Silencing of the Prophenoloxidase Gene BtPPO1 Increased the Ability of Acquisition and Retention of Tomato chlorosis virus by Bemisia tabaci
Abstract
:1. Introduction
2. Results
2.1. Analysis of Complete Sequences of BtPPOs in Bemisia tabaci
2.2. Spatiotemporal Expression Profiles of BtPPOs in Bemisia tabaci
2.3. Expression Profiles of BtPPOs in Bemisia tabaci after ToCV Acquisition
2.4. Distribution of BtPPO1 and ToCV in Bemisia tabaci
2.5. Efficiency of RNAi and Its Effects on ToCV Acquisition by Bemisia tabaci
2.6. Efficiency of RNAi and Its Effects on ToCV Retention by Bemisia tabaci
3. Discussion
4. Materials and Methods
4.1. Insects and Plants
4.2. Full-Length cDNA Cloning
4.3. Sequence Analysis of BtPPOs in Bemisia Tabaci
4.4. Expression of BtPPOs in Different Tissues and Developmental Stages
4.5. Expression of BtPPOs in Bemisia tabaci after ToCV Acquisition
4.6. Paraffin-Double-Fluorescence Probe-Fluorescence In Situ Hybridization
4.7. Reverse Transcription Quantitative PCR (RT-qPCR)
4.8. Double-Stranded RNA (dsRNA) Synthesis
4.9. Functional Analysis of BtPPOs in Acquisition Ability of Virus by RNAi
4.10. Functional Analysis of BtPPOs in Retention Ability of Virus by RNAi
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valverde, R.A.; Sim, J.; Lotrakul, P. Whitefly transmission of sweet potato viruses. Virus Res. 2004, 100, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Dalton, R. Whitefly infestations: The Christmas Invasion. Nature 2006, 443, 898–900. [Google Scholar] [CrossRef] [PubMed]
- De Barro, P.J.; Liu, S.S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 2011, 56, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Taggar, G.K.; Gill, R.S. Host plant resistance in Vigna sp. towards whitefly, Bemisia tabaci (Gennadius): A review. Entomol. Gen. 2016, 36, 1–24. [Google Scholar] [CrossRef]
- Brown, J.K.; Czosnek, H. Whitefly transmission of plant viruses. Adv. Bot. Res. 2002, 36, 65–76. [Google Scholar] [CrossRef]
- Jones, D.R. Plant Viruses Transmitted by Whiteflies. Eur. Plant Pathol. 2003, 109, 195–219. [Google Scholar] [CrossRef]
- Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the Insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses. Annu. Rev. Virol. 2015, 2, 67. [Google Scholar] [CrossRef]
- Simone, G.W.; Hochmuth, R.C.; Wisler, G.C.; Duffus, J.E.; Liu, H.Y.; Li, R.H. New whitefly-vectored closterovirus of tomato in Florida. Inst. Food Agric. Sci. 1996, 4, 21–24. [Google Scholar] [CrossRef]
- Dai, H.; Liu, Y.; Zhu, X.; Liu, Y.; Jing, Z. Tomato chlorosis virus(ToCV) transmitted by Bemisia tabaci biotype Q of Shouguang in Shandong Province. J. Plant Protect. 2016, 43, 162–167. [Google Scholar] [CrossRef]
- Shi, X.; Xin, T.; Xing, Z.; Zhang, D.; Yong, L. Transmission Efficiency, Preference and Behavior of Bemisia tabaci MEAM1 and MED under the Influence of Tomato Chlorosis Virus. Front. Plant Sci. 2017, 8, 2271. [Google Scholar] [CrossRef]
- Navas-Castillo, J.; Fiallo-Olivé, E.; Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 2011, 49, 219–248. [Google Scholar] [CrossRef] [PubMed]
- Tzanetakis, I.E.; Martin, R.R.; Wintermantel, W.M. Epidemiology of criniviruses: An emerging problem in world agriculture. Front. Microbiol. 2013, 4, 119. [Google Scholar] [CrossRef] [PubMed]
- Orfanidou, C.G.; Pappi, P.G.; Efthimiou, K.E.; Katis, N.I.; Maliogka, V.I. Transmission of Tomato chlorosis virus (ToCV) by Bemisia tabaci biotype Q and evaluation of four weed species as viral sources. Plant Dis. 2016, 100, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Fiallo-Olivé, E.; Navas-Castillo, J. Tomato chlorosis virus, an emergent plant virus still expanding its geographical and host ranges. Mol. Plant. Pathol. 2019, 20, 1307–1320. [Google Scholar] [CrossRef] [PubMed]
- Blanc, S.; Drucker, M.; Uzest, M. Localizing viruses in their insect vectors. Annu. Rev. Phytopathol. 2014, 52, 403–425. [Google Scholar] [CrossRef]
- Sim, S.; Ramirez, J.L.; Dimopoulos, G. Dengue virus infection of the Aedes aegypti salivary gland and chemosensory apparatus induces genes that modulate infection and blood-feeding behavior. PLoS Pathog. 2012, 8, e1002631. [Google Scholar] [CrossRef]
- Dong, X.; Levine, B. Autophagy and viruses: Adversaries or allies? J. Innate Immun. 2013, 5, 480–493. [Google Scholar] [CrossRef]
- Wang, L.L.; Wang, X.R.; Wei, X.M.; Huang, H.; Wang, X.W. The autophagy pathway participates in resistance to tomato yellow leaf curl virus infection in whiteflies. Autophagy 2016, 12, 1560–1574. [Google Scholar] [CrossRef]
- Li, D.; Zhang, C.; Tong, Z.; Su, D.; Hu, Z. Transcriptome response comparison between vector and non-vector aphids after feeding on virus-infected wheat plants. BMC Genomics 2020, 21, 638. [Google Scholar] [CrossRef]
- Ding, T.B.; Li, J.; Chen, E.H.; Niu, J.Z.; Chu, D. Transcriptome Profiling of the Whitefly Bemisia tabaci MED in Response to Single Infection of Tomato yellow leaf curl virus, Tomato chlorosis virus, and Their Co-infection. Front. Physiol. 2019, 10, 302. [Google Scholar] [CrossRef]
- Aguilera, F.; McDougall, C.; Degnan, B.M. Origin, evolution and classifification of type-3 copper proteins: Lineage-specifific gene expansions and losses across the Metazoa. BMC Evol. Biol. 2013, 13, 96. [Google Scholar] [CrossRef] [PubMed]
- Schneweis, D.J.; Whitfield, A.E.; Rotenberg, D. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector. Virology 2017, 500, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Shalev, A.H.; Sobol, I.; Ghanim, M.; Liu, S.S.; Czosnek, H. The whitefly Bemisia tabaci knottin-1 gene is implicated in regulating the quantity of Tomato yellow leaf curl virus ingested and transmitted by the insect. Viruses 2016, 8, 205. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, D.K.; Chen, W.; Zheng, Y.; Kaur, N.; Wintermantel, W.M.; Simmons, A.M.; Fei, Z.; Ling, K.S. Comparative transcriptome analysis reveals networks of genes activated in the whitefly, Bemisia tabaci when fed on tomato plants infected with Tomato yellow leaf curl virus. Virology 2017, 513, 52–64. [Google Scholar] [CrossRef]
- Lu, D.Y.H.; Yue, H.; Huang, L.P.; Zhang, D.Y.; Zhang, Z.H.; Zhang, Z.; Zhang, Y.J.; Li, F.; Yan, F.; Zhou, X.G.; et al. Suppression of Bta11975, an α-glucosidase, by RNA interference reduces transmission of tomato chlorosis virus by Bemisia tabaci. Pest Manag. Sci. 2021, 77, 5294–5303. [Google Scholar] [CrossRef]
- Mu, Y.; Shi, X.B.; Zhang, Z.; Zhang, Z.H.; Wang, T.Q.; Wang, Y.Q.; Wei, Y.; Zhou, X.G.; Xiang, M.; Liu, Y.; et al. Validamycin reduces the transmission of Tomato chlorotic virus by Bemisia tabaci. J. Pest Sci. 2022, 95, 1261–1272. [Google Scholar] [CrossRef]
- Kanost, M.R.; Gorman, M.J. 4-Phenoloxidases in insect immunity. Insect Immunol. 2008, 1, 69–96. [Google Scholar] [CrossRef]
- Cerenius, L.; Lee, B.L.; Söderhäll, K. The proPO-system: Pros and cons for its role in invertebrate immunity. Trends Immunol. 2008, 29, 263–271. [Google Scholar] [CrossRef]
- Lu, A.R.; Zhang, Q.L.; Zhang, J.; Yang, B.; Wu, K.; Xie, W.; Luan, Y.X.; Ling, E.J. Insect prophenoloxidase: The view beyond immunity. Front. Physiol. 2014, 5, 252. [Google Scholar] [CrossRef]
- Tang, H.; Kambris, Z.; Lemaitre, B.; Hashimoto, C. Two proteases defining a melanization cascade in the immune system of Drosophila. J. Biol. Chem. 2006, 281, 28097–28104. [Google Scholar] [CrossRef]
- Ayres, J.S.; Schneider, D.S. A signaling protease required for melanization in Drosophila affects resistance and tolerance of infections. PLoS Biol. 2008, 6, 2764. [Google Scholar] [CrossRef] [PubMed]
- Tang, H. Regulation and function of the melanization reaction in Drosophila. Fly 2009, 3, 105–111. [Google Scholar] [CrossRef]
- Binggeli, O.; Neyen, C.; Poidevin, M.; Lemaitre, B.; Schneider, D.S. Prophenoloxidase activation is required for survival to microbial infections in Drosophila. PLoS Pathog. 2014, 10, e1004067. [Google Scholar] [CrossRef]
- Dudzic, J.P.; Kondo, S.; Ueda, R.; Bergman, C.M.; Lemaitre, B. Drosophila innate immunity: Regional and functional specialization of prophenoloxidases. BMC Biol. 2015, 13, 81. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Li, B.; Gao, L.; Xue, C.B.; Jin, L.; Luo, W.C. Molecular characterization of the cDNA encoding prophenoloxidase-2 (PPO2) and its expression in diamondback moth Plutella xylostella. Pestic Biochem. Phys. 2010, 98, 158–167. [Google Scholar] [CrossRef]
- Nault, L.R. Arthropod transmission of plant viruses: A new synthesis. Ann. Entomol. Soc. Am. 1997, 90, 521–541. [Google Scholar] [CrossRef]
- Ng, J.C.K.; Peng, J.H.C.; Chen, A.Y.S.; Tian, T.Y.; Zhou, J.S.; Smith, T.J. Plasticity of the lettuce infectious yellows virus minor coat protein (CPm) in mediating the foregut retention and transmission of a chimeric CPm mutant by whitefly vectors. J. Gen. Virol. 2021, 102, 001652. [Google Scholar] [CrossRef]
- Shao, Q.M.; Yang, B.; Xu, Q.Y.; Li, X.Q.; Lu, Z.Q.; Wang, C.S.; Huang, Y.P.; Söderhäll, K.; Ling, E.J. Hindgut innate immunity and regulation of fecal microbiota through melanization in insects. J. Biol. Chem. 2012, 287, 14270–14279. [Google Scholar] [CrossRef]
- Zou, Z.; Shin, S.W.; Alvarez, K.S.; Bian, G.; Kokoza, K.; Raikhel, A.S. Mosquito RUNX4 in the immune regulation of PPO gene expression and its effect on avian malaria parasite infection. Proc. Natl. Acad. Sci. USA 2008, 105, 18454–18459. [Google Scholar] [CrossRef] [PubMed]
- Gregorio, E.D.; Spellman, P.T.; Rubin, G.M.; Lemaitre, B. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 2001, 98, 12590–12595. [Google Scholar] [CrossRef]
- Chu, D.; Wang, F.H.; Zhang, Y.J.; Brown, J.K. Change in the biotype composition of Bemisia tabaci in Shandong Province of China from 2005 to 2008. Environ. Entomol. 2010, 39, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Chen, C.H.; Yang, Z.Z.; Guo, L.T.; Yang, X.; Wang, D.; Zhao, J.Y.; Huang, J.; Wen, Y.; Zeng, Y.; et al. Genome sequencing of the sweetpotato whitefly Bemisia tabaci MED/Q. Gigascience 2017, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- ExPASy Translation Tool. Available online: https://web.expasy.org/translate/ (accessed on 5 May 2022).
- ExPASy Proteomics Tool Compute pI/MW. Available online: https://ca.expasy.org/tools/pi_tool.html (accessed on 5 May 2022).
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 294. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, N.; Ding, T.; Chu, D. Silencing of the Prophenoloxidase Gene BtPPO1 Increased the Ability of Acquisition and Retention of Tomato chlorosis virus by Bemisia tabaci. Int. J. Mol. Sci. 2022, 23, 6541. https://doi.org/10.3390/ijms23126541
Yang N, Ding T, Chu D. Silencing of the Prophenoloxidase Gene BtPPO1 Increased the Ability of Acquisition and Retention of Tomato chlorosis virus by Bemisia tabaci. International Journal of Molecular Sciences. 2022; 23(12):6541. https://doi.org/10.3390/ijms23126541
Chicago/Turabian StyleYang, Nan, Tianbo Ding, and Dong Chu. 2022. "Silencing of the Prophenoloxidase Gene BtPPO1 Increased the Ability of Acquisition and Retention of Tomato chlorosis virus by Bemisia tabaci" International Journal of Molecular Sciences 23, no. 12: 6541. https://doi.org/10.3390/ijms23126541
APA StyleYang, N., Ding, T., & Chu, D. (2022). Silencing of the Prophenoloxidase Gene BtPPO1 Increased the Ability of Acquisition and Retention of Tomato chlorosis virus by Bemisia tabaci. International Journal of Molecular Sciences, 23(12), 6541. https://doi.org/10.3390/ijms23126541