Structural and Molecular Kinetic Features of Activities of DNA Polymerases
Abstract
:1. Introduction
2. Classification of DNA Polymerases
3. Methods for Studying the Mechanism of Action of DNA Polymerases
4. Family A DNA Polymerases
5. Family B DNA Polymerases
6. Family C DNA Polymerases
7. Family D DNA Polymerases
8. Family X DNA Polymerases
9. Family Y DNA Polymerases
10. DNA Polymerases of RT Family
11. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Steitz, T.A. DNA Polymerases: Structural Diversity and Common Mechanisms. J. Biol. Chem. 1999, 274, 17395–17398. [Google Scholar] [CrossRef] [Green Version]
- Raper, A.T.; Reed, A.J.; Suo, Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem. Rev. 2018, 118, 6000–6025. [Google Scholar] [CrossRef]
- Berdis, A.J. Mechanisms of DNA Polymerases. Chem. Rev. 2009, 109, 2862–2879. [Google Scholar] [CrossRef]
- Rothwell, P.J.; Waksman, G. Structure and Mechanism of DNA Polymerases. Adv. Protein Chem. 2005, 71, 401–440. [Google Scholar] [CrossRef]
- Steitz, T.A. DNA- and RNA-Dependent DNA Polymerases. Curr. Opin. Struct. Biol. 1993, 3, 31–38. [Google Scholar] [CrossRef]
- Steitz, T.A. A Mechanism for All Polymerases. Nature 1998, 391, 231–232. [Google Scholar] [CrossRef]
- Palermo, G.; Cavalli, A.; Klein, M.L.; Alfonso-Prieto, M.; Dal Peraro, M.; De Vivo, M. Catalytic Metal Ions and Enzymatic Processing of DNA and RNA. Acc. Chem. Res. 2015, 48, 220–228. [Google Scholar] [CrossRef]
- Nakamura, T.; Zhao, Y.; Yamagata, Y.; Hua, Y.J.; Yang, W. Watching DNA Polymerase η Make a Phosphodiester Bond. Nature 2012, 487, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Konigsberg, W.H. Two-Metal-Ion Catalysis: Inhibition of DNA Polymerase Activity by a Third Divalent Metal Ion. Front. Mol. Biosci. 2022, 9, 824794. [Google Scholar] [CrossRef]
- Tsai, M.D. Catalytic Mechanism of DNA Polymerases—Two Metal Ions or Three? Protein Sci. 2019, 28, 288–291. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.J.; Yang, W.; Tsai, M.D. How DNA Polymerases Catalyse Replication and Repair with Contrasting Fidelity. Nat. Rev. Chem. 2017, 1, 0068. [Google Scholar] [CrossRef]
- Joyce, C.M.; Steitz, T.A. Relationships in DNA Polymerases. Annu. Rev. Biochem. 1994, 63, 777–822. [Google Scholar] [CrossRef] [PubMed]
- Hubscher, U.; Maga, G.; Villani, G.; Spadari, S. DNA Polymerases Discovery, Characterization and Functions in Cellular DNA Transactions; Brenner’s; Illustrated Edition; World Scientific Publishing Company: Singapore, 2013; ISBN 9814299162. [Google Scholar]
- Garcia-Diaz, M.; Bebenek, K. Multiple Functions of DNA Polymerases. CRC Crit. Rev. Plant Sci. 2007, 26, 105–122. [Google Scholar] [CrossRef] [Green Version]
- Alba, M.M. Replicative DNA Polymerases. Genome Biol. 2001, 2, reviews3002.1. [Google Scholar] [CrossRef]
- Miller, E.S.; Kutter, E.; Mosig, G.; Arisaka, F.; Kunisawa, T.; Rüger, W. Bacteriophage T4 Genome. Microbiol. Mol. Biol. Rev. 2003, 67, 86–156. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Sattar, A.K.M.A.; Wang, C.C.; Karam, J.D.; Konigsberg, W.H.; Steitz, T.A. Crystal Structure of a Pol α Family Replication DNA Polymerase from Bacteriophage RB69. Cell 1997, 89, 1087–1099. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, H.; Nishioka, M.; Fujiwara, S.; Takagi, M.; Imanaka, T.; Inoue, T.; Kai, Y. Crystal Structure of DNA Polymerase from Hyperthermophilic Archaeon Pyrococcus kodakaraensis KOD1. J. Mol. Biol. 2001, 306, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.P.; Ito, J. DNA Polymerase C of the Thermophilic Bacterium Thermus Aquaticus: Classification and Phylogenetic Analysis of the Family C DNA Polymerases. J. Mol. Evol. 1999, 48, 756–769. [Google Scholar] [CrossRef] [PubMed]
- Uemori, T.; Sato, Y.; Kato, I.; Doi, H.; Ishino, Y. A Novel DNA Polymerase in the Hyperthermophilic Archaeon, Pyrococcus furiosus: Gene Cloning, Expression, and Characterization. Genes Cells 1997, 2, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Cann, I.K.O.; Komori, K.; Toh, H.; Kanai, S.; Ishino, Y. A Heterodimeric DNA Polymerase: Evidence That Members of Euryarchaeota Possess a Distinct DNA Polymerase. Proc. Natl. Acad. Sci. USA 1998, 95, 14250–14255. [Google Scholar] [CrossRef] [Green Version]
- Yamtich, J.; Sweasy, J.B. DNA Polymerase Family X: Function, Structure, and Cellular Roles. Biochim. Biophys. Acta-Proteins Proteom. 2010, 1804, 1136–1150. [Google Scholar] [CrossRef] [Green Version]
- Yang, W. An Overview of Y-Family DNA Polymerases and a Case Study of Human DNA Polymerase π. Biochemistry 2014, 53, 2793–2803. [Google Scholar] [CrossRef] [PubMed]
- Götte, M.; Li, X.; Wainberg, M.A. HIV-1 Reverse Transcription: A Brief Overview Focused on Structure-Function Relationships among Molecules Involved in Initiation of the Reaction. Arch. Biochem. Biophys. 1999, 365, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Shay, J.W.; Wright, W.E. Telomeres and Telomerase: Three Decades of Progress. Nat. Rev. Genet. 2019, 20, 299–309. [Google Scholar] [CrossRef]
- Kirby, T.W.; Derose, E.F.; Cavanaugh, N.A.; Beard, W.A.; Shock, D.D.; Mueller, G.A.; Wilson, S.H.; London, R.E. Metal-Induced DNA Translocation Leads to DNA Polymerase Conformational Activation. Nucleic Acids Res. 2012, 40, 2974–2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pustovalova, Y.; MacIejewski, M.W.; Korzhnev, D.M. NMR Mapping of PCNA Interaction with Translesion Synthesis DNA Polymerase Rev1 Mediated by Rev1-BRCT Domain. J. Mol. Biol. 2013, 425, 3091–3105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sušac, L.; Feigon, J. Structural Biology of Telomerase. Cold Spring Harb. Perspect. Biol. 2019, 11, a032383. [Google Scholar] [CrossRef]
- Broyde, S.; Wang, L.; Zhang, L.; Rechkoblit, O.; Geacintov, N.E.; Patel, D.J. DNA Adduct Structure-Function Relationships: Comparing Solution with Polymerase Structures. Chem. Res. Toxicol. 2008, 21, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, D.; Liang, B. Cryo-Electron Microscopy Structures of the Pneumoviridae Polymerases. Viral Immunol. 2021, 34, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Wolf, M. Cryo-Electron Microscopy for Structural Analysis of Dynamic Biological Macromolecules. Biochim. Biophys. Acta-Gen. Subj. 2018, 1862, 324–334. [Google Scholar] [CrossRef]
- Bhella, D. Cryo-Electron Microscopy: An Introduction to the Technique, and Considerations When Working to Establish a National Facility. Biophys. Rev. 2019, 11, 515–519. [Google Scholar] [CrossRef] [Green Version]
- Joyce, C.M. Techniques Used to Study the DNA Polymerase Reaction Pathway. Biochim. Biophys. Acta 2010, 1804, 1032–1040. [Google Scholar] [CrossRef] [Green Version]
- Lavrik, O.; Belousova, E.; Crespan, E.; Lebedeva, N.; Rechkunova, N.; Hubscher, U.; Maga, G. Photoreactive DNA Probes as a Tool for Studying the Translesion Synthesis System in Mammalian Cell Extracts. Med. Chem. 2008, 4, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Ruoho, A.E.; Kiefer, H.; Roeder, P.E.; Singer, S.J. The Mechanism of Photoaffinity Labeling. Proc. Natl. Acad. Sci. USA 1973, 70, 2567–2571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murale, D.P.; Hong, S.C.; Haque, M.M.; Lee, J.S. Photo-Affinity Labeling (PAL) in Chemical Proteomics: A Handy Tool to Investigate Protein-Protein Interactions (PPIs). Proteome Sci. 2017, 15, 14. [Google Scholar] [CrossRef] [Green Version]
- Knorre, D.G.; Godovikova, T.S. Photoaffinity Labeling as an Approach to Study Supramolecular Nucleoprotein Complexes. FEBS Lett. 1998, 433, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Grachev, M.A.; Mustaev, A.A. Cyclic Adenosine-5′-Trimetaphosphate Phosphorylates a Histidine Residue Nearby the Initiating Substrate Binding Site of Escherichia coli DNA-Dependent RNA-Polymerase. FEBS Lett. 1982, 137, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Lavrik, O.I.; Prasad, R.; Beard, W.A.; Safronov, I.V.; Dobrikov, M.I.; Srivastava, D.K.; Shishkin, G.V.; Wood, T.G.; Wilson, S.H. DNTP Binding to HIV-1 Reverse Transcriptase and Mammalian DNA Polymerase β as Revealed by Affinity Labeling with a Photoreactive DNTP Analog. J. Biol. Chem. 1996, 271, 21891–21897. [Google Scholar] [CrossRef] [Green Version]
- Doronin, S.V.; Dobrikov, M.I.; Buckle, M.; Roux, P.; Buc, H.; Lavrik, O.I. Affinity Modification of Human Immunodeficiency Virus Reverse Transcriptase and DNA Template by Photoreactive DCTP Analogs. FEBS Lett. 1994, 354, 200–202. [Google Scholar] [CrossRef] [Green Version]
- Doronin, S.V.; Dobrikov, M.I.; Lavrik, O.I. Photoaffinity Labeling of DNA Polymerase α DNA Primase Complex Based on the Catalytic Competence of a DNTP Reactive Analog. FEBS Lett. 1992, 313, 31–33. [Google Scholar] [CrossRef] [Green Version]
- Mitina, R.L.; Mustaev, A.A.; Zaychikov, E.F.; Khomov, V.V.; Lavrik, O.I. Highly Selective Affinity Labeling of the Primer-Binding Site of E. coli DNA Polymerase I. FEBS Lett. 1990, 272, 181–183. [Google Scholar] [CrossRef] [Green Version]
- Zakharova, O.D.; Podust, V.N.; Mustaev, A.A.; Anarbaev, R.O.; Lavrik, O.I. Highly Selective Affinity Labeling of DNA Polymerase α-Primase from Human Placenta by Reactive Analogs of ATP. Biochimie 1995, 77, 699–702. [Google Scholar] [CrossRef]
- Kuchta, R.D.; Mizrahi, V.; Benkovic, P.A.; Johnson, K.A.; Benkovic, S.J. Kinetic Mechanism of DNA Polymerase I (Klenow). Biochemistry 1987, 26, 8410–8417. [Google Scholar] [CrossRef]
- Dahlberg, M.E.; Benkovic, S.J. Kinetic Mechanism of DNA Polymerase I (Klenow Fragment): Identification of a Second Conformational Change and Evaluation of the Internal Equilibrium Constant. Biochemistry 1991, 30, 4835–4843. [Google Scholar] [CrossRef] [PubMed]
- Datta, K.; LiCata, V.J. Thermodynamics of the Binding of Thermus Aquaticus DNA Polymerase to Primed-Template DNA. Nucleic Acids Res. 2003, 31, 5590–5597. [Google Scholar] [CrossRef] [Green Version]
- Datta, K.; Wowor, A.J.; Richard, A.J.; LiCata, V.J. Temperature Dependence and Thermodynamics of Klenow Polymerase Binding to Primed-Template DNA. Biophys. J. 2006, 90, 1739–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, K.; LiCata, V.J. Salt Dependence of DNA Binding by Thermus Aquaticus and Escherichia coli DNA Polymerases. J. Biol. Chem. 2003, 278, 5694–5701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purohit, V.; Grindley, N.D.F.; Joyce, C.M. Use of 2-Aminopurine Fluorescence to Examine Conformational Changes during Nucleotide Incorporation by DNA Polymerase I (Klenow Fragment). Biochemistry 2003, 42, 10200–10211. [Google Scholar] [CrossRef]
- Sandin, P.; Stengel, G.; Ljungdahl, T.; Borjesson, K.; Macao, B.; Wilhelmsson, L.M. Highly Efficient Incorporation of the Fluorescent Nucleotide Analogs TC and TCO by Klenow Fragment. Nucleic Acids Res. 2009, 37, 3924–3933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stengel, G.; Knoll, W. Surface Plasmon Field-Enhanced Fluorescence Spectroscopy Studies of Primer Extension Reactions. Nucleic Acids Res. 2005, 33, e69. [Google Scholar] [CrossRef] [Green Version]
- Driscoll, M.D.; Rentergent, J.; Hay, S. A Quantitative Fluorescence-Based Steady-State Assay of DNA Polymerase. FEBS J. 2014, 281, 2042–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montgomery, J.L.; Rejali, N.; Wittwer, C.T. Stopped-Flow DNA Polymerase Assay by Continuous Monitoring of DNTP Incorporation by Fluorescence. Anal. Biochem. 2013, 441, 133–139. [Google Scholar] [CrossRef]
- Schwartz, J.J.; Quake, S.R. Single Molecule Measurement of the “Speed Limit” of DNA Polymerase. Proc. Natl. Acad. Sci. USA 2009, 106, 20294–20299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoso, Y.; Joyce, C.M.; Potapova, O.; Le Reste, L.; Hohlbein, J.; Torella, J.P.; Grindley, N.D.F.; Kapanidis, A.N. Conformational Transitions in DNA Polymerase I Revealed by Single-Molecule FRET. Proc. Natl. Acad. Sci. USA 2010, 107, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Markiewicz, R.P.; Vrtis, K.B.; Rueda, D.; Romano, L.J. Single-Molecule Microscopy Reveals New Insights into Nucleotide Selection by DNA Polymerase I. Nucleic Acids Res. 2012, 40, 7975–7984. [Google Scholar] [CrossRef] [PubMed]
- Pauszek, R.F.; Lamichhane, R.; Singh, A.R.; Millar, D.P. Single-Molecule View of Coordination in a Multi-Functional DNA Polymerase. eLife 2021, 10, e62046. [Google Scholar] [CrossRef]
- Geertsema, H.J.; Kulczyk, A.W.; Richardson, C.C.; Van Oijen, A.M. Single-Molecule Studies of Polymerase Dynamics and Stoichiometry at the Bacteriophage T7 Replication Machinery. Proc. Natl. Acad. Sci. USA 2014, 111, 4073–4078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turvey, M.W.; Gabriel, K.N.; Lee, W.; Taulbee, J.J.; Kim, J.K.; Chen, S.; Lau, C.J.; Kattan, R.E.; Pham, J.T.; Majumdar, S.; et al. Single-Molecule Taq DNA Polymerase Dynamics. Sci. Adv. 2022, 8, eabl3522. [Google Scholar] [CrossRef]
- Mazumder, A.; Wang, A.; Uhm, H.; Ebright, R.H.; Kapanidis, A.N. RNA Polymerase Clamp Conformational Dynamics: Long-Lived States and Modulation by Crowding, Cations, and Nonspecific DNA Binding. Nucleic Acids Res. 2021, 49, 2790–2802. [Google Scholar] [CrossRef]
- Sun, B.; Wang, M.D. Single-Molecule Optical-Trapping Techniques to Study Molecular Mechanisms of a Replisome, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 582. [Google Scholar]
- Morin, J.A.; Cao, F.J.; Lázaro, J.M.; Arias-Gonzalez, J.R.; Valpuesta, J.M.; Carrascosa, J.L.; Salas, M.; Ibarra, B. Mechano-Chemical Kinetics of DNA Replication: Identification of the Translocation Step of a Replicative DNA Polymerase. Nucleic Acids Res. 2015, 43, 3643–3652. [Google Scholar] [CrossRef] [Green Version]
- Stoloff, D.H.; Wanunu, M. Recent Trends in Nanopores for Biotechnology. Curr. Opin. Biotechnol. 2013, 24, 699–704. [Google Scholar] [CrossRef] [Green Version]
- Hurt, N.; Wang, H.; Akeson, M.; Lieberman, K.R. Specific Nucleotide Binding and Rebinding to Individual DNA Polymerase Complexes Captured on a Nanopore. J. Am. Chem. Soc. 2009, 131, 3772–3778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsoi, P.Y.; Yang, M. Kinetic Study of Various Binding Modes between Human DNA Polymerase β and Different DNA Substrates by Surface-Plasmon-Resonance Biosensor. Biochem. J. 2002, 361, 317–325. [Google Scholar] [CrossRef]
- Tsoi, P.Y.; Zhang, X.; Sui, S.F.; Yang, M. Effects of DNA Mismatches on Binding Affinity and Kinetics of Polymerase-DNA Complexes as Revealed by Surface Plasmon Resonance Biosensor. Analyst 2003, 128, 1169–1174. [Google Scholar] [CrossRef]
- Johnson, K.A. Kinetic Analysis for the New Enzymology: Using Computer Simulation to Learn Kinetics and Solve Mechanisms; Kintek Corporation: Austin, TX, USA, 2019; ISBN 9781733998208, 1733998209. [Google Scholar]
- Patel, S.S.; Wong, I.; Johnson, K.A. Pre-Steady-State Kinetic Analysis of Processive DNA Replication Including Complete Characterization of an Exonuclease-Deficient Mutant. Biochemistry 1991, 30, 511–525. [Google Scholar] [CrossRef]
- Wu, P.; Nossal, N.; Benkovic, S.J. Kinetic Characterization of a Bacteriophage T4 Antimutator DNA Polymerase. Biochemistry 1998, 37, 14748–14755. [Google Scholar] [CrossRef] [PubMed]
- Baranovskiy, A.G.; Duong, V.N.; Babayeva, N.D.; Zhang, Y.; Pavlov, Y.I.; Anderson, K.S.; Tahirov, T.H. Activity and Fidelity of Human DNA Polymerase Depend on Primer Structure. J. Biol. Chem. 2018, 293, 6824–6843. [Google Scholar] [CrossRef] [Green Version]
- Zahurancik, W.J.; Suo, Z. Kinetic Investigation of the Polymerase and Exonuclease Activities of Human DNA Polymerase e Holoenzyme. J. Biol. Chem. 2020, 295, 17251–17264. [Google Scholar] [CrossRef] [PubMed]
- Lowe, L.G.; Guengerich, F.P. Steady-State and Pre-Steady-State Kinetic Analysis of DNTP Insertion Opposite 8-Oxo-7,8-Dihydroguanine by Escherichia coli Polymerases I Exo- and II Exo-. Biochemistry 1996, 35, 9840–9849. [Google Scholar] [CrossRef]
- Einolf, H.J.; Guengerich, F.P. Fidelity of Nucleotide Insertion at 8-Oxo-7,8-Dihydroguanine by Mammalian DNA Polymerase Δ: Steady-State and Pre-Steady-State Kinetic Analysis. J. Biol. Chem. 2001, 276, 3764–3771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dieckman, L.M.; Johnson, R.E.; Prakash, S.; Washington, M.T. Pre-Steady State Kinetic Studies of the Fidelity of Nucleotide Incorporation by Yeast DNA Polymerase δ. Biochemistry 2010, 49, 7344–7350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, S.W.; Johnson, A.A.; Johnson, K.A. Expression, Purification, and Initial Kinetic Characterization of the Large Subunit of the Human Mitochondrial DNA Polymerase. Biochemistry 1998, 37, 6050–6058. [Google Scholar] [CrossRef]
- Johnson, A.A.; Tsai, Y.C.; Graves, S.W.; Johnson, K.A. Human Mitochondrial DNA Polymerase Holoenzyme: Reconstitution and Characterization. Biochemistry 2000, 39, 1702–1708. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.F.; Joyce, C.M.; Jack, W.E. Comparative Kinetics of Nucleotide Analog Incorporation by Vent DNA Polymerase. J. Biol. Chem. 2004, 279, 11834–11842. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Franklin, M.; Li, J.; Lin, T.C.; Konigsberg, W. Correlation of the Kinetics of Finger Domain Mutants in RB69 DNA Polymerase with Its Structure. Biochemistry 2002, 41, 2526–2534. [Google Scholar] [CrossRef]
- Lahiri, I.; Mukherjee, P.; Pata, J.D. Kinetic Characterization of Exonuclease-Deficient Staphylococcus Aureus PolC, a C-Family Replicative DNA Polymerase. PLoS ONE 2013, 8, e63489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schermerhorn, K.M.; Gardner, A.F. Pre-Steady-State Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance. J. Biol. Chem. 2015, 290, 21800–21810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Werneburg, B.G.; Ahn, J.; Zhong, X.; Hondal, R.J.; Kraynov, V.S.; Tsai, M.D. DNA Polymerase β: Pre-Steady-State Kinetic Analysis and Roles of Arginine-283 in Catalysis and Fidelity. Biochemistry 1996, 35, 7041–7050. [Google Scholar] [CrossRef]
- García-Díaz, M.; Bebenek, K.; Sabariegos, R.; Domínguez, O.; Rodríguez, J.; Kirchhoff, T.; García-Palomero, E.; Picher, A.J.; Juárez, R.; Ruiz, J.F.; et al. DNA Polymerase λ, a Novel DNA Repair Enzyme in Human Cells. J. Biol. Chem. 2002, 277, 13184–13191. [Google Scholar] [CrossRef] [Green Version]
- Fiala, K.A.; Abdel-Gawad, W.; Suo, Z. Pre-Steady-State Kinetic Studies of the Fidelity and Mechanism of Polymerization Catalyzed by Truncated Human DNA Polymerase λ. Biochemistry 2004, 43, 6751–6762. [Google Scholar] [CrossRef]
- Roettger, M.P.; Fiala, K.A.; Sompalli, S.; Dong, Y.; Suo, Z. Pre-Steady-State Kinetic Studies of the Fidelity of Human DNA Polymerase. Biochemistry 2004, 43, 13827–13838. [Google Scholar] [CrossRef]
- Bertram, J.G.; Bloom, L.B.; O’Donnell, M.; Goodman, M.F. Increased DNTP Binding Affinity Reveals a Nonprocessive Role for Escherichia coli β Clamp with DNA Polymerase IV. J. Biol. Chem. 2004, 279, 33047–33050. [Google Scholar] [CrossRef] [Green Version]
- Cramer, J.; Restle, T. Pre-Steady-State Kinetic Characterization of the DinB Homologue DNA Polymerase of Sulfolobus solfataricus. J. Biol. Chem. 2005, 280, 40552–40558. [Google Scholar] [CrossRef] [Green Version]
- Fiala, K.A.; Suo, Z. Pre-Steady-State Kinetic Studies of the Fidelity of Sulfolobus solfataricus P2 DNA Polymerase IV. Biochemistry 2004, 43, 2106–2115. [Google Scholar] [CrossRef] [PubMed]
- Fiala, K.A.; Sherrer, S.M.; Brown, J.A.; Suo, Z. Mechanistic Consequences of Temperature on DNA Polymerization Catalyzed by a Y-Family DNA Polymerase. Nucleic Acids Res. 2008, 36, 1990–2001. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.A.; Zhang, L.; Sherrer, S.M.; Taylor, J.S.; Burgers, P.M.J.; Suo, Z. Pre-Steady-State Kinetic Analysis of Truncated and Full-Length Saccharomyces Cerevisiae DNA Polymerase Eta. J. Nucleic Acids 2010, 2010, 871939. [Google Scholar] [CrossRef] [Green Version]
- Kati, W.M.; Johnson, K.A.; Jerva, L.F.; Anderson, K.S. Mechanism and Fidelity of HIV Reverse Transcriptase. J. Biol. Chem. 1992, 267, 25988–25997. [Google Scholar] [CrossRef]
- Brautigam, C.A.; Steitz, T.A. Structural and Functional Insights Provided by Crystal Structures of DNA Polymerases and Their Substrate Complexes. Curr. Biol. 1998, 8, 54–63. [Google Scholar] [CrossRef]
- Joyce, C.M. DNA Polymerase I, Bacterial, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; ISBN 9780123786319. [Google Scholar]
- Wood, R.D.; Doublié, S. DNA Polymerase θ (POLQ), Double-Strand Break Repair, and Cancer. DNA Repair 2016, 44, 22–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arana, M.E.; Seki, M.; Wood, R.D.; Rogozin, I.B.; Kunkel, T.A. Low-Fidelity DNA Synthesis by Human DNA Polymerase Theta. Nucleic Acids Res. 2008, 36, 3847–3856. [Google Scholar] [CrossRef] [Green Version]
- Doublié, S.; Zahn, K.E. Structural Insights into Eukaryotic DNA Replication. Front. Microbiol. 2014, 5, 444. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, L. The Pol α -Primase Complex. Subcell. Biochem. 2012, 62, 157–169. [Google Scholar] [CrossRef]
- Zahurancik, W.J.; Klein, S.J.; Suo, Z. Significant Contribution of the 3′→5′ Exonuclease Activity to the High Fidelity of Nucleotide Incorporation Catalyzed by Human DNA Polymerase ∈. Nucleic Acids Res. 2014, 42, 13853–13860. [Google Scholar] [CrossRef] [Green Version]
- Prindle, M.J.; Loeb, L.A. DNA Polymerase Delta in DNA Replication and Genome Maintenance. Environ. Mol. Mutagen. 2012, 53, 666–682. [Google Scholar] [CrossRef] [Green Version]
- Foley, M.C.; Couto, L.; Rauf, S.; Boyke, A. Insights into DNA Polymerase δ’s Mechanism for Accurate DNA Replication. J. Mol. Model. 2019, 25, 80. [Google Scholar] [CrossRef]
- Khandagale, P.; Peroumal, D.; Manohar, K.; Acharya, N. Human DNA Polymerase Delta Is a Pentameric Holoenzyme with a Dimeric P12 Subunit. Life Sci. Alliance 2019, 2, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Pursell, Z.F.; Linn, S. Identification and Cloning of Two Histone Fold Motif-Containing Subunits of HeLa DNA Polymerase ε. J. Biol. Chem. 2000, 275, 23247–23252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muzi-Falconi, M.; Giannattasio, M.; Foiani, M.; Plevani, P. The DNA Polymerase Alpha-Primase Complex: Multiple Functions and Interactions. Sci. World J. 2003, 3, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Ramírez, R.; Klinge, S.; Sauguet, L.; Melero, R.; Recuero-Checa, M.A.; Kilkenny, M.; Perera, R.L.; García-Alvarez, B.; Hall, R.J.; Nogales, E.; et al. Flexible Tethering of Primase and DNA Pol α in the Eukaryotic Primosome. Nucleic Acids Res. 2011, 39, 8187–8199. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.; Hammel, M.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K. Structural Insights into Yeast DNA Polymerase δ by Small Angle X-ray Scattering. J. Mol. Biol. 2009, 394, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, R.; Rice, W.J.; Malik, R.; Johnson, R.E.; Prakash, L.; Prakash, S.; Ubarretxena-Belandia, I.; Aggarwal, A.K. Cryo-EM Structure and Dynamics of Eukaryotic DNA Polymerase δ Holoenzyme. Nat. Struct. Mol. Biol. 2019, 26, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Asturias, F.J.; Cheung, I.K.; Sabouri, N.; Chilkova, O.; Wepplo, D.; Johansson, E. Structure of Saccharomyces Cerevisiae DNA Polymerase Epsilon by Cryo-Electron Microscopy. Nat. Struct. Mol. Biol. 2006, 13, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Lancey, C.; Tehseen, M.; Raducanu, V.S.; Rashid, F.; Merino, N.; Ragan, T.J.; Savva, C.G.; Zaher, M.S.; Shirbini, A.; Blanco, F.J.; et al. Structure of the Processive Human Pol δ Holoenzyme. Nat. Commun. 2020, 11, 1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranovskiy, A.G.; Babayeva, N.D.; Zhang, Y.; Gu, J.; Suwa, Y.; Pavlov, Y.I.; Tahirov, T.H. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome. J. Biol. Chem. 2016, 291, 10006–10020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Baranovskiy, A.G.; Tahirov, T.H.; Pavlov, Y.I. The C-Terminal Domain of the DNA Polymerase Catalytic Subunit Regulates the Primase and Polymerase Activities of the Human DNA Polymerase α-Primase Complex. J. Biol. Chem. 2014, 289, 22021–22034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganai, R.A.; Osterman, P.; Johansson, E. Yeast DNA Polymerase ε Catalytic Core and Holoenzyme Have Comparable Catalytic Rates. J. Biol. Chem. 2015, 290, 3825–3835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, X.; Zhou, Y.; Lee, E.Y.C.; Lee, M.Y.W.T.; Frick, D.N. The P12 Subunit of Human Polymerase Delta Modulates the Rate and Fidelity of DNA Synthesis. Biochemistry 2010, 49, 3545–3554. [Google Scholar] [CrossRef] [Green Version]
- Zahurancik, W.J.; Klein, S.J.; Suo, Z. Kinetic Mechanism of DNA Polymerization Catalyzed by Human DNA Polymerase ε. Biochemistry 2013, 52, 7041–7049. [Google Scholar] [CrossRef] [Green Version]
- Lamers, M.H.; O’Donnell, M. A Consensus View of DNA Binding by the C Family of Replicative DNA Polymerases. Proc. Natl. Acad. Sci. USA 2008, 105, 20565–20566. [Google Scholar] [CrossRef] [Green Version]
- Bailey, S.; Wing, R.A.; Steitz, T.A. The Structure of T. Aquaticus DNA Polymerase III Is Distinct from Eukaryotic Replicative DNA Polymerases. Cell 2006, 126, 893–904. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.J.; Davies, D.R.; Bullard, J.M.; Christensen, J.; Green, L.S.; Guiles, J.W.; Pata, J.D.; Ribble, W.K.; Janjic, N.; Jarvis, T.C. Structure of PolC Reveals Unique DNA Binding and Fidelity Determinants. Proc. Natl. Acad. Sci. USA 2008, 105, 20695–20700. [Google Scholar] [CrossRef] [Green Version]
- Wing, R.A.; Bailey, S.; Steitz, T.A. Insights into the Replisome from the Structure of a Ternary Complex of the DNA Polymerase III Alpha-Subunit. J. Mol. Biol. 2008, 382, 859–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamers, M.H.; Georgescu, R.E.; Lee, S.G.; O’Donnell, M.; Kuriyan, J. Crystal Structure of the Catalytic α Subunit of E. coli Replicative DNA Polymerase III. Cell 2006, 126, 881–892. [Google Scholar] [CrossRef] [Green Version]
- Filée, J.; Forterre, P.; Sen-Lin, T.; Laurent, J. Evolution of DNA Polymerase Families: Evidences for Multiple Gene Exchange between Cellular and Viral Proteins. J. Mol. Evol. 2002, 54, 763–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeshi, N. NII-Electronic Library Service. Chem. Pharm. Bull. 1977, 57, 364–370. [Google Scholar]
- Ishino, Y.; Komori, K.; Cann, I.K.O.; Koga, Y. A Novel DNA Polymerase Family Found in Archaea. J. Bacteriol. 1998, 180, 2232–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Tang, X.F.; Matsui, I. Subunit Interaction and Regulation of Activity through Terminal Domains of the Family D DNA Polymerase from Pyrococcus Horikoshii. J. Biol. Chem. 2003, 278, 21247–21257. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Tang, X.F.; Matsui, E.; Matsui, I. Subunit Interaction and Regulation of Activity through Terminal Domains of the Family D DNA Polymerase from Pyrococcus Horikoshii. Biochem. Soc. Trans. 2004, 32, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Sauguet, L.; Raia, P.; Henneke, G.; Delarue, M. Shared Active Site Architecture between Archaeal PolD and Multi-Subunit RNA Polymerases Revealed by X-Ray Crystallography. Nat. Commun. 2016, 7, 12227. [Google Scholar] [CrossRef]
- Ruprich-Robert, G.; Thuriaux, P. Non-Canonical DNA Transcription Enzymes and the Conservation of Two-Barrel RNA Polymerases. Nucleic Acids Res. 2010, 38, 4559–4569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raia, P.; Carroni, M.; Henry, E.; Pehau-Arnaudet, G.; Brûlé, S.; Béguin, P.; Henneke, G.; Lindahl, E.; Delarue, M.; Sauguet, L. Structure of the DP1-DP2 PolD Complex Bound with DNA and Its Implications for the Evolutionary History of DNA and RNA Polymerases. PLoS Biol. 2019, 17, e3000122. [Google Scholar] [CrossRef] [PubMed]
- Hamdan, S.; Carr, P.D.; Brown, S.E.; Ollis, D.L.; Dixon, N.E. Structural Basis for Proofreading during Replication of the Escherichia coli Chromosome. Structure 2002, 10, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Belousova, E.A.; Lavrik, O.I. DNA Polymerases β and λ and Their Roles in Cell. DNA Repair 2015, 29, 112–126. [Google Scholar] [CrossRef]
- Sawaya, M.R.; Prasad, R.; Wilson, S.H.; Kraut, J.; Pelletier, H. Crystal Structures of Human DNA Polymerase β Complexed with Gapped and Nicked DNA: Evidence for an Induced Fit Mechanism. Biochemistry 1997, 36, 11205–11215. [Google Scholar] [CrossRef]
- Beard, W.A.; Wilson, S.H. Structure and Mechanism of DNA Polymerase β. Chem Rev. 2006, 106, 361–382. [Google Scholar] [CrossRef] [PubMed]
- Van Loon, B.; Hübscher, U.; Maga, G. Living on the Edge: DNA Polymerase Lambda between Genome Stability and Mutagenesis. Chem. Res. Toxicol. 2017, 30, 1936–1941. [Google Scholar] [CrossRef]
- Garcia-Diaz, M.; Bebenek, K.; Krahn, J.M.; Kunkel, T.A.; Pedersen, L.C. A Closed Conformation for the Pol λ Catalytic Cycle. Nat. Struct. Mol. Biol. 2005, 12, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Moon, A.F.; Garcia-Diaz, M.; Batra, V.K.; Beard, W.A.; Bebenek, K.; Kunkel, T.A.; Wilson, S.H.; Pedersen, L.C. The X Family Portrait: Structural Insights into Biological Functions of X Family Polymerases. DNA Repair 2007, 6, 1709–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bebenek, K.; Pedersen, L.C.; Kunkel, T.A. Structure-Function Studies of DNA Polymerase λ. Biochemistry 2014, 53, 2781–2792. [Google Scholar] [CrossRef]
- Moon, A.F.; Garcia-Diaz, M.; Bebenek, K.; Davis, B.J.; Zhong, X.; Ramsden, D.A.; Kunkel, T.A.; Pedersen, L.C. Structural Insight into the Substrate Specificity of DNA Polymerase μ. Nat. Struct. Mol. Biol. 2007, 14, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Juárez, R.; Ruiz, J.F.; McElhinny, S.A.N.; Ramsden, D.; Blanco, L. A Specific Loop in Human DNA Polymerase Mu Allows Switching between Creative and DNA-Instructed Synthesis. Nucleic Acids Res. 2006, 34, 4572–4582. [Google Scholar] [CrossRef]
- Moon, A.F.; Pryor, J.M.; Ramsden, D.A.; Kunkel, T.A.; Bebenek, K.; Pedersen, L.C. Sustained Active Site Rigidity during Synthesis by Human DNA Polymerase μ. Nat. Struct. Mol. Biol. 2014, 21, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Dominguez, O. DNA Polymerase Mu (Pol Micro), Homologous to TdT, Could Act as a DNA Mutator in Eukaryotic Cells. EMBO J. 2000, 19, 1731–1742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, X.; Yuan, F.; Xie, Z.; Wang, Z. Highly Frequent Frameshift DNA Synthesis by Human DNA Polymerase μ. Mol. Cell. Biol. 2001, 21, 7995–8006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freudenthal, B.D.; Beard, W.A.; Shock, D.D.; Wilson, S.H. XObserving a DNA Polymerase Choose Right from Wrong. Cell 2013, 154, 157. [Google Scholar] [CrossRef] [Green Version]
- Freudenthal, B.D.; Beard, W.A.; Perera, L.; Shock, D.D.; Kim, T.; Schlick, T.; Wilson, S.H. Uncovering the Polymerase-Induced Cytotoxicity of an Oxidized Nucleotide. Nature 2015, 517, 635–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vyas, R.; Reed, A.J.; Tokarsky, E.J.; Suo, Z. Viewing Human DNA Polymerase β Faithfully and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography. J. Am. Chem. Soc. 2015, 137, 5225–5230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitaker, A.M.; Smith, M.R.; Schaich, M.A.; Freudenthal, B.D. Capturing a Mammalian DNA Polymerase Extending from an Oxidized Nucleotide. Nucleic Acids Res. 2017, 45, 6934–6944. [Google Scholar] [CrossRef] [Green Version]
- Reed, A.J.; Suo, Z. Time-Dependent Extension from an 8-Oxoguanine Lesion by Human DNA Polymerase Beta. J. Am. Chem. Soc. 2017, 139, 9684–9690. [Google Scholar] [CrossRef]
- Jamsen, J.A.; Beard, W.A.; Pedersen, L.C.; Shock, D.D.; Moon, A.F.; Krahn, J.M.; Bebenek, K.; Kunkel, T.A.; Wilson, S.H. Time-Lapse Crystallography Snapshots of a Double-Strand Break Repair Polymerase in Action. Nat. Commun. 2017, 8, 253. [Google Scholar] [CrossRef]
- Loc’h, J.; Delarue, M. Terminal Deoxynucleotidyltransferase: The Story of an Untemplated DNA Polymerase Capable of DNA Bridging and Templated Synthesis across Strands. Curr. Opin. Struct. Biol. 2018, 53, 22–31. [Google Scholar] [CrossRef]
- Delarue, M.; Boulé, J.B.; Lescar, J.; Expert-Bezançon, N.; Jourdan, N.; Sukumar, N.; Rougeon, F.; Papanicolaou, C. Crystal Structures of a Template-Independent DNA Polymerase: Murine Terminal Deoxynucleotidyltransferase. EMBO J. 2002, 21, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Gouge, J.; Rosario, S.; Romain, F.; Beguin, P.; Delarue, M. Structures of Intermediates along the Catalytic Cycle of Terminal Deoxynucleotidyltransferase: Dynamical Aspects of the Two-Metal Ion Mechanism. J. Mol. Biol. 2013, 425, 4334–4352. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.S.; Murakami, K.S. Watching the Bacteriophage N4 RNA Polymerase Transcription by Time-Dependent Soak-Trigger-Freeze X-ray Crystallography. J. Biol. Chem. 2013, 288, 3305–3311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.; Woodgate, R. What a Difference a Decade Makes: Insights into Translesion DNA Synthesis. Proc. Natl. Acad. Sci. USA 2007, 104, 15591–15598. [Google Scholar] [CrossRef] [Green Version]
- Waters, L.S.; Minesinger, B.K.; Wiltrout, M.E.; D’Souza, S.; Woodruff, R.V.; Walker, G.C. Eukaryotic Translesion Polymerases and Their Roles and Regulation in DNA Damage Tolerance. Microbiol. Mol. Biol. Rev. 2009, 73, 134–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R.C.; Jackson, M.A.; Pata, J.D. Y-Family Polymerase Conformation Is a Major Determinant of Fidelity and Translesion Specificity. Structure 2013, 21, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Alt, A.; Lammens, K.; Chiocchini, C.; Lammens, A.; Pieck, J.C.; Kuch, D.; Hopfner, K.-P.; Carell, T. Bypass of DNA Lesions Generated During Anticancer Treatment with Cisplatin by DNA Polymerase Eta. Science 2007, 318, 967–970. [Google Scholar] [CrossRef]
- Zhao, Y.; Gregory, M.T.; Biertümpfel, C.; Hua, Y.J.; Hanaoka, F.; Yang, W. Mechanism of Somatic Hypermutation at the WA Motif by Human DNA Polymerase N. Proc. Natl. Acad. Sci. USA 2013, 110, 8146–8151. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.H.; Fiala, K.A.; Suo, Z.; Ling, H. Snapshots of a Y-Family DNA Polymerase in Replication: Substrate-Induced Conformational Transitions and Implications for Fidelity of Dpo4. J. Mol. Biol. 2008, 379, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Uljon, S.N.; Johnson, R.E.; Edwards, T.A.; Prakash, S.; Prakash, L.; Aggarwal, A.K. Crystal Structure of the Catalytic Core of Human DNA Polymerase Kappa. Structure 2004, 12, 1395–1404. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Xing, G.; Yagi, H.; Sayer, J.M.; Jerina, D.M.; Ling, H. A Structural Gap in Dpo4 Supports Mutagenic Bypass of a Major Benzo [a]Pyrene DG Adduct in DNA through Template Misalignment. Proc. Natl. Acad. Sci. USA 2007, 104, 14905–14910. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yang, Y.; Tang, T.S.; Zhang, H.; Wang, Z.; Friedberg, E.; Yang, W.; Guo, C. Variants of Mouse DNA Polymerase κ Reveal a Mechanism of Efficient and Accurate Translesion Synthesis Past a Benzo[a]Pyrene DG Adduct. Proc. Natl. Acad. Sci. USA 2014, 111, 1789–1794. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wilson, R.C.; Pata, J.D. The Y-Family DNA Polymerase Dpo4 Uses a Template Slippage Mechanism to Create Single-Base Deletions. J. Bacteriol. 2011, 193, 2630–2636. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Yang, W. Capture of a Third Mg2+ Is Essential for Catalyzing DNA Synthesis. Science 2016, 352, 1334–1337. [Google Scholar] [CrossRef] [Green Version]
- Kohlstaed, L.A.; Wang, J.; Friedman, J.M.; Rice, P.A.; Steitz, T.A. Crystal Structure at 3.5 Å Resolution of h Iv -1 Reverse Transcriptase Complexed with an Inhibitor. Science 2020, 256, 254–261. [Google Scholar] [CrossRef]
- Jacobo-Molina, A.; Ding, J.; Nanni, R.G.; Clark, A.D.; Lu, X.; Tantillo, C.; Williams, R.L.; Kamer, G.; Ferris, A.L.; Clark, P.; et al. Crystal Structure of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Complexed with Double-Stranded DNA at 3.0 Å Resolution Shows Bent DNA. Proc. Natl. Acad. Sci. USA 1993, 90, 6320–6324. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chopra, R.; Verdine, G.L.; Harrison, S.C. Structure of a Covalently Trapped Catalytic Complex of HIV-1 Reverse Transcriptase: Implications for Drug Resistance. Science 1998, 282, 1669–1675. [Google Scholar] [CrossRef] [Green Version]
- Kirmizialtin, S.; Nguyen, V.; Johnson, K.A.; Elber, R. How Conformational Dynamics of DNA Polymerase Select Correct Substrates: Experiments and Simulations. Structure 2012, 20, 618–627. [Google Scholar] [CrossRef] [Green Version]
- Kellinger, M.W.; Johnson, K.A. Nucleotide-Dependent Conformational Change Governs Specificity and Analog Discrimination by HIV Reverse Transcriptase. Proc. Natl. Acad. Sci. USA 2010, 107, 7734–7739. [Google Scholar] [CrossRef] [Green Version]
- Kellinger, M.W.; Johnson, K.A. Role of Induced-Fit in Limiting Discrimination Against AZT by HIV Reverse Transcriptase. Biochemistry 2011, 50, 5008–5015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Family | Taxon | DNA Polymerases | Functions |
---|---|---|---|
A | Eukaryota Bacteria Viruses | Pol γ, Pol θ, and Pol ν Pol I T7 DNA Pol | Replication, repair |
B | Eukaryota Bacteria Archea Viruses | Pol ζ, Pol α, Pol δ, Pol ε Pol II DNA pol B T4 DNA Pol | Replication, repair |
C | Bacteria | Pol III | Replication |
D | Archea | Pol D | Replication |
X | Eukaryota Bacteria Archea Viruses | Pol β, Pol σ, Pol λ, Pol µ, TdT Pol X Pol X ASFV DNA Pol | Repair |
Y | Eukaryota Bacteria Archea | Rev1, Pol ι, Pol κ, and Pol η Dbh, Pol IV and Pol V Dpo4 DNA Pol | Translesion synthesis |
RT | Eukaryota Viruses | Telomerase Reverse transcriptase | RNA-dependent DNA synthesis |
Family | Polymerase Domain | Special Domains | Other Activities Present in DNA Polymerase |
---|---|---|---|
A | The catalytic domain includes palm, fingers, thumb subdomains | Exonuclease domain | 3′ → 5′ exonuclease corrective activity (for most members); 5′ → 3′ exonuclease activity |
B | Multi-subunit complex, catalytic core includes palm, fingers, thumb subdomains | CTD (responsible for connection of the catalytic domain with B-subunit and primase) | 3′ → 5′ exonuclease corrective activity (devoid for most members from eukaryotes); primase activity (DNA synthesis de novo) |
C | Large multidomain proteins, catalytic core includes palm, fingers, thumb subdomains | PHP domain; β-sliding clamp-binding domain; CTD containing an oligonucleotide-binding fold | 3′ → 5′ exonuclease corrective activity |
D | The heterodimeric polymerase consisting of DP1 and DP2 subunits | PDE domain; clamp-1 and clamp-2 domains; DPBB-1 and DPBB-2 domains; KH-like domain | 3′ → 5′ exonuclease corrective activity |
X | Small proteins, catalytic core includes palm, fingers, thumb subdomains | 8 kDa domain; BRCT domain (important for protein–protein interactions) | dRP-lyase activity; single-strand DNA extension (for Pol µ, TdT) |
Y | The catalytic core includes palm, fingers, thumb subdomains | regulatory region; little fingers domain | translesion DNA synthesis |
RT | Heterodimeric polymerase consisting of two subunits, catalytic core includes palm, fingers, thumb subdomains | RNase H domain; connection domain | RNA template-dependent DNA polymerase activity; ribonuclease H activity |
Polymerase | Family | KdDNA, (nM) | KddNTP, (µM) Correct N | kpol, (s−1) | koff, (s−1) | Ref. |
---|---|---|---|---|---|---|
Pol I (Klenow) | A | 5 | 5.5 | 50 | 0.2 | [44] |
DNA polymerase T7 | A | 23 | 18 | 287 | 0.2 | [68] |
Pol T4 | A | 70 | 20 | 400 | 6 | [69] |
Human Pol α | B | 58 | 9.2 | 26.8 | 7.0 | [70] |
Human Pol ε | B | 22 | 11 | 411 | ND | [71] |
E. coli Pol II | B | 21 | 4.4 | 13.1 | 0.05 | [72] |
Mammalian Pol δ | B | 300 | 0.93 | 13 | ND | [73] |
Yeast Pol δ | B | 30 | 24 | 0.93 | 0.03 | [74] |
Human mitochondrial large subunit Pol γ Holo Pol γ | B | 39 9.9 | 14 0.78 | 3.5 45 | 0.03 0.02 | [75] [76] |
Vent Pol B | B | 70 | 66 | 1.1 | [77] | |
RB69 | B | 69 | 200 | 0.35 | [78] | |
Sau-PolC-∆N∆Exo | C | 390 | 4 | 180 | 150 | [79] |
Pol D | D | 0.9–2.5 | 1.8–3.1 | 0.4 | [80] | |
Pol β | X | 49 | 110 | 10 | 0.3 | [81] |
Pol λ | X | 0.15 | 1.1–2.4 | 3.0–6.0 | ND | [82,83] |
Pol µ | X | 0.35–1.8 | 0.006–0.076 | ND | [84] | |
E. coli Pol IV | Y | 50 | 441 | 12 | 0.18 | [85] |
Sulfolobus solfataricus Dbh | Y | 60 | 600 | 0.64–5.6 | ND | [86] |
S. solfataricus Dpo4 | Y | 10–40 | 70–230 | 7.6–16.1 | ND | [87,88] |
Yeast Pol η | Y | 16 | 6.8–15 | 3.9–15.6 | ND | [89] |
RT | RT | 4.7 | 4–14 | 33–74 | 0.16 | [90] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuznetsova, A.A.; Fedorova, O.S.; Kuznetsov, N.A. Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Int. J. Mol. Sci. 2022, 23, 6373. https://doi.org/10.3390/ijms23126373
Kuznetsova AA, Fedorova OS, Kuznetsov NA. Structural and Molecular Kinetic Features of Activities of DNA Polymerases. International Journal of Molecular Sciences. 2022; 23(12):6373. https://doi.org/10.3390/ijms23126373
Chicago/Turabian StyleKuznetsova, Aleksandra A., Olga S. Fedorova, and Nikita A. Kuznetsov. 2022. "Structural and Molecular Kinetic Features of Activities of DNA Polymerases" International Journal of Molecular Sciences 23, no. 12: 6373. https://doi.org/10.3390/ijms23126373
APA StyleKuznetsova, A. A., Fedorova, O. S., & Kuznetsov, N. A. (2022). Structural and Molecular Kinetic Features of Activities of DNA Polymerases. International Journal of Molecular Sciences, 23(12), 6373. https://doi.org/10.3390/ijms23126373