Combining Recombinase-Mediated Cassette Exchange Strategy with Quantitative Proteomic and Phosphoproteomic Analyses to Inspect Intracellular Functions of the Tumor Suppressor Galectin-4 in Colorectal Cancer Cells
Abstract
:1. Introduction
2. Results
2.1. Generation of Colorectal Cancer Model Cell Line with Dox-Inducible Gal4 Expression
2.2. Characterization of Doxycycline-Inducible HCT116-Gal4 Cell Lines
2.3. Gal4 Induces Proteomic and Phosphoproteomic Changes
3. Discussion
4. Materials and Methods
4.1. Cancer Cell Lines and Culture Conditions
4.2. Nucleic Acid Isolation, Analysis and RT-PCR
4.3. Generation and Characterization of HCT116-Gal4 Cell Line
4.4. Luciferase Assay
4.5. Proliferation Assay
4.6. Western Blot Analysis
4.7. SILAC Labeling and Protein Extraction
4.8. Tryptic Digestion
4.9. Phosphopeptide Enrichment
4.10. LC-MS/MS
4.11. Protein and Phosphopeptide Identification and Quantification
4.12. Data Analysis
4.13. Metabolic Labeling and Immunoprecipitation of Proteins
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- García Caballero, G.; Kaltner, H.; Kutzner, T.J.; Ludwig, A.K.; Manning, J.C.; Schmidt, S.; Sinowatz, F.; Gabius, H.J. How galectins have become multifunctional proteins. Histol. Histopathol. 2020, 35, 509–539. [Google Scholar] [CrossRef] [PubMed]
- Kaltner, H.; Toegel, S.; Caballero, G.G.; Manning, J.C.; Ledeen, R.W.; Gabius, H.J. Galectins: Their network and roles in immunity/tumor growth control. Histochem. Cell Biol. 2017, 147, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Girotti, M.R.; Salatino, M.; Dalotto-Moreno, T.; Rabinovich, G.A. Sweetening the hallmarks of cancer: Galectins as multifunctional mediators of tumor progression. J. Exp. Med. 2020, 217, e20182041. [Google Scholar] [CrossRef]
- Ebrahim, A.H.; Alalawi, Z.; Mirandola, L.; Rakhshanda, R.; Dahlbeck, S.; Nguyen, D.; Jenkins, M.; Grizzi, F.; Cobos, E.; Figueroa, J.A.; et al. Galectins in cancer: Carcinogenesis, diagnosis and therapy. Ann. Transl. Med. 2014, 2, 88. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.Q.; Guo, X.L. The role of galectin-4 in physiology and diseases. Protein Cell 2016, 7, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Rao, U.S.; Rao, P.S. Surface-bound galectin-4 regulates gene transcription and secretion of chemokines in human colorectal cancer cell lines. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2017, 39, 1010428317691687. [Google Scholar] [CrossRef] [Green Version]
- Satelli, A.; Rao, P.S.; Thirumala, S.; Rao, U.S. Galectin-4 functions as a tumor suppressor of human colorectal cancer. Int. J. Cancer 2011, 129, 799–809. [Google Scholar] [CrossRef] [Green Version]
- Michalak, M.; Warnken, U.; André, S.; Schnölzer, M.; Gabius, H.J.; Kopitz, J. Detection of Proteome Changes in Human Colon Cancer Induced by Cell Surface Binding of Growth-Inhibitory Human Galectin-4 Using Quantitative SILAC-Based Proteomics. J. Proteome Res. 2016, 15, 4412–4422. [Google Scholar] [CrossRef]
- Michalak, M.; Warnken, U.; Schnölzer, M.; Gabius, H.J.; Kopitz, J. Detection of malignancy-associated phosphoproteome changes in human colorectal cancer induced by cell surface binding of growth-inhibitory galectin-4. IUBMB Life 2019, 71, 364–375. [Google Scholar] [CrossRef]
- Liu, F.T.; Patterson, R.J.; Wang, J.L. Intracellular functions of galectins. Biochim. Biophys. Acta 2002, 1572, 263–273. [Google Scholar] [CrossRef]
- Vladoiu, M.C.; Labrie, M.; St-Pierre, Y. Intracellular galectins in cancer cells: Potential new targets for therapy (Review). Int. J. Oncol. 2014, 44, 1001–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.W.; Park, K.C.; Jeon, S.M.; Ohn, T.B.; Kim, T.I.; Kim, W.H.; Cheon, J.H. Abrogation of galectin-4 expression promotes tumorigenesis in colorectal cancer. Cell. Oncol. 2013, 36, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Maftouh, M.; Belo, A.I.; Avan, A.; Funel, N.; Peters, G.J.; Giovannetti, E.; Van Die, I. Galectin-4 expression is associated with reduced lymph node metastasis and modulation of Wnt/β-catenin signalling in pancreatic adenocarcinoma. Oncotarget 2014, 5, 5335–5349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Z.; Zeng, Y.; Xu, B.; Gao, Y.; Wang, S.; Zeng, J.; Chen, L.; Huang, A.; Liu, X.; Liu, J. Galectin-4 serves as a prognostic biomarker for the early recurrence/metastasis of hepatocellular carcinoma. Cancer Sci. 2014, 105, 1510–1517. [Google Scholar] [CrossRef]
- Lee, J.; Ballikaya, S.; Schönig, K.; Ball, C.R.; Glimm, H.; Kopitz, J.; Gebert, J. Transforming growth factor beta receptor 2 (TGFBR2) changes sialylation in the microsatellite unstable (MSI) Colorectal cancer cell line HCT116. PLoS ONE 2013, 8, e57074. [Google Scholar] [CrossRef] [Green Version]
- Oleinik, N.V.; Krupenko, N.I.; Krupenko, S.A. Epigenetic Silencing of ALDH1L1, a Metabolic Regulator of Cellular Proliferation, in Cancers. Genes Cancer 2011, 2, 130–139. [Google Scholar] [CrossRef]
- Ideo, H.; Hoshi, I.; Yamashita, K.; Sakamoto, M. Phosphorylation and externalization of galectin-4 is controlled by Src family kinases. Glycobiology 2013, 23, 1452–1462. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Eviatar-Ribak, T.; Miskimins, W.K.; Miskimins, R. Galectin-4 is involved in p27-mediated activation of the myelin basic protein promoter. J. Neurochem. 2007, 101, 1214–1223. [Google Scholar] [CrossRef]
- Popa, S.J.; Stewart, S.E.; Moreau, K. Unconventional secretion of annexins and galectins. Semin. Cell Dev. Biol. 2018, 83, 42–50. [Google Scholar] [CrossRef]
- Bänfer, S.; Jacob, R. Galectins in Intra- and Extracellular Vesicles. Biomolecules 2020, 10, 1232. [Google Scholar] [CrossRef]
- Gupta, M.; Sueblinvong, V.; Raman, J.; Jeevanandam, V.; Gupta, M.P. Single-stranded DNA-binding proteins PURalpha and PURbeta bind to a purine-rich negative regulatory element of the alpha-myosin heavy chain gene and control transcriptional and translational regulation of the gene expression. Implications in the repression of alpha-myosin heavy chain during heart failure. J. Biol. Chem. 2003, 278, 44935–44948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turjanski, A.G.; Vaqué, J.P.; Gutkind, J.S. MAP kinases and the control of nuclear events. Oncogene 2007, 26, 3240–3253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamil, M.; Wang, W.; Xu, M.; Tu, J. Exploring the roles of basal transcription factor 3 in eukaryotic growth and development. Biotechnol. Genet. Eng. Rev. 2015, 31, 21–45. [Google Scholar] [CrossRef] [PubMed]
- Mullan, P.B.; Quinn, J.E.; Harkin, D.P. The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 2006, 25, 5854–5863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soni, S.; Anand, P.; Padwad, Y.S. MAPKAPK2: The master regulator of RNA-binding proteins modulates transcript stability and tumor progression. J. Exp. Clin. Cancer Res. CR 2019, 38, 121. [Google Scholar] [CrossRef] [Green Version]
- Prickaerts, P.; Niessen, H.E.; Dahlmans, V.E.; Spaapen, F.; Salvaing, J.; Vanhove, J.; Geijselaers, C.; Bartels, S.J.; Partouns, I.; Neumann, D.; et al. MK3 modulation affects BMI1-dependent and independent cell cycle check-points. PLoS ONE 2015, 10, e0118840. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Yun, Z.; Wang, T.; Li, C.; Zhang, J. BTF3-mediated regulation of BMI1 promotes colorectal cancer through influencing epithelial-mesenchymal transition and stem cell-like traits. Int. J. Biol. Macromol. 2021, 187, 800–810. [Google Scholar] [CrossRef]
- Wang, H.; Xing, J.; Wang, W.; Lv, G.; He, H.; Lu, Y.; Sun, M.; Chen, H.; Li, X. Molecular Characterization of the Oncogene BTF3 and Its Targets in Colorectal Cancer. Front. Cell Dev. Biol. 2020, 8, 601502. [Google Scholar] [CrossRef]
- Nikonova, A.S.; Gaponova, A.V.; Kudinov, A.E.; Golemis, E.A. CAS proteins in health and disease: An update. IUBMB Life 2014, 66, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Tikhmyanova, N.; Little, J.L.; Golemis, E.A. CAS proteins in normal and pathological cell growth control. Cell. Mol. Life Sci. 2010, 67, 1025–1048. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Verma, S.; Kushwaha, P.P.; Prajapati, K.S.; Shuaib, M.; Kumar, S.; Gupta, S. Role of ZBTB7A zinc finger in tumorigenesis and metastasis. Mol. Biol. Rep. 2021, 48, 4703–4719. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 2006, 127, 635–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ding, W.; Ge, H.; Ponnusamy, M.; Wang, Q.; Hao, X.; Wu, W.; Zhang, Y.; Yu, W.; Ao, X.; et al. FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett. 2019, 458, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Dephoure, N.; Zhou, C.; Villén, J.; Beausoleil, S.A.; Bakalarski, C.E.; Elledge, S.J.; Gygi, S.P. A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. USA 2008, 105, 10762–10767. [Google Scholar] [CrossRef] [Green Version]
- Trembley, J.H.; Wang, G.; Unger, G.; Slaton, J.; Ahmed, K. Protein kinase CK2 in health and disease: CK2: A key player in cancer biology. Cell. Mol. Life Sci. 2009, 66, 1858–1867. [Google Scholar] [CrossRef] [Green Version]
- Litchfield, D.W. Protein kinase CK2: Structure, regulation and role in cellular decisions of life and death. Biochem. J. 2003, 369, 1–15. [Google Scholar] [CrossRef]
- Kristensen, L.P.; Larsen, M.R.; Højrup, P.; Issinger, O.G.; Guerra, B. Phosphorylation of the regulatory beta-subunit of protein kinase CK2 by checkpoint kinase Chk1: Identification of the in vitro CK2beta phosphorylation site. FEBS Lett. 2004, 569, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Vilk, G.; Canton, D.A.; Litchfield, D.W. Phosphorylation regulates the stability of the regulatory CK2beta subunit. Oncogene 2002, 21, 3754–3764. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.M.; Daniel, D.C.; Gordon, J. The pur protein family: Genetic and structural features in development and disease. J. Cell. Physiol. 2013, 228, 930–937. [Google Scholar] [CrossRef] [Green Version]
- Johnson, E.M. The Pur protein family: Clues to function from recent studies on cancer and AIDS. Anticancer Res. 2003, 23, 2093–2100. [Google Scholar]
- Chang, K.C.; Diermeier, S.D.; Yu, A.T.; Brine, L.D.; Russo, S.; Bhatia, S.; Alsudani, H.; Kostroff, K.; Bhuiya, T.; Brogi, E.; et al. MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat. Commun. 2020, 11, 6438. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.V.; Vermeulen, M.; Santamaria, A.; Kumar, C.; Miller, M.L.; Jensen, L.J.; Gnad, F.; Cox, J.; Jensen, T.S.; Nigg, E.A.; et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 2010, 3, ra3. [Google Scholar] [CrossRef] [PubMed]
- Weidenfeld, I.; Gossen, M.; Löw, R.; Kentner, D.; Berger, S.; Görlich, D.; Bartsch, D.; Bujard, H.; Schönig, K. Inducible expression of coding and inhibitory RNAs from retargetable genomic loci. Nucleic Acids Res. 2009, 37, e50. [Google Scholar] [CrossRef] [PubMed]
- Wessel, D.; Flügge, U.I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 1984, 138, 141–143. [Google Scholar] [CrossRef]
- Rappsilber, J.; Mann, M.; Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007, 2, 1896–1906. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef]
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 2015, 43, D512–D520. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.; Hewapathirana, S.; Kamatchinathan, S.; Kundu, D.J.; Prakash, A.; Frericks-Zipper, A.; Eisenacher, M.; et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022, 50, D543–D552. [Google Scholar] [CrossRef]
Proteins | Genes | Ratio 1 +/− Dox Rep1 | Ratio 1 +/− Dox Rep2 | Ratio 1 +/− Dox Rep3 | Mean Ratio |
---|---|---|---|---|---|
Galectin-4 | LGALS4 | 12.16 | 21.05 | 44.36 | 25.86 |
Glutathione peroxidase | GPX1 | 1.99 | 2.20 | 1.92 | 2.04 |
Calcium-binding mitochondrial carrier protein Aralar1 | SLC25A12 | 3.20 | 1.11 | 1.65 | 1.98 |
Transcriptional activator protein Pur-beta | PURB | 1.83 | 2.10 | 1.98 | 1.97 |
MAP kinase-activated protein kinase 3 | MAPKAPK3 | 1.78 | 1.93 | NaN | 1.85 |
15 kDa selenoprotein | SEP15 | 1.65 | 2.02 | 1.63 | 1.77 |
Polyhomeotic-like protein 2 | PHC2 | 1.48 | 1.72 | 1.57 | 1.59 |
Ribosomal protein S6 kinase | RPS6KA4 | NaN | 1.61 | 1.57 | 1.59 |
Deoxyribose-phosphate aldolase | DERA | NaN | 1.57 | 1.56 | 1.56 |
Titin | TTN | 2.59 | 1.85 | 0.23 | 1.56 |
Methyltransferase-like protein 7B | METTL7B | 0.36 | 0.33 | 1.49 | 0.73 |
Breast cancer anti-estrogen resistance protein 1 | BCAR1 | 0.69 | 0.59 | 0.57 | 0.62 |
Transcription initiation factor IIB | GTF2B | 0.59 | NaN | 0.63 | 0.61 |
Golgin subfamily A member 4 | GOLGA4 | NaN | 0.55 | 0.64 | 0.60 |
WD repeat-containing protein 46 | WDR46 | 0.43 | 0.97 | 0.35 | 0.58 |
Ubiquitin carboxyl-terminal hydrolase 13 | USP13 | 0.62 | 0.54 | NaN | 0.58 |
Gamma-taxilin | TXLNG | 0.87 | 0.63 | 0.21 | 0.57 |
Zinc finger CCCH domain-containing protein 13 | ZC3H13 | 0.51 | NaN | 0.55 | 0.53 |
Transcription factor BTF3 | BTF3 | NaN | 0.44 | 0.57 | 0.50 |
Tyrosine-protein phosphatase non-receptor type 12 | PTPN12 | 0.60 | 0.40 | NaN | 0.50 |
Protein Names | Gene Names | Amino Acid Position | Ratio +/− Dox Rep1 | Ratio +/− Dox Rep2 | Ratio +/− Dox Rep3 | Mean Ratio |
---|---|---|---|---|---|---|
Zinc finger and BTB domain-containing protein 7A | ZBTB7A | S549 | 13.52 | 8.80 | 5.27 | 9.20 |
Tumor suppressor p53-binding protein 1 | TP53BP1 | S500 | 2.46 | 2.98 | 4.56 | 3.33 |
Microtubule-associated protein tau | MAPT | S133 | 3.28 | 2.69 | 1.33 | 2.43 |
Enhancer of mRNA-decapping protein 4 | EDC4 | S723 | 1.55 | 2.18 | 1.28 | 1.67 |
Tight junction protein ZO-3 | TJP3 | S327 | 2.01 | 1.23 | 1.65 | 1.63 |
Serine/arginine repetitive matrix protein 1 | SRRM1 | S883 | 0.93 | 2.33 | 1.59 | 1.62 |
Serine/arginine repetitive matrix protein 1 | SRRM1 | T881 | 0.93 | 2.33 | 1.59 | 1.62 |
Serine/arginine repetitive matrix protein 2 | SRRM2 | S2121; S2123 | 0.70 | 1.94 | 1.94 | 1.53 |
Calcium-regulated heat stable protein 1 | CARHSP1 | S30; S32; S41 | 1.48 | 1.54 | 1.51 | 1.51 |
Serine/arginine repetitive matrix protein 2 | SRRM2 | S876 | 0.97 | 1.91 | 1.60 | 1.49 |
Serine/arginine repetitive matrix protein 2 | SRRM2 | S875; S876 | 0.80 | 1.85 | 1.78 | 1.47 |
Serine/arginine repetitive matrix protein 2 | SRRM2 | S2692; S2694 | 0.82 | 1.72 | 1.73 | 1.42 |
Forkhead box protein K1 | FOXK1 | S441; S445 | 1.02 | 1.61 | 1.58 | 1.40 |
Forkhead box protein K1 | FOXK1 | T436 | 1.02 | 1.61 | 1.58 | 1.40 |
Serine/arginine-rich splicing factor 9 | SRSF9 | S211; S216 | 0.62 | 1.63 | 1.79 | 1.35 |
Serine/arginine repetitive matrix protein 2 | SRRM2 | S1727 | 0.78 | 1.61 | 1.61 | 1.33 |
Serine/arginine repetitive matrix protein 2 | SRRM2 | S954 | 0.87 | 1.57 | 1.51 | 1.32 |
Serine/arginine repetitive matrix protein 2 | SRRM2 | S952 | 0.86 | 1.52 | 1.51 | 1.30 |
Serine/arginine repetitive matrix protein 1 | SRRM1 | S384; S386; S388 | 0.76 | 1.51 | 1.58 | 1.28 |
Nucleolin | NCL | S41; S42 | 1.23 | 0.55 | 0.62 | 0.80 |
General transcription factor IIF subunit 1 | GTF2F1 | S221 | 1.19 | 0.54 | 0.63 | 0.78 |
Bcl-2-associated transcription factor 1 | BCLAF1 | S225; S228 | 1.23 | 0.47 | 0.62 | 0.77 |
General transcription factor IIF subunit 1 | GTF2F1 | S224 | 1.08 | 0.58 | 0.58 | 0.75 |
Chromodomain-helicase-DNA-binding protein 4 | CHD4 | S308; S309; S310 | 1.03 | 0.60 | 0.52 | 0.72 |
Plasminogen activator inhibitor 1 RNA-binding protein | SERBP1 | S330 | 0.79 | 0.65 | 0.62 | 0.69 |
Transcription intermediary factor 1-beta | TRIM28 | S473 | 0.71 | 0.59 | 0.60 | 0.64 |
Casein kinase II subunit beta | CSNK2B | S228 | 0.63 | 0.66 | 0.61 | 0.63 |
Formin-binding protein 1-like | FNBP1L | S488 | 0.28 | 0.64 | 0.95 | 0.62 |
Segment polarity protein dishevelled homolog DVL-2 | DVL2 | S205 | 0.63 | 0.56 | 0.59 | 0.60 |
Formin-binding protein 1-like | FNBP1L | S488; S489 | 0.22 | 0.56 | 0.99 | 0.59 |
Transcriptional activator protein Pur-beta | PURB | S6; S8 | 0.54 | 0.65 | 0.52 | 0.57 |
Transcriptional activator protein Pur-beta | PURB | S6 | 0.57 | 0.43 | 0.53 | 0.51 |
Symplekin | SYMPK | S494 | 0.60 | 0.39 | 0.49 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalak, M.; Golde, V.; Helm, D.; Kaltner, H.; Gebert, J.; Kopitz, J. Combining Recombinase-Mediated Cassette Exchange Strategy with Quantitative Proteomic and Phosphoproteomic Analyses to Inspect Intracellular Functions of the Tumor Suppressor Galectin-4 in Colorectal Cancer Cells. Int. J. Mol. Sci. 2022, 23, 6414. https://doi.org/10.3390/ijms23126414
Michalak M, Golde V, Helm D, Kaltner H, Gebert J, Kopitz J. Combining Recombinase-Mediated Cassette Exchange Strategy with Quantitative Proteomic and Phosphoproteomic Analyses to Inspect Intracellular Functions of the Tumor Suppressor Galectin-4 in Colorectal Cancer Cells. International Journal of Molecular Sciences. 2022; 23(12):6414. https://doi.org/10.3390/ijms23126414
Chicago/Turabian StyleMichalak, Malwina, Viola Golde, Dominik Helm, Herbert Kaltner, Johannes Gebert, and Jürgen Kopitz. 2022. "Combining Recombinase-Mediated Cassette Exchange Strategy with Quantitative Proteomic and Phosphoproteomic Analyses to Inspect Intracellular Functions of the Tumor Suppressor Galectin-4 in Colorectal Cancer Cells" International Journal of Molecular Sciences 23, no. 12: 6414. https://doi.org/10.3390/ijms23126414
APA StyleMichalak, M., Golde, V., Helm, D., Kaltner, H., Gebert, J., & Kopitz, J. (2022). Combining Recombinase-Mediated Cassette Exchange Strategy with Quantitative Proteomic and Phosphoproteomic Analyses to Inspect Intracellular Functions of the Tumor Suppressor Galectin-4 in Colorectal Cancer Cells. International Journal of Molecular Sciences, 23(12), 6414. https://doi.org/10.3390/ijms23126414