Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections
Abstract
:1. Introduction
2. Micro RNA Biogenesis and Function
3. tRNA-Derived Small Interfering RNAs
4. RNases and RNA Processing as Tumor and Viral Infection Management
4.1. RNases: A Vast Family Devoted to RNA Control
4.2. The Amphibian Onconase (ONC): A RNase for Cytotoxicity
4.3. Determinants for the Antitumor Activity of ONC
4.4. ONC Antitumor Efficacy
4.5. Cytostatic and Cytotoxic Activity of ONC in Cancer: Mechanism Involving Gene and/or Protein Expression Profile Alteration
Tumor Type (H = Human) | Cell Type | General Biological Effect(s) | Intracellular Targets | Reference |
---|---|---|---|---|
H Lymphoma | U937 | G1/S arrest, cytostatic effect | P16INK4A ↑ P21WAF1/CIP1 ↑ P27KIP ↑ Rb phosphoryl ↓ Cyclin D3 phosphoryl ↓ | Juan, G. [139] |
Mouse embryos | NIH/3T3 Sarcoma/lymphoma sensitive fibroblasts | Cell cycle braking | - | Smith, M.R. [140] |
H Cervix carcinoma | HeLa tk- | t-RNA targeting Apoptosis ↑ p53 independent | Cleaved caspases 9, 3, 7 ↑ | Iordanov, M.S. [141] |
H Cervix carcinoma | HeLa tk- | Apoptosis ↑ | SAPK1 (JNK1 and JNK2) ↑ SAPK2 (p38 MAP-K) ↑ I-κB ↔ NF-κB | Iordanov, M.S. [142] |
H Malignant Pleural Mesothelioma | MPM H2595, H2373 and H2591 | cell proliferation ↓ invasion ↓ miRNAs ↑↓ | NF-κB1 ↓ hsa-miR-17* ↓ hsa-miR-30 ↑ | Goparaju, C.M. [143] |
H Malignant Mesothelioma | REN (epithelioid) PPM-Mi (sarcomatoid) | Tumor mass in mice ↓ | NF-κB nuclear traslocation ↓ MMP9 secretion and activity ↓ | Nasu, M. [144] |
Leukemia | Jurkat T-lymphocytic Jurkat-BαM | cell proliferation ↓ (72/96h) | NF-κB ↓ | Tsai, S.Y. [145] |
H Breast carcinoma Leukemia | T47D (duct breast) HL-60 Jurkat-SN, Jurkat-BαM | mitochondrial transmembrane potential ↓, ATP ↓ | Bcl-2 ↓, Bax ↑ Catalase ↑ (Jurkat cells) | Ardelt, B. [80] |
H Malignant Mesothelioma | M25, M29, M35, M42, M49 | Cell proliferation ↓ t-RNA damaging | ATF3, IL24, IL6, COX-2, PTOV1 modulation (cell line dependent) | Altomare, D.A. [146] |
H and murine Leukemia H colon adenocarcinoma | HL-60, A-253, Colo 320 | G1/S cell cycle arrest RNA content ↓ Colony population and size ↓ Proliferation ↓ | - | Darzynkiewicz, Z. [96] |
H neuroblastoma | UKF-NB-3, IMR-32 | G1 cell cycle arrest Caspase-indep. cell death | - | Michaelis, M. [118] |
H breast carcinoma H lung carcinoma | T47D, MCF7, MDA-MB-231, H292 | ONC + rosiglitazone synerg. cytotoxicity ↑ Apoptosis ↑ | PI3K ↓, Fra-1 ↓ Survivin ↓ | Ramos-Nino, M.E. [114] |
H pancreatic adenocarcinoma | Panc1, PaCa44 | Cell proliferation ↓ ROS-dependent Akt/mTOR autophagic cell death ↑ | Beclin1 ↑ LC3-II ↑ UCP2 ↓ MnSOD ↓ | Fiorini, C. [108] |
H malignant melanoma | A375 | Cell proliferation ↓ PARP inhibitors sensitiz. ↑ | γ-H2AX ↑ (with AZD) NF-κB ↓, TNF-α ↓, Cleaved PARP ↑ | Raineri, A. [83] |
H malignant melanoma | Parental A375; Dabrafenib resistant A375DR | Cell proliferation, migration, invasion ↓ Colony Formation ↓ | p65 NF-κB ↓ IKK phosphoryl ↓ MMP2 ↓ | Raineri, A. [109] |
H malignant melanoma | A375, MeWo (ONC monomer and dimer) | Cell proliferation ↓ Colony Formation ↓ Apoptosis ↑ | MMP2 ↓ STAT3 ↓ pTyrSTAT3 ↓ pSerSTAT3 ↓, pSrc ↓ | Gotte, G. [137] |
H malignant melanoma | A375, FO1 | Cell viability ↓ | miR-20a-3p ↑, miR-29a-3p ↑ miR-34a-5p ↑ Cyclin D1 ↓, Cyclin A2 ↓ P21 ↓, P27 ↓ ERK ↓, HIF1_α ↓, PDK1 ↓, CREB ↓, SIRT1 ↓, SOX2 ↓, Fra1↓, AXL ↓, cMet ↓, AKT ↓, ZO1 ↓, uPAR ↓ | De Tomi, E. [147] |
4.6. ONC Antiviral Activity
Virus | Cell Type | General Biological Effect(s) | Measured Effects | Reference |
---|---|---|---|---|
HIV-1 (leukemia cells) | H9 | Syncytial cell aggregate ↓ Viral replication ↓ No cytotoxicity | HIV-1 p24 antigen ↓ | Youle, R.J. [157] |
HIV-1 (leukemia cells) | H9 and U937 | Viral replication ↓ No cytotoxicity | HIV-1 p24 antigen ↓ HIV-1 RNA degradation ↑ | Saxena, S.K. [158] |
HIV-1 (leukemia cells) | H9 | No cytotoxicity No difference in total tRNAs | Specific degradation of tRNALys1,2 tRNALys3, tRNAPhe | Saxena, S.K. [159] |
(HIV-1) | Synthetic t-RNALys3 | Cleavage at the variable loop | tRNALys3 degradation | Suhasini, A.N. [160] |
HIV-1 | HIV-infected colorectal explants LPS stimulation | HIV infection ↓ Inflammation ↓ | HIV-1 p24 antigen ↓ Cytokines, chemokines and inflammatory markers in the supernatant ↓ (dose-dependently) | Brand, R.M. [161] |
Ebola (EBOV) Mouse-adapted EBOV | In vitro: Vero cells Vero E6 cells In vivo in mice | Cell viral infection ↓ Sera, kidneys, liver and spleen in vivo viral infection (pre- and postexposure) ↓ | Viral load determination in sera, kidneys, liver and spleen ↓ Animal survival ↑ | Hodge, T. [162] |
Human Papilloma HPV-11 | A431 (epidermoid carcinoma) Phase I Clinical Trial 42 patients. In vivo topic application | Cell viral infection ↓ Topic viral infection ↓ | Viral transcript ↓ Clinical efficacy ↑ (83% of patients clinical healing; 17% reached 50% symptom reduction) | Squiquera, L. [163] |
Rabies (RABV) | Cell types: baby hamster kidney mouse neuroblastoma bat primary fibroblast In vivo: Syrian Hamster | Cell-to-cell infection ↓ No results in animals | Animal survival = RABV release (dose dependently) ↓ | Smith, T.G. [164] |
4.7. Preferential targets of ONC Ribonucleolytic Activity: tRNAs and miRNAs’ precursors
5. Conclusions
- Could lncRNA, circRNA or other ncRNA species be substrates for ONC activity, such as miRNAs and tRNAs are?
- What is the intracellular activity of each tsRNAs generated by ONC?
- Could ONC counteract other virus species? To this end, it is worth mentioning the multiple findings assessing the pleiotropic effects exerted by ONC, as well as the tests now devoted to measure its activity on SARS-CoV-2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, R.; Fu, J.; Zhu, L.; Chen, Y.; Liu, B. Designing Strategies of Small-Molecule Compounds for Modulating Non-Coding RNAs in Cancer Therapy. J. Hematol. Oncol. 2022, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Dang, C.V.; Reddy, E.P.; Shokat, K.M.; Soucek, L. Drugging the “undruggable” Cancer Targets. Nat. Rev. Cancer 2017, 17, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Tafech, A.; Bassett, T.; Sparanese, D.; Lee, C.H. Destroying RNA as a Therapeutic Approach. Curr. Med. Chem. 2006, 13, 863–881. [Google Scholar] [CrossRef] [PubMed]
- Costales, M.G.; Childs-Disney, J.L.; Haniff, H.S.; Disney, M.D. How We Think about Targeting RNA with Small Molecules. J. Med. Chem. 2020, 63, 8880–8900. [Google Scholar] [CrossRef] [PubMed]
- Bradner, J.E.; Hnisz, D.; Young, R.A. Transcriptional Addiction in Cancer. Cell 2017, 168, 629–643. [Google Scholar] [CrossRef]
- Engreitz, J.M.; Ollikainen, N.; Guttman, M. Long Non-Coding RNAs: Spatial Amplifiers That Control Nuclear Structure and Gene Expression. Nat. Rev. Mol. Cell Biol. 2016, 17, 756–770. [Google Scholar] [CrossRef]
- Trabucchi, M.; Briata, P.; Filipowicz, W.; Rosenfeld, M.G.; Ramos, A.; Gherzi, R. How to Control MiRNA Maturation? RNA Biol. 2009, 6, 536–540. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Suzuki, H.I.; Yamagata, K.; Sugimoto, K.; Iwamoto, T.; Kato, S.; Miyazono, K. Modulation of MicroRNA Processing by P53. Nature 2009, 460, 529–533. [Google Scholar] [CrossRef]
- Romero-Cordoba, S.L.; Salido-Guadarrama, I.; Rodriguez-Dorantes, M.; Hidalgo-Miranda, A. MiRNA Biogenesis: Biological Impact in the Development of Cancer. Cancer Biol. Ther. 2014, 15, 1444–1455. [Google Scholar] [CrossRef]
- Trabucchi, M.; Briata, P.; Garcia-Mayoral, M.; Haase, A.D.; Filipowicz, W.; Ramos, A.; Gherzi, R.; Rosenfeld, M.G. The RNA-Binding Protein KSRP Promotes the Biogenesis of a Subset of MicroRNAs. Nature 2009, 459, 1010–1014. [Google Scholar] [CrossRef] [PubMed]
- Hoffend, N.C.; Magner, W.J.; Tomasi, T.B. The Modulation of Dicer Regulates Tumor Immunogenicity in Melanoma. Oncotarget 2016, 7, 47663–47673. [Google Scholar] [CrossRef] [PubMed]
- Gebetsberger, J.; Polacek, N. Slicing TRNAs to Boost Functional NcRNA Diversity. RNA Biol. 2013, 10, 1798–1806. [Google Scholar] [CrossRef]
- Di Fazio, A.; Schlackow, M.; Pong, S.K.; Alagia, A.; Gullerova, M. Dicer Dependent TRNA Derived Small RNAs Promote Nascent RNA Silencing. Nucleic Acids Res. 2022, 50, 1734–1752. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H. TRNAs as Regulators in Gene Expression. Sci. China C Life Sci. 2009, 52, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cai, A.; Xu, J.; Feng, W.; Wu, A.; Liu, R.; Cai, W.; Chen, L.; Wang, F. An Emerging Role of the 5’ Termini of Mature TRNAs in Human Diseases: Current Situation and Prospects. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166314. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.G.; Reina, O.; Stephan-Otto Attolini, C.; Ribas de Pouplana, L. Differential Expression of Human TRNA Genes Drives the Abundance of TRNA-Derived Fragments. Proc. Natl. Acad. Sci. USA 2019, 116, 8451–8456. [Google Scholar] [CrossRef] [PubMed]
- Fagan, S.G.; Helm, M.; Prehn, J.H.M. TRNA-Derived Fragments: A New Class of Non-Coding RNA with Key Roles in Nervous System Function and Dysfunction. Prog. Neurobiol. 2021, 205, 102118. [Google Scholar] [CrossRef]
- Fett, J.W.; Strydom, D.J.; Lobb, R.R.; Alderman, E.M.; Bethune, J.L.; Riordan, J.F.; Vallee, B.L. Isolation and Characterization of Angiogenin, an Angiogenic Protein from Human Carcinoma Cells. Biochemistry 1985, 24, 5480–5486. [Google Scholar] [CrossRef]
- Sorrentino, S. The Eight Human “Canonical” Ribonucleases: Molecular Diversity, Catalytic Properties, and Special Biological Actions of the Enzyme Proteins. FEBS Lett. 2010, 584, 2194–2200. [Google Scholar] [CrossRef]
- Li, S.; Hu, G.-F. Emerging Role of Angiogenin in Stress Response and Cell Survival under Adverse Conditions. J. Cell Physiol. 2012, 227, 2822–2826. [Google Scholar] [CrossRef] [PubMed]
- Tao, E.-W.; Cheng, W.Y.; Li, W.-L.; Yu, J.; Gao, Q.-Y. TiRNAs: A Novel Class of Small Noncoding RNAs That Helps Cells Respond to Stressors and Plays Roles in Cancer Progression. J. Cell Physiol. 2020, 235, 683–690. [Google Scholar] [CrossRef] [PubMed]
- Honda, S.; Loher, P.; Shigematsu, M.; Palazzo, J.P.; Suzuki, R.; Imoto, I.; Rigoutsos, I.; Kirino, Y. Sex Hormone-Dependent TRNA Halves Enhance Cell Proliferation in Breast and Prostate Cancers. Proc. Natl. Acad. Sci. USA 2015, 112, E3816–E3825. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Ge, J.; Li, T.; Shen, Y.; Guo, J. TRNA-Derived Fragments and TRNA Halves: The New Players in Cancers. Cancer Lett. 2019, 452, 31–37. [Google Scholar] [CrossRef]
- Mo, D.; Jiang, P.; Yang, Y.; Mao, X.; Tan, X.; Tang, X.; Wei, D.; Li, B.; Wang, X.; Tang, L.; et al. A TRNA Fragment, 5′-TiRNAVal, Suppresses the Wnt/β-Catenin Signaling Pathway by Targeting FZD3 in Breast Cancer. Cancer Lett. 2019, 457, 60–73. [Google Scholar] [CrossRef]
- Sun, C.; Fu, Z.; Wang, S.; Li, J.; Li, Y.; Zhang, Y.; Yang, F.; Chu, J.; Wu, H.; Huang, X.; et al. Roles of TRNA-Derived Fragments in Human Cancers. Cancer Lett. 2018, 414, 16–25. [Google Scholar] [CrossRef]
- Kumar, P.; Kuscu, C.; Dutta, A. Biogenesis and Function of Transfer RNA-Related Fragments (TRFs). Trends Biochem. Sci. 2016, 41, 679–689. [Google Scholar] [CrossRef]
- Kumar, P.; Anaya, J.; Mudunuri, S.B.; Dutta, A. Meta-Analysis of TRNA Derived RNA Fragments Reveals That They Are Evolutionarily Conserved and Associate with AGO Proteins to Recognize Specific RNA Targets. BMC Biol. 2014, 12, 78. [Google Scholar] [CrossRef]
- Su, Z.; Kuscu, C.; Malik, A.; Shibata, E.; Dutta, A. Angiogenin Generates Specific Stress-Induced TRNA Halves and Is Not Involved in TRF-3-Mediated Gene Silencing. J. Biol. Chem. 2019, 294, 16930–16941. [Google Scholar] [CrossRef]
- Kazimierczyk, M.; Wojnicka, M.; Biała, E.; Żydowicz-Machtel, P.; Imiołczyk, B.; Ostrowski, T.; Kurzyńska-Kokorniak, A.; Wrzesinski, J. Characteristics of Transfer RNA-Derived Fragments Expressed during Human Renal Cell Development: The Role of Dicer in TRF Biogenesis. IJMS 2022, 23, 3644. [Google Scholar] [CrossRef]
- Li, Z.; Ender, C.; Meister, G.; Moore, P.S.; Chang, Y.; John, B. Extensive Terminal and Asymmetric Processing of Small RNAs from RRNAs, SnoRNAs, SnRNAs, and TRNAs. Nucleic Acids Res. 2012, 40, 6787–6799. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.S.; Shibata, Y.; Malhotra, A.; Dutta, A. A Novel Class of Small RNAs: TRNA-Derived RNA Fragments (TRFs). Genes Dev. 2009, 23, 2639–2649. [Google Scholar] [CrossRef] [PubMed]
- Takaku, H.; Minagawa, A.; Takagi, M.; Nashimoto, M. A Candidate Prostate Cancer Susceptibility Gene Encodes TRNA 3’ Processing Endoribonuclease. Nucleic Acids Res. 2003, 31, 2272–2278. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, H.; Liu, X.; Nguyen, H.C.B.; Zhang, S.; Fish, L.; Tavazoie, S.F. Endogenous TRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement. Cell 2015, 161, 790–802. [Google Scholar] [CrossRef]
- Maute, R.L.; Schneider, C.; Sumazin, P.; Holmes, A.; Califano, A.; Basso, K.; Dalla-Favera, R. TRNA-Derived MicroRNA Modulates Proliferation and the DNA Damage Response and Is down-Regulated in B Cell Lymphoma. Proc. Natl. Acad. Sci. USA 2013, 110, 1404–1409. [Google Scholar] [CrossRef]
- Zhu, P.; Lu, J.; Zhi, X.; Zhou, Y.; Wang, X.; Wang, C.; Gao, Y.; Zhang, X.; Yu, J.; Sun, Y.; et al. TRNA-Derived Fragment TRFLys-CTT-010 Promotes Triple-Negative Breast Cancer Progression by Regulating Glucose Metabolism via G6PC. Carcinogenesis 2021, 42, 1196–1207. [Google Scholar] [CrossRef]
- Wen, J.-T.; Huang, Z.-H.; Li, Q.-H.; Chen, X.; Qin, H.-L.; Zhao, Y. Research Progress on the TsRNA Classification, Function, and Application in Gynecological Malignant Tumors. Cell Death Discov. 2021, 7, 388. [Google Scholar] [CrossRef]
- Yu, X.; Xie, Y.; Zhang, S.; Song, X.; Xiao, B.; Yan, Z. TRNA-Derived Fragments: Mechanisms Underlying Their Regulation of Gene Expression and Potential Applications as Therapeutic Targets in Cancers and Virus Infections. Theranostics 2021, 11, 461–469. [Google Scholar] [CrossRef]
- Wang, B.-G.; Yan, L.-R.; Xu, Q.; Zhong, X.-P. The Role of Transfer RNA-Derived Small RNAs (TsRNAs) in Digestive System Tumors. J. Cancer 2020, 11, 7237–7245. [Google Scholar] [CrossRef]
- Zeng, T.; Hua, Y.; Sun, C.; Zhang, Y.; Yang, F.; Yang, M.; Yang, Y.; Li, J.; Huang, X.; Wu, H.; et al. Relationship between TRNA-Derived Fragments and Human Cancers. Int. J. Cancer 2020, 147, 3007–3018. [Google Scholar] [CrossRef]
- Sorrentino, S.; Libonati, M. Human Pancreatic-Type and Nonpancreatic-Type Ribonucleases: A Direct Side-by-Side Comparison of Their Catalytic Properties. Arch. Biochem. Biophys. 1994, 312, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Beintema, J.J.; Kleineidam, R.G. The Ribonuclease A Superfamily: General Discussion. Cell Mol. Life Sci. 1998, 54, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Dyer, K.D.; Rosenberg, H.F. The RNase a Superfamily: Generation of Diversity and Innate Host Defense. Mol. Divers. 2006, 10, 585–597. [Google Scholar] [CrossRef]
- Koczera, P.; Martin, L.; Marx, G.; Schuerholz, T. The Ribonuclease A Superfamily in Humans: Canonical RNases as the Buttress of Innate Immunity. Int. J. Mol. Sci. 2016, 17, 1278. [Google Scholar] [CrossRef] [PubMed]
- Gotte, G.; Menegazzi, M. Biological Activities of Secretory RNases: Focus on Their Oligomerization to Design Antitumor Drugs. Front. Immunol. 2019, 10, 2626. [Google Scholar] [CrossRef] [PubMed]
- Raines, R.T. Ribonuclease A. Chem. Rev. 1998, 98, 1045–1066. [Google Scholar] [CrossRef]
- Kim, J.S.; Soucek, J.; Matousek, J.; Raines, R.T. Mechanism of Ribonuclease Cytotoxicity. J. Biol. Chem. 1995, 270, 31097–31102. [Google Scholar] [CrossRef]
- Fiorini, C.; Gotte, G.; Donnarumma, F.; Picone, D.; Donadelli, M. Bovine Seminal Ribonuclease Triggers Beclin1-Mediated Autophagic Cell Death in Pancreatic Cancer Cells. Biochim. Biophys. Acta 2014, 1843, 976–984. [Google Scholar] [CrossRef]
- Kobe, B.; Deisenhofer, J. Crystal Structure of Porcine Ribonuclease Inhibitor, a Protein with Leucine-Rich Repeats. Nature 1993, 366, 751–756. [Google Scholar] [CrossRef]
- Leland, P.A.; Staniszewski, K.E.; Kim, B.M.; Raines, R.T. Endowing Human Pancreatic Ribonuclease with Toxicity for Cancer Cells. J. Biol. Chem. 2001, 276, 43095–43102. [Google Scholar] [CrossRef]
- Thomas, S.P.; Hoang, T.T.; Ressler, V.T.; Raines, R.T. Human Angiogenin Is a Potent Cytotoxin in the Absence of Ribonuclease Inhibitor. RNA 2018, 24, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, H.F. Eosinophil-Derived Neurotoxin/RNase 2: Connecting the Past, the Present and the Future. Curr. Pharm. Biotechnol. 2008, 9, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wei, R.; Prats-Ejarque, G.; Goetz, M.; Wang, G.; Torrent, M.; Boix, E. Human RNase3 Immune Modulation by Catalytic-Dependent and Independent Modes in a Macrophage-Cell Line Infection Model. Cell Mol. Life Sci. 2021, 78, 2963–2985. [Google Scholar] [CrossRef] [PubMed]
- Carreras-Sangrà, N.; Alvarez-García, E.; Herrero-Galán, E.; Tomé, J.; Lacadena, J.; Alegre-Cebollada, J.; Oñaderra, M.; Gavilanes, J.G.; Martínez-Del-Pozo, A. The Therapeutic Potential of Fungal Ribotoxins. Curr. Pharm. Biotechnol. 2008, 9, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Fang, E.F.; Ng, T.B. Ribonucleases of Different Origins with a Wide Spectrum of Medicinal Applications. Biochim. Biophys. Acta 2011, 1815, 65–74. [Google Scholar] [CrossRef]
- Edwards, T.C.; Mani, N.; Dorsey, B.; Kakarla, R.; Rijnbrand, R.; Sofia, M.J.; Tavis, J.E. Inhibition of HBV Replication by N-Hydroxyisoquinolinedione and N-Hydroxypyridinedione Ribonuclease H Inhibitors. Antivir. Res. 2019, 164, 70–80. [Google Scholar] [CrossRef]
- Bradley, D.P.; O’Dea, A.T.; Woodson, M.E.; Li, Q.; Ponzar, N.L.; Knier, A.; Rogers, B.L.; Murelli, R.P.; Tavis, J.E. Effects of Troponoids on Mitochondrial Function and Cytotoxicity. Antimicrob. Agents Chemother. 2022, 66, e0161721. [Google Scholar] [CrossRef]
- Nadal, A.; Martell, M.; Lytle, J.R.; Lyons, A.J.; Robertson, H.D.; Cabot, B.; Esteban, J.I.; Esteban, R.; Guardia, J.; Gómez, J. Specific Cleavage of Hepatitis C Virus RNA Genome by Human RNase P. J. Biol. Chem. 2002, 277, 30606–30613. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Huang, J.; Wu, S.; Zheng, Q.; Liu, P.; Feng, H.; Su, X.; Fu, H.; Xi, Q.; Wang, G. The TRNA-like Small Noncoding RNA MascRNA Promotes Global Protein Translation. EMBO Rep. 2020, 21, e49684. [Google Scholar] [CrossRef]
- Li, J.; Boix, E. Host Defence RNases as Antiviral Agents against Enveloped Single Stranded RNA Viruses. Virulence 2021, 12, 444–469. [Google Scholar] [CrossRef]
- Wu, L.; Xu, Y.; Zhao, H.; Li, Y. RNase T2 in Inflammation and Cancer: Immunological and Biological Views. Front. Immunol. 2020, 11, 1554. [Google Scholar] [CrossRef] [PubMed]
- Baranzini, N.; Pedrini, E.; Girardello, R.; Tettamanti, G.; de Eguileor, M.; Taramelli, R.; Acquati, F.; Grimaldi, A. Human Recombinant RNASET2-Induced Inflammatory Response and Connective Tissue Remodeling in the Medicinal Leech. Cell Tissue Res. 2017, 368, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Makarov, A.A.; Kolchinsky, A.; Ilinskaya, O.N. Binase and Other Microbial RNases as Potential Anticancer Agents. Bioessays 2008, 30, 781–790. [Google Scholar] [CrossRef]
- Ulyanova, V.; Vershinina, V.; Ilinskaya, O. Barnase and Binase: Twins with Distinct Fates. FEBS J. 2011, 278, 3633–3643. [Google Scholar] [CrossRef] [PubMed]
- Mitkevich, V.A.; Burnysheva, K.M.; Petrushanko, I.Y.; Adzhubei, A.A.; Schulga, A.A.; Chumakov, P.M.; Makarov, A.A. Binase Treatment Increases Interferon Sensitivity and Apoptosis in SiHa Cervical Carcinoma Cells by Downregulating E6 and E7 Human Papilloma Virus Oncoproteins. Oncotarget 2017, 8, 72666–72675. [Google Scholar] [CrossRef] [PubMed]
- Dudkina, E.V.; Ulyanova, V.V.; Ilinskaya, O.N. Supramolecular Organization As a Factor of Ribonuclease Cytotoxicity. Acta Nat. 2020, 12, 24–33. [Google Scholar] [CrossRef]
- Nitta, R.; Katayama, N.; Okabe, Y.; Iwama, M.; Watanabe, H.; Abe, Y.; Okazaki, T.; Ohgi, K.; Irie, M. Primary Structure of a Ribonuclease from Bullfrog (Rana Catesbeiana) Liver. J. Biochem. 1989, 106, 729–735. [Google Scholar] [CrossRef]
- Kamiya, Y.; Oyama, F.; Oyama, R.; Sakakibara, F.; Nitta, K.; Kawauchi, H.; Takayanagi, Y.; Titani, K. Amino Acid Sequence of a Lectin from Japanese Frog (Rana Japonica) Eggs. J. Biochem. 1990, 108, 139–143. [Google Scholar] [CrossRef]
- Ardelt, W.; Shogen, K.; Darzynkiewicz, Z. Onconase and Amphinase, the Antitumor Ribonucleases from Rana Pipiens Oocytes. Curr. Pharm. Biotechnol. 2008, 9, 215–225. [Google Scholar] [CrossRef]
- Singh, U.P.; Ardelt, W.; Saxena, S.K.; Holloway, D.E.; Vidunas, E.; Lee, H.-S.; Saxena, A.; Shogen, K.; Acharya, K.R. Enzymatic and Structural Characterisation of Amphinase, a Novel Cytotoxic Ribonuclease from Rana Pipiens Oocytes. J. Mol. Biol. 2007, 371, 93–111. [Google Scholar] [CrossRef]
- Ardelt, W.; Mikulski, S.M.; Shogen, K. Amino Acid Sequence of an Anti-Tumor Protein from Rana Pipiens Oocytes and Early Embryos. Homology to Pancreatic Ribonucleases. J. Biol. Chem. 1991, 266, 245–251. [Google Scholar] [CrossRef]
- Ardelt, W.; Ardelt, B.; Darzynkiewicz, Z. Ribonucleases as Potential Modalities in Anticancer Therapy. Eur. J. Pharm. 2009, 625, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.D.; Wang, J.J. Yolk Granules Are the Major Compartment for Bullfrog (Rana Catesbeiana) Oocyte-Specific Ribonuclease. Eur. J. Biochem. 1994, 222, 215–220. [Google Scholar] [CrossRef] [PubMed]
- McPherson, A.; Brayer, G.; Cascio, D.; Williams, R. The Mechanism of Binding of a Polynucleotide Chain to Pancreatic Ribonuclease. Science 1986, 232, 765–768. [Google Scholar] [CrossRef]
- Chen, S.; Le, S.Y.; Newton, D.L.; Maizel, J.V.; Rybak, S.M. A Gender-Specific MRNA Encoding a Cytotoxic Ribonuclease Contains a 3′ UTR of Unusual Length and Structure. Nucleic Acids Res. 2000, 28, 2375–2382. [Google Scholar] [CrossRef]
- Titani, K.; Takio, K.; Kuwada, M.; Nitta, K.; Sakakibara, F.; Kawauchi, H.; Takayanagi, G.; Hakomori, S. Amino Acid Sequence of Sialic Acid Binding Lectin from Frog (Rana Catesbeiana) Eggs. Biochemistry 1987, 26, 2189–2194. [Google Scholar] [CrossRef]
- Rosenberg, H.F.; Zhang, J.; Liao, Y.D.; Dyer, K.D. Rapid Diversification of RNase A Superfamily Ribonucleases from the Bullfrog, Rana Catesbeiana. J. Mol. Evol. 2001, 53, 31–38. [Google Scholar] [CrossRef]
- Tatsuta, T.; Hosono, M. Discovery of Antitumor Effects of Leczymes. Glycoconj. J. 2022, 39, 157–165. [Google Scholar] [CrossRef]
- Turcotte, R.F.; Lavis, L.D.; Raines, R.T. Onconase Cytotoxicity Relies on the Distribution of Its Positive Charge. FEBS J. 2009, 276, 3846–3857. [Google Scholar] [CrossRef]
- Ardelt, B.; Juan, G.; Burfeind, P.; Salomon, T.; Wu, J.M.; Hsieh, T.C.; Li, X.; Sperry, R.; Pozarowski, P.; Shogen, K.; et al. Onconase, an Anti-Tumor Ribonuclease Suppresses Intracellular Oxidative Stress. Int. J. Oncol. 2007, 31, 663–669. [Google Scholar] [CrossRef]
- Ilinskaya, O.N.; Mahmud, R.S. Ribonucleases as Antiviral Agents. Mol. Biol. 2014, 48, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Raines, R.T. Ribonucleases as Novel Chemotherapeutics: The Ranpirnase Example. BioDrugs 2008, 22, 53–58. [Google Scholar] [CrossRef]
- Raineri, A.; Prodomini, S.; Fasoli, S.; Gotte, G.; Menegazzi, M. Influence of Onconase in the Therapeutic Potential of PARP Inhibitors in A375 Malignant Melanoma Cells. Biochem. Pharm. 2019, 167, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Mikulski, S.M.; Ardelt, W.; Rybak, S.M.; Youle, R.J. A Cytotoxic Ribonuclease. Study of the Mechanism of Onconase Cytotoxicity. J. Biol. Chem. 1993, 268, 10686–10693. [Google Scholar] [CrossRef]
- Leich, F.; Stöhr, N.; Rietz, A.; Ulbrich-Hofmann, R.; Arnold, U. Endocytotic Internalization as a Crucial Factor for the Cytotoxicity of Ribonucleases. J. Biol. Chem. 2007, 282, 27640–27646. [Google Scholar] [CrossRef] [PubMed]
- Haigis, M.C.; Raines, R.T. Secretory Ribonucleases Are Internalized by a Dynamin-Independent Endocytic Pathway. J. Cell Sci. 2003, 116, 313–324. [Google Scholar] [CrossRef]
- Rodríguez, M.; Torrent, G.; Bosch, M.; Rayne, F.; Dubremetz, J.-F.; Ribó, M.; Benito, A.; Vilanova, M.; Beaumelle, B. Intracellular Pathway of Onconase That Enables Its Delivery to the Cytosol. J. Cell Sci. 2007, 120, 1405–1411. [Google Scholar] [CrossRef]
- Sundlass, N.K.; Eller, C.H.; Cui, Q.; Raines, R.T. Contribution of Electrostatics to the Binding of Pancreatic-Type Ribonucleases to Membranes. Biochemistry 2013, 52, 6304–6312. [Google Scholar] [CrossRef]
- Narayanan, S. Sialic Acid as a Tumor Marker. Ann. Clin. Lab. Sci. 1994, 24, 376–384. [Google Scholar]
- Carter, H.B.; Partin, A.W.; Coffey, D.S. Prediction of Metastatic Potential in an Animal Model of Prostate Cancer: Flow Cytometric Quantification of Cell Surface Charge. J. Urol. 1989, 142, 1338–1341. [Google Scholar] [CrossRef]
- Márquez, M.; Nilsson, S.; Lennartsson, L.; Liu, Z.; Tammela, T.; Raitanen, M.; Holmberg, A.R. Charge-Dependent Targeting: Results in Six Tumor Cell Lines. Anticancer Res. 2004, 24, 1347–1351. [Google Scholar] [PubMed]
- Furia, A.; Moscato, M.; Calì, G.; Pizzo, E.; Confalone, E.; Amoroso, M.R.; Esposito, F.; Nitsch, L.; D’Alessio, G. The Ribonuclease/Angiogenin Inhibitor Is Also Present in Mitochondria and Nuclei. FEBS Lett. 2011, 585, 613–617. [Google Scholar] [CrossRef] [PubMed]
- Rutkoski, T.J.; Raines, R.T. Evasion of Ribonuclease Inhibitor as a Determinant of Ribonuclease Cytotoxicity. Curr. Pharm. Biotechnol. 2008, 9, 185–189. [Google Scholar] [CrossRef]
- Kobe, B.; Deisenhofer, J. Mechanism of Ribonuclease Inhibition by Ribonuclease Inhibitor Protein Based on the Crystal Structure of Its Complex with Ribonuclease A. J. Mol. Biol. 1996, 264, 1028–1043. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, R.F.; Raines, R.T. Interaction of Onconase with the Human Ribonuclease Inhibitor Protein. Biochem. Biophys. Res. Commun 2008, 377, 512–514. [Google Scholar] [CrossRef]
- Darzynkiewicz, Z.; Carter, S.P.; Mikulski, S.M.; Ardelt, W.J.; Shogen, K. Cytostatic and Cytotoxic Effects of Pannon (P-30 Protein), a Novel Anticancer Agent. Cell Prolif. 1988, 21, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Lee, Y.H.; Mikulski, S.M.; Lee, J.; Covone, K.; Shogen, K. Tumoricidal Effects of Onconase on Various Tumors. J. Surg. Oncol. 2000, 73, 164–171. [Google Scholar] [CrossRef]
- Rybak, S.M.; Pearson, J.W.; Fogler, W.E.; Volker, K.; Spence, S.E.; Newton, D.L.; Mikulski, S.M.; Ardelt, W.; Riggs, C.W.; Kung, H.F.; et al. Enhancement of Vincristine Cytotoxicity in Drug-Resistant Cells by Simultaneous Treatment with Onconase, an Antitumor Ribonuclease. J. Natl. Cancer Inst. 1996, 88, 747–753. [Google Scholar] [CrossRef]
- Lee, I.; Kalota, A.; Gewirtz, A.M.; Shogen, K. Antitumor Efficacy of the Cytotoxic RNase, Ranpirnase, on A549 Human Lung Cancer Xenografts of Nude Mice. Anticancer Res. 2007, 27, 299–307. [Google Scholar]
- Lee, I.; Lee, Y.H.; Mikulski, S.M.; Shogen, K. Effect of ONCONASE +/− Tamoxifen on ASPC-1 Human Pancreatic Tumors in Nude Mice. Adv. Exp. Med. Biol. 2003, 530, 187–196. [Google Scholar] [CrossRef]
- Liebers, N.; Holland-Letz, T.; Welschof, M.; Høgset, A.; Jäger, D.; Arndt, M.A.E.; Krauss, J. Highly Efficient Destruction of Squamous Carcinoma Cells of the Head and Neck by Photochemical Internalization of Ranpirnase. J. Exp. Oncol. 2017, 12, 113–120. [Google Scholar]
- Smolewski, P.; Witkowska, M.; Zwolinska, M.; Cebula-Obrzut, B.; Majchrzak, A.; Jeske, A.; Darzynkiewicz, Z.; Ardelt, W.; Ardelt, B.; Robak, T. Cytotoxic Activity of the Amphibian Ribonucleases Onconase and R-Amphinase on Tumor Cells from B Cell Lymphoproliferative Disorders. Int. J. Oncol. 2014, 45, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Vert, A.; Castro, J.; Ribó, M.; Benito, A.; Vilanova, M. Activating Transcription Factor 3 Is Crucial for Antitumor Activity and to Strengthen the Antiviral Properties of Onconase. Oncotarget 2017, 8, 11692–11707. [Google Scholar] [CrossRef]
- Mikulski, S.; Viera, A.; Shogen, K. Invitro Synergism between a Novel Amphibian Oocytic Ribonuclease (Onconase(r)) and Tamoxifen, Lovastatin and Cisplatin, in Human Ovcar-3 Ovarian-Carcinoma Cell-Line. Int. J. Oncol. 1992, 1, 779–785. [Google Scholar] [PubMed]
- Majchrzak, A.; Witkowska, M.; Mędra, A.; Zwolińska, M.; Bogusz, J.; Cebula-Obrzut, B.; Darzynkiewicz, Z.; Robak, T.; Smolewski, P. In Vitro Cytotoxicity of Ranpirnase (Onconase) in Combination with Components of R-CHOP Regimen against Diffuse Large B Cell Lymphoma (DLBCL) Cell Line. Postepy. Hig. Med. Dosw. Online 2013, 67, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Ita, M.; Halicka, H.D.; Tanaka, T.; Kurose, A.; Ardelt, B.; Shogen, K.; Darzynkiewicz, Z. Remarkable Enhancement of Cytotoxicity of Onconase and Cepharanthine When Used in Combination on Various Tumor Cell Lines. Cancer Biol. Ther. 2008, 7, 1104–1108. [Google Scholar] [CrossRef]
- Shen, R.; Li, J.; Ye, D.; Wang, Q.; Fei, J. Combination of Onconase and Dihydroartemisinin Synergistically Suppresses Growth and Angiogenesis of Non-Small-Cell Lung Carcinoma and Malignant Mesothelioma. Acta Biochim. Biophys. Sin. 2016, 48, 894–901. [Google Scholar] [CrossRef]
- Fiorini, C.; Cordani, M.; Gotte, G.; Picone, D.; Donadelli, M. Onconase Induces Autophagy Sensitizing Pancreatic Cancer Cells to Gemcitabine and Activates Akt/MTOR Pathway in a ROS-Dependent Manner. Biochim. Biophys. Acta 2015, 1853, 549–560. [Google Scholar] [CrossRef]
- Raineri, A.; Fasoli, S.; Campagnari, R.; Gotte, G.; Menegazzi, M. Onconase Restores Cytotoxicity in Dabrafenib-Resistant A375 Human Melanoma Cells and Affects Cell Migration, Invasion and Colony Formation Capability. Int. J. Mol. Sci. 2019, 20, 5980. [Google Scholar] [CrossRef]
- Deptala, A.; Halicka, H.D.; Ardelt, B.; Ardelt, W.; Mikulski, S.M.; Shogen, K.; Darzynkiewicz, Z. Potentiation of Tumor Necrosis Factor Induced Apoptosis by Onconase. Int. J. Oncol. 1998, 13, 11–16. [Google Scholar] [CrossRef]
- Vasandani, V.M.; Castelli, J.C.; Hott, J.S.; Saxena, S.; Mikulski, S.M.; Youle, R.J. Interferon Enhances the Activity of the Anticancer Ribonuclease, Onconase. J. Interferon Cytokine Res. 1999, 19, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.Y.; Hsieh, T.C.; Ardelt, B.; Darzynkiewicz, Z.; Wu, J.M. Combined Effects of Onconase and IFN-Beta on Proliferation, Macromolecular Syntheses and Expression of STAT-1 in JCA-1 Cancer Cells. Int. J. Oncol. 2002, 20, 891–896. [Google Scholar]
- Halicka, H.D.; Murakami, T.; Papageorgio, C.N.; Mittelman, A.; Mikulski, S.M.; Shogen, K.; Darzynkiewicz, Z. Induction of Differentiation of Leukaemic (HL-60) or Prostate Cancer (LNCaP, JCA-1) Cells Potentiates Apoptosis Triggered by Onconase. Cell Prolif. 2000, 33, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Nino, M.E.; Littenberg, B. A Novel Combination: Ranpirnase and Rosiglitazone Induce a Synergistic Apoptotic Effect by down-Regulating Fra-1 and Survivin in Cancer Cells. Mol. Cancer Ther. 2008, 7, 1871–1879. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Lee, Y.H.; Mikulski, S.M.; Lee, J.; Shogen, K. Enhanced Cellular Radiation Sensitivity of Androgen-Independent Human Prostate Tumor Cells by Onconase. Anticancer Res. 2000, 20, 1037–1040. [Google Scholar] [PubMed]
- Kim, D.H.; Kim, E.J.; Kalota, A.; Gewirtz, A.M.; Glickson, J.; Shogen, K.; Lee, I. Possible Mechanisms of Improved Radiation Response by Cytotoxic RNase, Onconase, on A549 Human Lung Cancer Xenografts of Nude Mice. Adv. Exp. Med. Biol. 2007, 599, 53–59. [Google Scholar] [CrossRef]
- Halicka, H.D.; Ardelt, B.; Shogen, K.; Darzynkiewicz, Z. Mild Hyperthermia Predisposes Tumor Cells to Undergo Apoptosis upon Treatment with Onconase. Int. J. Oncol. 2007, 30, 841–847. [Google Scholar] [CrossRef]
- Michaelis, M.; Cinatl, J.; Anand, P.; Rothweiler, F.; Kotchetkov, R.; von Deimling, A.; Doerr, H.W.; Shogen, K.; Cinatl, J. Onconase Induces Caspase-Independent Cell Death in Chemoresistant Neuroblastoma Cells. Cancer Lett. 2007, 250, 107–116. [Google Scholar] [CrossRef]
- Mikulski, S.; Grossman, A.; Carter, P.; Shogen, K.; Costanzi, J. Phase-I Human Clinical-Trial of Onconase(r) (p-30 Protein) Administered Intravenously on a Weekly Schedule in Cancer-Patients with Solid Tumors. Int. J. Oncol. 1993, 3, 57–64. [Google Scholar] [CrossRef]
- Mikulski, S.; Chun, H.; Mittelman, A.; Panella, T.; Puccio, C.; Shogen, K.; Costanzi, J. Relationship between Response Rate and Median Survival in Patients with Advanced Nonsmall Cell Lung-Cancer—Comparison of Onconase(r) with Other Anticancer Agents. Int. J. Oncol. 1995, 6, 889–897. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Aklilu, M.; Stadler, W.M.; Dumas, M.C.; Mikulski, S.M. A Phase II Trial of Weekly Intravenous Ranpirnase (Onconase), a Novel Ribonuclease in Patients with Metastatic Kidney Cancer. Invest. New Drugs 2001, 19, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Costanzi, J.; Sidransky, D.; Navon, A.; Goldsweig, H. Ribonucleases as a Novel Pro-Apoptotic Anticancer Strategy: Review of the Preclinical and Clinical Data for Ranpirnase. Cancer Invest. 2005, 23, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Vasandani, V.M.; Burris, J.A.; Sung, C. Reversible Nephrotoxicity of Onconase and Effect of Lysine PH on Renal Onconase Uptake. Cancer Chemother. Pharm. 1999, 44, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Mikulski, S.M.; Costanzi, J.J.; Vogelzang, N.J.; McCachren, S.; Taub, R.N.; Chun, H.; Mittelman, A.; Panella, T.; Puccio, C.; Fine, R.; et al. Phase II Trial of a Single Weekly Intravenous Dose of Ranpirnase in Patients with Unresectable Malignant Mesothelioma. J. Clin. Oncol. 2002, 20, 274–281. [Google Scholar] [CrossRef]
- Pavlakis, N.; Vogelzang, N.J. Ranpirnase—An Antitumour Ribonuclease: Its Potential Role in Malignant Mesothelioma. Expert Opin. Biol. Ther. 2006, 6, 391–399. [Google Scholar] [CrossRef]
- Beck, A.K.; Pass, H.I.; Carbone, M.; Yang, H. Ranpirnase as a Potential Antitumor Ribonuclease Treatment for Mesothelioma and Other Malignancies. Future Oncol. 2008, 4, 341–349. [Google Scholar] [CrossRef]
- Rutkoski, T.J.; Kink, J.A.; Strong, L.E.; Schilling, C.I.; Raines, R.T. Antitumor Activity of Ribonuclease Multimers Created by Site-Specific Covalent Tethering. Bioconjugate Chem. 2010, 21, 1691–1702. [Google Scholar] [CrossRef]
- Newton, D.L.; Hansen, H.J.; Mikulski, S.M.; Goldenberg, D.M.; Rybak, S.M. Potent and Specific Antitumor Effects of an Anti-CD22-Targeted Cytotoxic Ribonuclease: Potential for the Treatment of Non-Hodgkin Lymphoma. Blood 2001, 97, 528–535. [Google Scholar] [CrossRef]
- Zhao, H.L.; Xue, C.; Du, J.L.; Ren, M.; Xia, S.; Cheng, Y.G.; Liu, Z.M. Sustained and Cancer Cell Targeted Cytosolic Delivery of Onconase Results in Potent Antitumor Effects. J. Control. Release 2012, 159, 346–352. [Google Scholar] [CrossRef]
- Kiesgen, S.; Liebers, N.; Cremer, M.; Arnold, U.; Weber, T.; Keller, A.; Herold-Mende, C.; Dyckhoff, G.; Jäger, D.; Kontermann, R.E.; et al. A Fusogenic Dengue Virus-Derived Peptide Enhances Antitumor Efficacy of an Antibody-Ribonuclease Fusion Protein Targeting the EGF Receptor. Protein Eng. Des. Sel. 2014, 27, 331–337. [Google Scholar] [CrossRef]
- Qi, J.; Ye, X.; Li, L.; Bai, H.; Xu, C. Improving the Specific Antitumor Efficacy of ONC by Fusion with N-Terminal Domain of Transferrin. Biosci. Biotechnol. Biochem. 2018, 82, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, Z. Chlorotoxin-Conjugated Onconase as a Potential Anti-Glioma Drug. Oncol. Lett. 2015, 9, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Krauss, J.; Arndt, M.A.E.; Vu, B.K.; Newton, D.L.; Seeber, S.; Rybak, S.M. Efficient Killing of CD22+ Tumor Cells by a Humanized Diabody-RNase Fusion Protein. Biochem. Biophys. Res. Commun. 2005, 331, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Cardillo, T.M.; Wang, Y.; Rossi, E.A.; Goldenberg, D.M.; Chang, C.-H. Trop-2-Targeting Tetrakis-Ranpirnase Has Potent Antitumor Activity against Triple-Negative Breast Cancer. Mol. Cancer 2014, 13, 53. [Google Scholar] [CrossRef]
- Kiesgen, S.; Arndt, M.A.E.; Körber, C.; Arnold, U.; Weber, T.; Halama, N.; Keller, A.; Bötticher, B.; Schlegelmilch, A.; Liebers, N.; et al. An EGF Receptor Targeting Ranpirnase-Diabody Fusion Protein Mediates Potent Antitumour Activity in Vitro and in Vivo. Cancer Lett. 2015, 357, 364–373. [Google Scholar] [CrossRef]
- Bennett, M.J.; Schlunegger, M.P.; Eisenberg, D. 3D Domain Swapping: A Mechanism for Oligomer Assembly. Protein Sci. 1995, 4, 2455–2468. [Google Scholar] [CrossRef]
- Gotte, G.; Campagnari, R.; Loreto, D.; Bettin, I.; Calzetti, F.; Menegazzi, M.; Merlino, A. The Crystal Structure of the Domain-Swapped Dimer of Onconase Highlights Some Catalytic and Antitumor Activity Features of the Enzyme. Int. J. Biol. Macromol. 2021, 191, 560–571. [Google Scholar] [CrossRef]
- Fagagnini, A.; Pica, A.; Fasoli, S.; Montioli, R.; Donadelli, M.; Cordani, M.; Butturini, E.; Acquasaliente, L.; Picone, D.; Gotte, G. Onconase Dimerization through 3D Domain Swapping: Structural Investigations and Increase in the Apoptotic Effect in Cancer Cells. Biochem. J. 2017, 474, 3767–3781. [Google Scholar] [CrossRef]
- Juan, G.; Ardelt, B.; Li, X.; Mikulski, S.M.; Shogen, K.; Ardelt, W.; Mittelman, A.; Darzynkiewicz, Z. G1 Arrest of U937 Cells by Onconase Is Associated with Suppression of Cyclin D3 Expression, Induction of P16INK4A, P21WAF1/CIP1 and P27KIP and Decreased PRb Phosphorylation. Leukemia 1998, 12, 1241–1248. [Google Scholar] [CrossRef]
- Smith, M.R.; Newton, D.L.; Mikulski, S.M.; Rybak, S.M. Cell Cycle-Related Differences in Susceptibility of NIH/3T3 Cells to Ribonucleases. Exp. Cell Res. 1999, 247, 220–232. [Google Scholar] [CrossRef]
- Iordanov, M.S.; Ryabinina, O.P.; Wong, J.; Dinh, T.H.; Newton, D.L.; Rybak, S.M.; Magun, B.E. Molecular Determinants of Apoptosis Induced by the Cytotoxic Ribonuclease Onconase: Evidence for Cytotoxic Mechanisms Different from Inhibition of Protein Synthesis. Cancer Res. 2000, 60, 1983–1994. [Google Scholar] [PubMed]
- Iordanov, M.S.; Wong, J.; Newton, D.L.; Rybak, S.M.; Bright, R.K.; Flavell, R.A.; Davis, R.J.; Magun, B.E. Differential Requirement for the Stress-Activated Protein Kinase/c-Jun NH(2)-Terminal Kinase in RNAdamage-Induced Apoptosis in Primary and in Immortalized Fibroblasts. Mol. Cell Biol. Res. Commun. 2000, 4, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Goparaju, C.M.; Blasberg, J.D.; Volinia, S.; Palatini, J.; Ivanov, S.; Donington, J.S.; Croce, C.; Carbone, M.; Yang, H.; Pass, H.I. Onconase Mediated NFKβ Downregulation in Malignant Pleural Mesothelioma. Oncogene 2011, 30, 2767–2777. [Google Scholar] [CrossRef]
- Nasu, M.; Carbone, M.; Gaudino, G.; Ly, B.H.; Bertino, P.; Shimizu, D.; Morris, P.; Pass, H.I.; Yang, H. Ranpirnase Interferes with NF-ΚB Pathway and MMP9 Activity, Inhibiting Malignant Mesothelioma Cell Invasiveness and Xenograft Growth. Genes Cancer 2011, 2, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.Y.; Ardelt, B.; Hsieh, T.-C.; Darzynkiewicz, Z.; Shogen, K.; Wu, J.M. Treatment of Jurkat Acute T-Lymphocytic Leukemia Cells by Onconase (Ranpirnase) Is Accompanied by an Altered Nucleocytoplasmic Distribution and Reduced Expression of Transcription Factor NF-KappaB. Int. J. Oncol. 2004, 25, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Altomare, D.A.; Rybak, S.M.; Pei, J.; Maizel, J.V.; Cheung, M.; Testa, J.R.; Shogen, K. Onconase Responsive Genes in Human Mesothelioma Cells: Implications for an RNA Damaging Therapeutic Agent. BMC Cancer 2010, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- De Tomi, E.; Campagnari, R.; Orlandi, E.; Cardile, A.; Zanrè, V.; Menegazzi, M.; Gomez-Lira, M.; Gotte, G. Upregulation of MiR-34a-5p, MiR-20a-3p and MiR-29a-3p by Onconase in A375 Melanoma Cells Correlates with the Downregulation of Specific Onco-Proteins. Int. J. Mol. Sci. 2022, 23, 1647. [Google Scholar] [CrossRef]
- Motolani, A.; Martin, M.; Sun, M.; Lu, T. Phosphorylation of the Regulators, a Complex Facet of NF-ΚB Signaling in Cancer. Biomolecules 2020, 11, 15. [Google Scholar] [CrossRef]
- Sartore-Bianchi, A.; Gasparri, F.; Galvani, A.; Nici, L.; Darnowski, J.W.; Barbone, D.; Fennell, D.A.; Gaudino, G.; Porta, C.; Mutti, L. Bortezomib Inhibits Nuclear Factor-KappaB Dependent Survival and Has Potent In Vivo Activity in Mesothelioma. Clin. Cancer Res. 2007, 13, 5942–5951. [Google Scholar] [CrossRef]
- Madonna, G.; Ullman, C.D.; Gentilcore, G.; Palmieri, G.; Ascierto, P.A. NF-ΚB as Potential Target in the Treatment of Melanoma. J. Transl. Med. 2012, 10, 53. [Google Scholar] [CrossRef]
- Ramos-Nino, M.E.; Timblin, C.R.; Mossman, B.T. Mesothelial Cell Transformation Requires Increased AP-1 Binding Activity and ERK-Dependent Fra-1 Expression. Cancer Res. 2002, 62, 6065–6069. [Google Scholar] [PubMed]
- Sarkar, D.; Lebedeva, I.V.; Gupta, P.; Emdad, L.; Sauane, M.; Dent, P.; Curiel, D.T.; Fisher, P.B. Melanoma Differentiation Associated Gene-7 (Mda-7)/IL-24: A “magic Bullet” for Cancer Therapy? Expert Opin. Biol. Ther. 2007, 7, 577–586. [Google Scholar] [CrossRef]
- Lu, D.; Wolfgang, C.D.; Hai, T. Activating Transcription Factor 3, a Stress-Inducible Gene, Suppresses Ras-Stimulated Tumorigenesis. J. Biol. Chem. 2006, 281, 10473–10481. [Google Scholar] [CrossRef] [PubMed]
- Ehexige, E.; Bao, M.; Bazarjav, P.; Yu, X.; Xiao, H.; Han, S.; Baigude, H. Silencing of STAT3 via Peptidomimetic LNP-Mediated Systemic Delivery of RNAi Downregulates PD-L1 and Inhibits Melanoma Growth. Biomolecules 2020, 10, 285. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Li, J.; Wei, R.; Guidi, I.; Cozzuto, L.; Ponomarenko, J.; Prats-Ejarque, G.; Boix, E. Selective Cleavage of NcRNA and Antiviral Activity by RNase2/EDN in THP1-Induced Macrophages. Cell Mol. Life Sci. 2022, 79, 209. [Google Scholar] [CrossRef]
- Yang, E.; Li, M.M.H. All About the RNA: Interferon-Stimulated Genes That Interfere With Viral RNA Processes. Front. Immunol. 2020, 11, 605024. [Google Scholar] [CrossRef]
- Youle, R.J.; Wu, Y.N.; Mikulski, S.M.; Shogen, K.; Hamilton, R.S.; Newton, D.; D’Alessio, G.; Gravell, M. RNase Inhibition of Human Immunodeficiency Virus Infection of H9 Cells. Proc. Natl. Acad. Sci. USA 1994, 91, 6012–6016. [Google Scholar] [CrossRef]
- Saxena, S.K.; Gravell, M.; Wu, Y.N.; Mikulski, S.M.; Shogen, K.; Ardelt, W.; Youle, R.J. Inhibition of HIV-1 Production and Selective Degradation of Viral RNA by an Amphibian Ribonuclease. J. Biol. Chem. 1996, 271, 20783–20788. [Google Scholar] [CrossRef]
- Saxena, S.K.; Sirdeshmukh, R.; Ardelt, W.; Mikulski, S.M.; Shogen, K.; Youle, R.J. Entry into Cells and Selective Degradation of TRNAs by a Cytotoxic Member of the RNase A Family. J. Biol. Chem. 2002, 277, 15142–15146. [Google Scholar] [CrossRef]
- Suhasini, A.N.; Sirdeshmukh, R. Onconase Action on TRNA(Lys3), the Primer for HIV-1 Reverse Transcription. Biochem. Biophys. Res. Commun. 2007, 363, 304–309. [Google Scholar] [CrossRef]
- Brand, R.M.; Siegel, A.; Myerski, A.; Metter, E.J.; Engstrom, J.; Brand, R.E.; Squiquera, L.; Hodge, T.; Sulley, J.; Cranston, R.D.; et al. Ranpirnase Reduces HIV-1 Infection and Associated Inflammatory Changes in a Human Colorectal Explant Model. AIDS Res. Hum. Retrovir. 2018, 34, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Hodge, T.; Draper, K.; Brasel, T.; Freiberg, A.; Squiquera, L.; Sidransky, D.; Sulley, J.; Taxman, D.J. Antiviral Effect of Ranpirnase against Ebola Virus. Antivir. Res. 2016, 132, 210–218. [Google Scholar] [CrossRef]
- Squiquera, L.; Taxman, D.J.; Brendle, S.A.; Torres, R.; Sulley, J.; Hodge, T.; Christensen, N.; Sidransky, D. Ranpirnase Eradicates Human Papillomavirus in Cultured Cells and Heals Anogenital Warts in a Phase I Study. Antivir. Ther. 2017, 22, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.G.; Jackson, F.R.; Morgan, C.N.; Carson, W.C.; Martin, B.E.; Gallardo-Romero, N.; Ellison, J.A.; Greenberg, L.; Hodge, T.; Squiquera, L.; et al. Antiviral Ranpirnase TMR-001 Inhibits Rabies Virus Release and Cell-to-Cell Infection In Vitro. Viruses 2020, 12, 177. [Google Scholar] [CrossRef] [PubMed]
- Callís, M.; Serrano, S.; Benito, A.; Laurents, D.V.; Vilanova, M.; Bruix, M.; Ribó, M. Towards Tricking a Pathogen’s Protease into Fighting Infection: The 3D Structure of a Stable Circularly Permuted Onconase Variant Cleavedby HIV-1 Protease. PLoS ONE 2013, 8, e54568. [Google Scholar] [CrossRef]
- Feldmann, H.; Geisbert, T.W. Ebola Haemorrhagic Fever. Lancet 2011, 377, 849–862. [Google Scholar] [CrossRef]
- Wolf, R.; Davidovici, B. Treatment of Genital Warts: Facts and Controversies. Clin. Derm. 2010, 28, 546–548. [Google Scholar] [CrossRef]
- Kahn, J.S.; McIntosh, K. History and Recent Advances in Coronavirus Discovery. Pediatr. Infect. Dis. J. 2005, 24, S223–S227; discussion S226. [Google Scholar] [CrossRef]
- de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent Insights into Emerging Coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523–534. [Google Scholar] [CrossRef]
- Merad, M.; Blish, C.A.; Sallusto, F.; Iwasaki, A. The Immunology and Immunopathology of COVID-19. Science 2022, 375, 1122–1127. [Google Scholar] [CrossRef]
- Bader, S.M.; Cooney, J.P.; Pellegrini, M.; Doerflinger, M. Programmed Cell Death: The Pathways to Severe COVID-19? Biochem. J. 2022, 479, 609–628. [Google Scholar] [CrossRef] [PubMed]
- Ball, P. The Lightning-Fast Quest for COVID Vaccines—And What It Means for Other Diseases. Nature 2021, 589, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Pal, N.; Mavi, A.K.; Kumar, S.; Kumar, U.; Joshi, M.D.; Saluja, R. Current Updates on Adaptive Immune Response by B Cell and T Cell Stimulation and Therapeutic Strategies for Novel Coronavirus Disease 2019 (COVID-19) Treatment. Heliyon 2021, 7, e06894. [Google Scholar] [CrossRef]
- Abusalah, M.A.H.; Khalifa, M.; Al-Hatamleh, M.A.I.; Jarrar, M.; Mohamud, R.; Chan, Y.Y. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J. Pers. Med. 2022, 12, 386. [Google Scholar] [CrossRef]
- Maillard, P.V.; van der Veen, A.G.; Poirier, E.Z.; Reis e Sousa, C. Slicing and Dicing Viruses: Antiviral RNA Interference in Mammals. EMBO J. 2019, 38, e100941. [Google Scholar] [CrossRef] [PubMed]
- Notomista, E.; Catanzano, F.; Graziano, G.; Dal Piaz, F.; Barone, G.; D’Alessio, G.; Di Donato, A. Onconase: An Unusually Stable Protein. Biochemistry 2000, 39, 8711–8718. [Google Scholar] [CrossRef] [PubMed]
- Saxena, A.; Saxena, S.K.; Shogen, K. Effect of Onconase on Double-Stranded RNA in Vitro. Anticancer Res. 2009, 29, 1067–1071. [Google Scholar]
- Lin, J.J.; Newton, D.L.; Mikulski, S.M.; Kung, H.F.; Youle, R.J.; Rybak, S.M. Characterization of the Mechanism of Cellular and Cell Free Protein Synthesis Inhibition by an Anti-Tumor Ribonuclease. Biochem. Biophys. Res. Commun. 1994, 204, 156–162. [Google Scholar] [CrossRef]
- Abraham, A.T.; Lin, J.-J.; Newton, D.L.; Rybak, S.; Hecht, S.M. RNA Cleavage and Inhibition of Protein Synthesis by Bleomycin. Chem. Biol. 2003, 10, 45–52. [Google Scholar] [CrossRef]
- Ardelt, B.; Ardelt, W.; Darzynkiewicz, Z. Cytotoxic Ribonucleases and RNA Interference (RNAi). Cell Cycle. 2003, 2, 22–24. [Google Scholar] [CrossRef]
- Suhasini, A.N.; Sirdeshmukh, R. Transfer RNA Cleavages by Onconase Reveal Unusual Cleavage Sites. J. Biol. Chem. 2006, 281, 12201–12209. [Google Scholar] [CrossRef] [PubMed]
- Truini, A.; Coco, S.; Genova, C.; Mora, M.; Dal Bello, M.G.; Vanni, I.; Alama, A.; Rijavec, E.; Barletta, G.; Biello, F.; et al. Prognostic and Therapeutic Implications of MicroRNA in Malignant Pleural Mesothelioma. Microrna 2016, 5, 12–18. [Google Scholar] [CrossRef]
- Qiao, M.; Zu, L.-D.; He, X.-H.; Shen, R.-L.; Wang, Q.-C.; Liu, M.-F. Onconase Downregulates MicroRNA Expression through Targeting MicroRNA Precursors. Cell Res. 2012, 22, 1199–1202. [Google Scholar] [CrossRef] [PubMed]
- Dreher, T.W. Role of TRNA-like Structures in Controlling Plant Virus Replication. Virus Res. 2009, 139, 217–229. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menegazzi, M.; Gotte, G. Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections. Int. J. Mol. Sci. 2022, 23, 6556. https://doi.org/10.3390/ijms23126556
Menegazzi M, Gotte G. Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections. International Journal of Molecular Sciences. 2022; 23(12):6556. https://doi.org/10.3390/ijms23126556
Chicago/Turabian StyleMenegazzi, Marta, and Giovanni Gotte. 2022. "Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections" International Journal of Molecular Sciences 23, no. 12: 6556. https://doi.org/10.3390/ijms23126556
APA StyleMenegazzi, M., & Gotte, G. (2022). Role of the Ribonuclease ONCONASE in miRNA Biogenesis and tRNA Processing: Focus on Cancer and Viral Infections. International Journal of Molecular Sciences, 23(12), 6556. https://doi.org/10.3390/ijms23126556