; Makwana, M.; Brandner, S.; Adams, R.H.; Jefferys, J.G.R.; et al. ERK activation causes epilepsy by stimulating NMDA receptor activity. EMBO J. 2007, 26, 4891–4901. [Google Scholar] [CrossRef]
- Glazova, M.V.; Nikitina, L.S.; Hudik, K.A.; Kirillova, O.D.; Dorofeeva, N.A.; Korotkov, A.A.; Chernigovskaya, E.V. Inhibition of ERK1/2 signaling prevents epileptiform behavior in rats prone to audiogenic seizures. J. Neurochem. 2015, 132, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Merlo, D.; Cifelli, P.; Cicconi, S.; Tancredi, V.; Avoli, M. 4-Aminopyridine-induced epileptogenesis depends on activation of mitogen-activated protein kinase ERK. J. Neurochem. 2004, 89, 654–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.J.; Kim, H.J.; Park, H.J.; Ra, J.; Zheng, L.T.; Yim, S.V.; Chung, J.-H. Protective effect of topiramate on kainic acid-induced cell death in mice hippocampus. Epilepsia 2008, 49, 163–167. [Google Scholar] [CrossRef]
- Lee, H.K.; Choi, S.S.; Han, E.J.; Lee, J.Y.; Kwon, M.S.; Shim, E.J.; Seo, Y.J.; Suh, H.W. Role of nicotinic acetylcholine receptors in the regulation of kainic acid-induced hippocampal cell death in mice. Brain Res. Bull. 2004, 64, 309–317. [Google Scholar] [CrossRef]
- Favata, M.F.; Horiuchi, K.Y.; Manos, E.J.; Daulerio, A.J.; Stradley, D.A.; Feeser, W.S.; Van Dyk, D.E.; Pitts, W.J.; Earl, R.A.; Hobbs, F.; et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J. Biol. Chem. 1998, 273, 18623–18632. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, J.M.; Guire, E.S.; Saneyoshi, T.; Soderling, T.R. Calmodulin-dependent kinase kinase/calmodulin kinase I activity gates extracellular-regulated kinase-dependent long-term potentiation. J. Neurosci. 2005, 25, 1281–1290. [Google Scholar] [CrossRef]
- Barker-Haliski, M.; White, H.S. Glutamatergic Mechanisms Associated with Seizures and Epilepsy. Cold Spring Harb. Perspect. Med. 2015, 5, a022863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albrecht, J.; Zielinska, M. Mechanisms of Excessive Extracellular Glutamate Accumulation in Temporal Lobe Epilepsy. Neurochem. Res. 2017, 42, 1724–1734. [Google Scholar] [CrossRef] [PubMed]
- Sawicka, K.; Pyronneau, A.; Chao, M.; Bennett, M.V.; Zukin, R.S. Elevated ERK/p90 ribosomal S6 kinase activity underlies audiogenic seizure susceptibility in fragile X mice. Proc. Natl. Acad. Sci. USA 2016, 113, E6290–E6297. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.S.; Hong, K.S.; Seong, Y.S.; Park, J.B.; Kuroda, S.; Kishi, K.; Kaibuchi, K.; Takai, Y. Phosphorylation and activation of mitogen-activated protein kinase by kainic acid-induced seizure in rat hippocampus. Biochem. Biophys. Res. Commun. 1994, 202, 1163–1168. [Google Scholar] [CrossRef]
- Baraban, J.M.; Fiore, R.S.; Sanghera, J.S.; Paddon, H.B.; Pelech, S.L. Identification of p42 mitogen-activated protein kinase as a tyrosine kinase substrate activated by maximal electroconvulsive shock in hippocampus. J. Neurochem. 1993, 60, 330–336. [Google Scholar] [CrossRef]
- Houser, C.R.; Huang, C.S.; Peng, Z. Dynamic seizure-related changes in extracellular signal-regulated kinase activation in a mouse model of temporal lobe epilepsy. Neuroscience 2008, 156, 222–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Li, J.; Geng, R.; Ge, W.; Zhou, Y.; Zhang, C.; Cheng, Y.; Geng, D. The inhibition of ERK activation mediates the protection of necrostatin-1 on glutamate toxicity in HT-22 cells. Neurotox. Res. 2013, 24, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Nakatsuka, D.; Watanabe, Y.; Nagata, I.; Kikuchi, H.; Namura, S. Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci. Lett. 2000, 288, 163–166. [Google Scholar] [CrossRef]
- Grant, E.R.; Errico, M.A.; Emanuel, S.L.; Benjamin, D.; McMillian, M.K.; Wadsworth, S.A.; Zivin, R.A.; Zhong, Z. Protection against glutamate toxicity through inhibition of the p44/42 mitogen-activated protein kinase pathway in neuronally differentiated P19 cells. Biochem. Pharmacol. 2001, 62, 283–296. [Google Scholar] [CrossRef]
- Pei, L.; Shang, Y.; Jin, H.; Wang, S.; Wei, N.; Yan, H.; Wu, Y.; Yao, C.; Wang, X.; Zhu, L.-Q.; et al. DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J. Neurosci. 2014, 34, 6546–6556. [Google Scholar] [CrossRef] [Green Version]
- Gozuacik, D.; Bialik, S.; Raveh, T.; Mitou, G.; Shohat, G.; Sabanay, H.; Mizushima, N.; Yoshimori, T.; Kimchi, A. DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ. 2008, 15, 1875–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Racine, R.J. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 281–294. [Google Scholar] [CrossRef]
- Hou, X.; Yang, F.; Li, A.; Zhao, D.; Ma, N.; Chen, L.; Lin, S.; Lin, Y.; Wang, L.; Yan, X.; et al. The Pin1-CaMKII-AMPA Receptor Axis Regulates Epileptic Susceptibility. Cereb. Cortex 2021, 31, 3082–3095. [Google Scholar] [CrossRef] [PubMed]
- Streijger, F.; Scheenen, W.J.; Van Luijtelaar, G.; Oerlemans, F.; Wieringa, B.; Van der Zee, C.E. Complete brain-type creatine kinase deficiency in mice blocks seizure activity and affects intracellular calcium kinetics. Epilepsia 2010, 51, 79–88. [Google Scholar] [CrossRef]
- Chen, D.; Lan, G.; Li, R.; Mei, Y.; Shui, X.; Gu, X.; Wang, L.; Zhang, T.; Gan, C.-L.; Xia, Y.; et al. Melatonin ameliorates tau-related pathology via the miR-504-3p and CDK5 axis in Alzheimer’s disease. Transl. Neurodegener. 2022, 11, 27. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, C.-L.; Zou, Y.; Chen, D.; Shui, X.; Hu, L.; Li, R.; Zhang, T.; Wang, J.; Mei, Y.; Wang, L.; et al. Blocking ERK-DAPK1 Axis Attenuates Glutamate Excitotoxicity in Epilepsy. Int. J. Mol. Sci. 2022, 23, 6370. https://doi.org/10.3390/ijms23126370
Gan C-L, Zou Y, Chen D, Shui X, Hu L, Li R, Zhang T, Wang J, Mei Y, Wang L, et al. Blocking ERK-DAPK1 Axis Attenuates Glutamate Excitotoxicity in Epilepsy. International Journal of Molecular Sciences. 2022; 23(12):6370. https://doi.org/10.3390/ijms23126370
Chicago/Turabian StyleGan, Chen-Ling, Yulian Zou, Dongmei Chen, Xindong Shui, Li Hu, Ruomeng Li, Tao Zhang, Junhao Wang, Yingxue Mei, Long Wang, and et al. 2022. "Blocking ERK-DAPK1 Axis Attenuates Glutamate Excitotoxicity in Epilepsy" International Journal of Molecular Sciences 23, no. 12: 6370. https://doi.org/10.3390/ijms23126370
APA StyleGan, C. -L., Zou, Y., Chen, D., Shui, X., Hu, L., Li, R., Zhang, T., Wang, J., Mei, Y., Wang, L., Zhang, M., Tian, Y., Gu, X., & Lee, T. H. (2022). Blocking ERK-DAPK1 Axis Attenuates Glutamate Excitotoxicity in Epilepsy. International Journal of Molecular Sciences, 23(12), 6370. https://doi.org/10.3390/ijms23126370