Manual Therapy Facilitates Homeostatic Adaptation to Bone Microstructural Declines Induced by a Rat Model of Repetitive Forceful Task
Abstract
:1. Introduction
2. Results
2.1. Design
2.2. Task-Induced Declines in Distal Radial Trabecular Microstructure Were Ameliorated by Preventive Manual Therapy
2.3. Preventive Manual Therapy Increased Osteoblast and Osteoid Indices in Radial Trabeculae
2.4. Both Rest and Preventive Manual Therapy Reduced Osteoclast Surface and Numbers
2.5. Cortical Total Area and Periosteal Perimeter Improved with Preventive Manual Therapy
2.6. Preventive Manual Therapy Reduces Serum Biomarkers of Bone Resorption Activity and Inflammation
2.7. Voluntary Task Parameters Improved with Preventive Therapy
2.8. Muscle Inflammation Decreased with Preventive Manual Therapy and Correlated with Pulling Force
2.9. Body Weight Was Not a Contributing Factor
3. Discussion
3.1. The 12-Week Upper-Extremity-Reaching-and-Grasping Task Enhanced Trabecular and Cortical Bone Catabolism
3.2. Preventive Manual Therapy Improved Trabecular Microstructure and Partially Improved Cortical Bone Microstructure
3.3. Rest, with or without Manual Therapy Treatment, Was Not as Effective a Preventive Manual Therapy in Rescuing Bone Microstructure
3.4. Muscle Contributions
3.5. Limitations and Future Directions
4. Materials and Methods
4.1. Experimental Design and Animals
4.2. Task Apparatus, Shaping, and Task Paradigm
4.3. Determination of Reach Performance Behaviors in the Task Rats
4.4. Manual Therapy
4.5. Tissue Collection
4.6. MicroCT Imaging and Analysis
4.7. Bone Histomorphometry
4.8. Muscle Histomorphometry
4.9. Serum ELISAs
4.10. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Epstein, S.; Sparer, E.H.; Tran, B.N.; Ruan, Q.Z.; Dennerlein, J.T.; Singhal, D.; Lee, B.T. Prevalence of Work-Related Musculoskeletal Disorders Among Surgeons and Interventionalists: A Systematic Review and Meta-analysis. JAMA Surg. 2018, 153, e174947. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.C.; Rempel, D.M.; Hurwitz, E.L.; Harrison, R.J.; Janowitz, I.; Ritz, B.R. Self-reported pain and physical signs for musculoskeletal disorders in the upper body region among Los Angeles garment workers. Work 2009, 34, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Panush, R.S. Occupational and Recreational Musculoskeletal Disorders. In Kelley and Firestein’s Textbook of Rheumatology; Firestein, G.S., Budd, R.C., Gariel, S.E., McInnes, I.B., O’Dell, J.R., Eds.; Elsevier: Philadelpia, PA, USA, 2017. [Google Scholar]
- NIOSH. National Manufacturing Agenda—June 2010. Available online: http://www.cdc.gov/niosh/nora/comment/agendas/manuf/ (accessed on 23 October 2011).
- Kjaer, M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol. Rev. 2004, 84, 649–698. [Google Scholar] [CrossRef]
- Barr, A.E.; Barbe, M.F. Pathophysiological tissue changes associated with repetitive movement: A review of the evidence. Phys. Ther. 2002, 82, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Silverstein, B.A.; Fine, L.J.; Armstrong, T.J. Hand wrist cumulative trauma disorders in industry. Br. J. Ind. Med. 1986, 43, 779–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallagher, S.; Heberger, J.R. Examining the interaction of force and repetition on musculoskeletal disorder risk: A systematic literature review. Hum. Factors 2013, 55, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Barbe, M.F.; Gallagher, S.; Massicotte, V.S.; Tytell, M.; Popoff, S.N.; Barr-Gillespie, A.E. The interaction of force and repetition on musculoskeletal and neural tissue responses and sensorimotor behavior in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet. Disord. 2013, 14, 303. [Google Scholar] [CrossRef] [Green Version]
- Barr, A.E.; Safadi, F.F.; Gorzelany, I.; Amin, M.; Popoff, S.N.; Barbe, M.F. Repetitive, negligible force reaching in rats induces pathological overloading of upper extremity bones. J. Bone Miner. Res. 2003, 18, 2023–2032. [Google Scholar] [CrossRef]
- Jain, N.X.; Barr-Gillespie, A.E.; Clark, B.D.; Kietrys, D.M.; Wade, C.K.; Litvin, J.; Popoff, S.N.; Barbe, M.F. Bone loss from high repetitive high force loading is prevented by ibuprofen treatment. J. Musculoskelet. Neuronal. Interact. 2014, 14, 78–94. [Google Scholar]
- Barbe, M.F.; Massicotte, V.S.; Assari, S.; Monroy, M.A.; Frara, N.; Harris, M.Y.; Amin, M.; King, T.; Cruz, G.E.; Popoff, S.N. Prolonged high force high repetition pulling induces osteocyte apoptosis and trabecular bone loss in distal radius, while low force high repetition pulling induces bone anabolism. Bone 2018, 110, 267–283. [Google Scholar] [CrossRef]
- Rani, S.; Barbe, M.F.; Barr, A.E.; Litvin, J. Periostin-like-factor and Periostin in an animal model of work-related musculoskeletal disorder. Bone 2009, 44, 502–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saitou, K.; Tokunaga, M.; Yoshino, D.; Sakitani, N.; Maekawa, T.; Ryu, Y.; Nagao, M.; Nakamoto, H.; Saito, T.; Kawanishi, N.; et al. Local cyclical compression modulates macrophage function in situ and alleviates immobilization-induced muscle atrophy. Clin. Sci. 2018, 132, 2147–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, C.; Best, T.M.; Wang, Q.; Butterfield, T.A.; Zhao, Y. In vivo passive mechanical properties of skeletal muscle improve with massage-like loading following eccentric exercise. J. Biomech. 2012, 45, 2630–2636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, C.; Butterfield, T.A.; Abshire, S.; Zhao, Y.; Zhang, X.; Jarjoura, D.; Best, T.M. Massage timing affects postexercise muscle recovery and inflammation in a rabbit model. Med. Sci. Sports Exerc. 2013, 45, 1105–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, C.; Butterfield, T.A.; Zhao, Y.; Zhang, X.; Jarjoura, D.; Best, T.M. Dose-dependency of massage-like compressive loading on recovery of active muscle properties following eccentric exercise: Rabbit study with clinical relevance. Br. J. Sports Med. 2013, 47, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Butterfield, T.A.; Zhao, Y.; Agarwal, S.; Haq, F.; Best, T.M. Cyclic compressive loading facilitates recovery after eccentric exercise. Med. Sci. Sports Exerc. 2008, 40, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Barbe, M.F.; Harris, M.Y.; Cruz, G.E.; Amin, M.; Billett, N.M.; Dorotan, J.T.; Day, E.P.; Kim, S.Y.; Bove, G.M. Key indicators of repetitive overuse-induced neuromuscular inflammation and fibrosis are prevented by manual therapy in a rat model. BMC Musculoskelet. Disord. 2021, 22, 417. [Google Scholar] [CrossRef]
- Barbe, M.F.; Panibatla, S.T.; Harris, M.Y.; Amin, M.; Dorotan, J.T.; Cruz, G.E.; Bove, G.M. Manual Therapy With Rest as a Treatment for Established Inflammation and Fibrosis in a Rat Model of Repetitive Strain Injury. Front. Physiol. 2021, 12, 755923. [Google Scholar] [CrossRef]
- Bove, G.M.; Delany, S.P.; Hobson, L.; Cruz, G.E.; Harris, M.Y.; Amin, M.; Chapelle, S.L.; Barbe, M.F. Manual therapy prevents onset of nociceptor activity, sensorimotor dysfunction, and neural fibrosis induced by a volitional repetitive task. Pain 2019, 160, 632–644. [Google Scholar] [CrossRef]
- Bove, G.M.; Harris, M.Y.; Zhao, H.; Barbe, M.F. Manual therapy as an effective treatment for fibrosis in a rat model of upper extremity overuse injury. J. Neurol. Sci. 2016, 361, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Saetung, S.; Chailurkit, L.O.; Ongphiphadhanakul, B. Thai traditional massage increases biochemical markers of bone formation in postmenopausal women: A randomized crossover trial. BMC Complement. Altern. Med. 2013, 13, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saetung, S.; Chailurkit, L.O.; Ongphiphadhanakul, B. Acute changes in biochemical markers of bone resorption and formation after Thai traditional massage. J. Med. Assoc. Thail. 2010, 93, 771–775. [Google Scholar]
- Aly, H.; Moustafa, M.F.; Hassanein, S.M.; Massaro, A.N.; Amer, H.A.; Patel, K. Physical activity combined with massage improves bone mineralization in premature infants: A randomized trial. J. Perinatol. 2004, 24, 305–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Miller, S.; Shaw, J.; Moyer-Mileur, L. Massage therapy during early postnatal life promotes greater lean mass and bone growth, mineralization, and strength in juvenile and young adult rats. J. Musculoskelet. Neuronal. Interact. 2009, 9, 278–287. [Google Scholar] [PubMed]
- Zhang, Y.H.; Heulsmann, A.; Tondravi, M.M.; Mukherjee, A.; Abu-Amer, Y. Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol. Chem. 2001, 276, 563–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, B.D.; Al Shatti, T.A.; Barr, A.E.; Amin, M.; Barbe, M.F. Performance of a high-repetition, high-force task induces carpal tunnel syndrome in rats. J. Orthop. Sports Phys. Ther. 2004, 34, 244–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villotte, S.; Castex, D.; Couallier, V.; Dutour, O.; Knusel, C.J.; Henry-Gambier, D. Enthesopathies as occupational stress markers: Evidence from the upper limb. Am. J. Phys. Anthropol. 2010, 142, 224–234. [Google Scholar] [CrossRef]
- Bureau of Labor Statistics. Fact Sheet|Occupational Injuries and Illnesses Resulting in Musculoskeletal Disorders (MSDs)|May 2020. Available online: https://www.bls.gov/iif/oshwc/case/msds.htm (accessed on 27 September 2021).
- Ding, H.; Solovieva, S.; Vehmas, T.; Takala, E.P.; Leino-Arjas, P. Hand osteoarthritis and pinch grip strength among middle-aged female dentists and teachers. Scand. J. Rheumatol. 2010, 39, 84–87. [Google Scholar] [CrossRef]
- Vehmas, T.; Solovieva, S.; Riihimaki, H.; Luoma, K.; Leino-Arjas, P. Hand workload and the metacarpal cortical index. a study of middle-aged teachers and dentists. Osteoporos. Int. 2005, 16, 672–680. [Google Scholar] [CrossRef]
- Dale, A.M.; Ryan, D.; Welch, L.; Olsen, M.A.; Buchholz, B.; Evanoff, B. Comparison of musculoskeletal disorder health claims between construction floor layers and a general working population. Occup. Environ. Med. 2015, 72, 15–20. [Google Scholar] [CrossRef]
- Avin, K.G.; Bloomfield, S.A.; Gross, T.S.; Warden, S.J. Biomechanical aspects of the muscle-bone interaction. Curr. Osteoporos. Rep. 2015, 13, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brotto, M.; Bonewald, L. Bone and muscle: Interactions beyond mechanical. Bone 2015, 80, 109–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbe, M.F.; Popoff, S.N. Occupational Activities: Factors That Tip the Balance from Bone Accrual to Bone Loss. Exerc. Sport Sci. Rev. 2020, 48, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbe, M.F.; Jain, N.X.; Massicotte, V.S.; Popoff, S.N.; Barr-Gillespie, A.E. Ergonomic task reduction prevents bone osteopenia in a rat model of upper extremity overuse. Ind. Health 2015, 53, 206–221. [Google Scholar] [CrossRef] [Green Version]
- Rani, S.; Barbe, M.F.; Barr, A.E.; Litivn, J. Role of TNF alpha and PLF in bone remodeling in a rat model of repetitive reaching and grasping. J. Cell. Physiol. 2010, 225, 152–167. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, E.; Paul Crawford, R.; Chan, D.D.; Keaveny, T.M. Development of residual strains in human vertebral trabecular bone after prolonged static and cyclic loading at low load levels. J. Biomech. 2006, 39, 1812–1818. [Google Scholar] [CrossRef]
- Chapurlat, R.D.; Delmas, P.D. Bone microdamage: A clinical perspective. Osteoporos. Int. 2009, 20, 1299–1308. [Google Scholar] [CrossRef]
- Klein-Nulend, J.; Bacabac, R.G.; Bakker, A.D. Mechanical loading and how it affects bone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. Eur. Cell Mater. 2012, 24, 278–291. [Google Scholar] [CrossRef]
- Risteli, J.; Risteli, L. Assays of type I procollagen domains and collagen fragments: Problems to be solved and future trends. Scand. J. Clin. Lab. Investig. Suppl. 1997, 227, 105–113. [Google Scholar] [CrossRef]
- Gowen, M.; Wood, D.D.; Ihrie, E.J.; McGuire, M.K.; Russell, R.G. An interleukin 1 like factor stimulates bone resorption in vitro. Nature 1983, 306, 378–380. [Google Scholar] [CrossRef]
- Nanes, M.S. Tumor necrosis factor-alpha: Molecular and cellular mechanisms in skeletal pathology. Gene 2003, 321, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Li, A.; Strait, K.; Zhang, H.; Nanes, M.S.; Weitzmann, M.N. Endogenous TNFα lowers maximum peak bone mass and inhibits osteoblastic Smad activation through NF-κB. J. Bone Miner. 2007, 22, 646–655. [Google Scholar] [CrossRef] [PubMed]
- Barbe, M.F.; Amin, M.; Gingery, A.; Lambi, A.G.; Popoff, S.N. Blocking CCN2 preferentially inhibits osteoclastogenesis induced by repetitive high force bone loading. Connect. Tissue Res. 2021, 62, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Yuan, L.; Yang, J.; Du, J. Numerical Simulation of Mandible Bone Remodeling under Tooth Loading: A Parametric Study. Sci. Rep. 2019, 9, 14887. [Google Scholar] [CrossRef] [PubMed]
- Dunlop, J.W.; Hartmann, M.A.; Brechet, Y.J.; Fratzl, P.; Weinkamer, R. New suggestions for the mechanical control of bone remodeling. Calcif. Tissue Int. 2009, 85, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneki, H.; Guo, R.; Chen, D.; Yao, Z.; Schwarz, E.M.; Zhang, Y.E.; Boyce, B.F.; Xing, L. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J. Biol. Chem. 2006, 281, 4326–4333. [Google Scholar] [CrossRef] [Green Version]
- Szulc, P.; Seeman, E.; Duboeuf, F.; Sornay-Rendu, E.; Delmas, P.D. Bone fragility: Failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J. Bone Miner. Res. 2006, 21, 1856–1863. [Google Scholar] [CrossRef]
- Seeman, E. Structural basis of growth-related gain and age-related loss of bone strength. Rheumatology 2008, 47 (Suppl. S4), iv2–iv8. [Google Scholar] [CrossRef] [Green Version]
- Rubin, C.; Turner, A.S.; Mallinckrodt, C.; Jerome, C.; McLeod, K.; Bain, S. Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 2002, 30, 445–452. [Google Scholar] [CrossRef]
- Robling, A.G.; Burr, D.B.; Turner, C.H. Partitioning a daily mechanical stimulus into discrete loading bouts improves the osteogenic response to loading. J. Bone Miner. Res. 2000, 15, 1596–1602. [Google Scholar] [CrossRef]
- Frost, H.M. The mechanostat: A proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987, 2, 73–85. [Google Scholar]
- Frost, H.M. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining Wolff’s law: The remodeling problem. Anat. Rec. 1990, 226, 414–422. [Google Scholar] [CrossRef]
- Bove, G.M.; Chapelle, S.L.; Barrigar, M.J.S.; Barbe, M.F. Manual Therapy Research Methods in Animal Models, Focusing on Soft Tissues. Front. Integr. Neurosci. 2021, 15, 802378. [Google Scholar] [CrossRef]
- Hadrevi, J.; Barbe, M.F.; Ortenblad, N.; Frandsen, U.; Boyle, E.; Lazar, S.; Sjogaard, G.; Sogaard, K. Calcium Fluxes in Work-Related Muscle Disorder: Implications from a Rat Model. Biomed. Res. Int. 2019, 2019, 5040818. [Google Scholar] [CrossRef] [Green Version]
- Beyreuther, B.K.; Geis, C.; Stohr, T.; Sommer, C. Antihyperalgesic efficacy of lacosamide in a rat model for muscle pain induced by TNF. Neuropharmacology 2007, 52, 1312–1317. [Google Scholar] [CrossRef]
- Barbe, M.F.; Hilliard, B.A.; Delany, S.P.; Iannarone, V.J.; Harris, M.Y.; Amin, M.; Cruz, G.E.; Barreto-Cruz, Y.; Tran, N.; Day, E.P.; et al. Blocking CCN2 Reduces Progression of Sensorimotor Declines and Fibrosis in a Rat Model of Chronic Repetitive Overuse. J. Orthop. Res. 2019, 37, 2004–2018. [Google Scholar] [CrossRef] [Green Version]
- Massicotte, C.; Barber, D.S.; Jortner, B.S.; Ehrich, M. Nerve conduction and ATP concentrations in sciatic-tibial and medial plantar nerves of hens given phenyl saligenin phosphate. Neurotoxicology 2001, 22, 91–98. [Google Scholar] [CrossRef]
- Smith, T.T.G.; Barr-Gillespie, A.E.; Klyne, D.M.; Harris, M.Y.; Amin, M.; Paul, R.W.; Cruz, G.E.; Zhao, H.; Gallagher, S.; Barbe, M.F. Forced treadmill running reduces systemic inflammation yet worsens upper limb discomfort in a rat model of work-related musculoskeletal disorders. BMC Musculoskelet. Disord. 2020, 21, 57. [Google Scholar] [CrossRef] [Green Version]
- Massicotte, V.S.; Frara, N.; Harris, M.Y.; Amin, M.; Wade, C.K.; Popoff, S.N.; Barbe, M.F. Prolonged performance of a high repetition low force task induces bone adaptation in young adult rats, but loss in mature rats. Exp. Gerontol. 2015, 72, 204–217. [Google Scholar] [CrossRef] [Green Version]
- Dempster, D.W.; Compston, J.E.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R.; Parfitt, A.M. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2013, 28, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, A.M.; Drezner, M.K.; Glorieux, F.H.; Kanis, J.A.; Malluche, H.; Meunier, P.J.; Ott, S.M.; Recker, R.R. Bone histomorphometry: Standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 1987, 2, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Arai, S.; Itoh, H.; Adachi, S.; Hayashida, M.; Nakase, H.; Ikemoto, M. CD68 on rat macrophages binds tightly to S100A8 and S100A9 and helps to regulate the cells’ immune functions. J. Leukoc. Biol. 2016, 100, 1093–1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brochhausen, C.; Schmitt, V.H.; Mamilos, A.; Schmitt, C.; Planck, C.N.; Rajab, T.K.; Hierlemann, H.; Kirkpatrick, C.J. Expression of CD68 positive macrophages in the use of different barrier materials to prevent peritoneal adhesions-an animal study. J. Mater. Sci. Mater. Med. 2017, 28, 15. [Google Scholar] [CrossRef] [Green Version]
- Braun, L.T.; Fazel, J.; Zopp, S.; Benedix, S.; Osswald-Kopp, A.; Riester, A.; Rubinstein, G.; Seidensticker, M.; Beuschlein, F.; Drey, M.; et al. The Effect of Biochemical Remission on Bone Metabolism in Cushing’s Syndrome: A 2-Year Follow-Up Study. J. Bone Miner. Res. 2020, 35, 1711–1717. [Google Scholar] [CrossRef]
- Moser, S.C.; van der Eerden, B.C.J. Osteocalcin-A Versatile Bone-Derived Hormone. Front. Endocrinol. 2018, 9, 794. [Google Scholar] [CrossRef] [Green Version]
- Konukoglu, D. Bone markers. Int. J. Med. Biochem. 2019, 2, 65–78. [Google Scholar] [CrossRef]
- Swinscow, T.D.V.; Campbell, M.J. University of Southampton. In Statistics at Square One, 9th ed.; BMJ Publishing Group: London, UK, 1997. [Google Scholar]
- LaMorte, W.W. The Correlation Coefficient (r). Available online: https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module9-Correlation-Regression/PH717-Module9-Correlation-Regression4.html (accessed on 4 March 2021).
Attribute | Task Group | Treatment Group | Interaction |
---|---|---|---|
Metaphyseal Trabeculae, MicroCT (2-way ANOVA) | |||
% BV/TV | p = 0.0001 | p = 0.04 | p = 0.0004 |
Tb.N | p < 0.0001 | p = 0.004 | p < 0.0001 |
Tb.Sp | p = 0.003 | p = 0.91 | p = 0.005 |
Tb.Th | p < 0.0001 | p = 0.42 | p = 0.32 |
BS/BV | p = 0.0004 | p = 0.27 | p = 0.59 |
DA | p = 0.006 | p = 0.001 | p = 0.191 |
BMD | p < 0.0001 | p = 0.04 | p = 0.12 |
Metaphyseal Trabeculae, Histomorphometry (2-way ANOVA) | |||
N.Ob/BS | p = 0.002 | p = 0.14 | p = 0.03 |
% OV/BV | p = 0.008 | p = 0.006 | p = 0.02 |
% OS/BS | p = 0.02 | p = 0.14 | p = 0.02 |
O.Wi | p = 0.36 | p = 0.002 | p = 0.55 |
N.Oc/BS | p < 0.0001 | p < 0.0001 | p < 0.0001 |
% Oc/BS | p = 0.005 | p = 0.03 | p = 0.03 |
Mid-diaphyseal cortical bone, MicroCT (2-way ANOVA) | |||
Tr.Ar | p = 0.03 | p = 0.09 | p = 0.14 |
Ct.Ar | p < 0.0001 | p = 0.31 | p = 0.45 |
Ct.Ar/Tr.Ar, % | p < 0.0001 | p = 0.83 | p = 0.85 |
Ct.Th | p < 0.0001 | p = 0.93 | p = 0.38 |
Ma.Ar | p < 0.0001 | p = 0.71 | p = 0.056 |
Ps.Pm | p = 0.04 | p = 0.10 | p = 0.04 |
TMD | p < 0.0001 | p = 0.94 | p = 0.32 |
Serum Biomarkers (2-way ANOVA) | |||
Osteocalcin | p = 0.81 | p = 0.08 | p = 0.0003 |
CTX-1 | p = 0.06 | p = 0.31 | p = 0.0005 |
TNF-α | p = 0.12 | p = 0.27 | p = 0.04 |
Flexor Digitorum Muscle (2-way ANOVA) | |||
# CD68+ cells | p < 0.0001 | p < 0.0001 | p < 0.0001 |
CSA (whole muscle) | p < 0.0001 | p = 0.57 | p = 0.44 |
Attribute | Time | Treatment | Interaction |
Voluntary Reach Outcomes (Mixed Model) | |||
Reach Rate | p = 0.28 | p = 0.04 | p = 0.01 |
Pulling Force | p = 0.34 | p = 0.01 | p = 0.49 |
Grasp Duration | p = 0.047 | p = 0.04 | p = 0.03 |
Behavior or Muscle Feature | Tb. % BV/TV | Tb. BMD | Ct. Tr.Ar. | Ct. Ps.Pm | Ct TMD |
---|---|---|---|---|---|
Reach Rate (reaches/min) | r = 0.16 p = 0.25 | r = 0.04 p = 0.42 | r = 0.04 p = 0.43 | r = 0.09 p = 0.43 | r = 0.03 p = 0.44 |
Pulling Force (cN) | r = 0.53 p = 0.009 | r = 0.63 p = 0.002 | r = 0.06 p = 0.39 | r = 0.12 p = 0.30 | r = −0.10 p = 0.33 |
Grasp Duration (msec) | r = −0.35 p = 0.13 | r = −0.33 p = 0.17 | r = −0.40 p = 0.09 | r = −0.36 p = 0.13 | r = 0.04 p = 0.85 |
Flexor Muscle CD68+ cells | r = −0.47 p = 0.03 | r = −0.46 p = 0.04 | r = −0.55 p < 0.0001 | r = 0.01 p = 0.94 | r = 0.16 p = 0.28 |
Flexor Muscle CSA (mm2) | r = −0.01 p = 0.94 | r = 0.22 p = 0.24 | r = 0.03 p = 0.79 | r = 0.28 p = 0.03 | r = 0.10 p = 0.58 |
Body Weight | r = −0.19 p = 0.18 | r = 0.14 p = 0.30 | r = −0.14 p = 0.19 | r = −0.11 p = 0.25 | r = −0.20 p = 0.20 |
Reach Parameter | TASK | TASK+MT |
---|---|---|
Mean ± SEM | Mean ± SEM | |
Total volume of reaches (total reaches) | 315 ± 4 | 739 ± 5 |
Mean pulling force loads (cN) | 161 ± 4 | 176 ± 3 |
Total grasp duration of lever bar (s) | 100.1 ± 0.03 | 65 ± 0.1 |
Total volume of loading (total reaches · total ms grasping · mean force per grasp (kNs)) | 50.7 ± 2 | 84.5 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbe, M.F.; Amin, M.; Harris, M.Y.; Panibatla, S.T.; Assari, S.; Popoff, S.N.; Bove, G.M. Manual Therapy Facilitates Homeostatic Adaptation to Bone Microstructural Declines Induced by a Rat Model of Repetitive Forceful Task. Int. J. Mol. Sci. 2022, 23, 6586. https://doi.org/10.3390/ijms23126586
Barbe MF, Amin M, Harris MY, Panibatla ST, Assari S, Popoff SN, Bove GM. Manual Therapy Facilitates Homeostatic Adaptation to Bone Microstructural Declines Induced by a Rat Model of Repetitive Forceful Task. International Journal of Molecular Sciences. 2022; 23(12):6586. https://doi.org/10.3390/ijms23126586
Chicago/Turabian StyleBarbe, Mary F., Mamta Amin, Michele Y. Harris, Siva Tejaa Panibatla, Soroush Assari, Steven N. Popoff, and Geoffrey M. Bove. 2022. "Manual Therapy Facilitates Homeostatic Adaptation to Bone Microstructural Declines Induced by a Rat Model of Repetitive Forceful Task" International Journal of Molecular Sciences 23, no. 12: 6586. https://doi.org/10.3390/ijms23126586
APA StyleBarbe, M. F., Amin, M., Harris, M. Y., Panibatla, S. T., Assari, S., Popoff, S. N., & Bove, G. M. (2022). Manual Therapy Facilitates Homeostatic Adaptation to Bone Microstructural Declines Induced by a Rat Model of Repetitive Forceful Task. International Journal of Molecular Sciences, 23(12), 6586. https://doi.org/10.3390/ijms23126586