Editorial to the Special Issue “Molecular Motors: From Single Molecules to Cooperative and Regulatory Mechanisms In Vivo”
Funding
Acknowledgments
Conflicts of Interest
References
- Trivedi, D.V.; Nag, S.; Spudich, A.; Ruppel, K.M.; Spudich, J.A. The Myosin Family of Mechanoenzymes: From Mechanisms to Therapeutic Approaches. Annu. Rev. Biochem. 2020, 89, 667–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, J.; Hudspeth, A.J.; Vale, R.D. Movement of microtubules by single kinesin molecules. Nature 1989, 342, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Herbert, K.M.; Greenleaf, W.J.; Block, S.M. Single-Molecule Studies of RNA Polymerase: Motoring Along. Annu. Rev. Biochem. 2008, 77, 149–176. [Google Scholar] [CrossRef] [Green Version]
- Moore, P.B.; Steitz, T.A. The structural basis of large ribosomal subunit function. Annu. Rev. Biochem. 2003, 72, 813–850. [Google Scholar] [CrossRef]
- Tyagi, M.; Imam, N.; Verma, K.; Pate, A.K. Chromatin remodelers: We are the drivers! Nucleus 2016, 4, 388–404. [Google Scholar] [CrossRef] [Green Version]
- Månsson, A. Hypothesis: Single Actomyosin Properties Account for Ensemble Behavior in Active Muscle Shortening and Isometric Contraction. Int. J. Mol. Sci. 2020, 21, 8399. [Google Scholar] [CrossRef]
- Pertici, I.; Bianchi, G.; Bongini, L.; Lombardi, V.; Bianco, P. A Myosin II-Based Nanomachine Devised for the Study of Ca2+-Dependent Mechanisms of Muscle Regulation. Int. J. Mol. Sci. 2020, 21, 7372. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, L.; Fukunaga, H.; Yanagida, T.; Iwaki, M. The Synergic Role of Actomyosin Architecture and Biased Detachment in Muscle Energetics: Insights in Cross Bridge Mechanism beyond the Lever-Arm Swing. Int. J. Mol. Sci. 2021, 22, 7037. [Google Scholar] [CrossRef] [PubMed]
- Piazzesi, G.; Reconditi, M.; Linari, M.; Lucii, L.; Sun, Y.-B.; Narayanan, T.; Boesecke, P.; Lombardi, V.; Irving, M. Mechanism of force generation by myosin heads in skeletal muscle. Nature 2002, 415, 659–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huxley, H.; Reconditi, M.; Stewart, A.; Irving, T. X-ray Interference Studies of Crossbridge Action in Muscle Contraction: Evidence from Quick Releases. J. Mol. Biol. 2006, 363, 743–761. [Google Scholar] [CrossRef] [PubMed]
- Uyeda, T.Q.P.; Abramson, P.D.; Spudich, J.A. The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc. Natl. Acad. Sci. USA 1996, 93, 4459–4464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linari, M.; Brunello, E.; Reconditi, M.; Fusi, L.; Caremani, M.; Narayanan, T.; Piazzesi, G.; Lombardi, V.; Irving, M. Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 2015, 528, 276–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reconditi, M.; Caremani, M.; Pinzauti, F.; Powers, J.D.; Narayanan, T.; Stienen, G.J.M.; Linari, M.; Lombardi, V.; Piazzesi, G. Myosin filament activation in the heart is tuned to the mechanical task. Proc. Natl. Acad. Sci. USA 2017, 114, 3240–3245. [Google Scholar] [CrossRef] [Green Version]
- Vale, R.D.; Milligan, R.A. The way things move: Looking under the hood of molecular motor proteins. Science 2000, 288, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Mizuhara, Y.; Takano, M. Biased Brownian Motion of KIF1A and the Role of Tubulin’s C-Terminal Tail Studied by Molecular Dynamics Simulation. Int. J. Mol. Sci. 2021, 22, 1547. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Hirokawa, N. A processive single-headed motor: Kinesin superfamily protein KIF1A. Science 1999, 283, 1152–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Zhang, H.; Geng, Y.; Ji, Q. How Kinesin-1 Utilize the Energy of Nucleotide: The Conformational Changes and Mechanical Coupling in the Unidirectional Motion of Kinesin-1. Int. J. Mol. Sci. 2020, 21, 6977. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.; LeGresley, S.; Fischer, C. Remodeler Catalyzed Nucleosome Repositioning: Influence of Structure and Stability. Int. J. Mol. Sci. 2021, 22, 76. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capitanio, M.; Reconditi, M. Editorial to the Special Issue “Molecular Motors: From Single Molecules to Cooperative and Regulatory Mechanisms In Vivo”. Int. J. Mol. Sci. 2022, 23, 6605. https://doi.org/10.3390/ijms23126605
Capitanio M, Reconditi M. Editorial to the Special Issue “Molecular Motors: From Single Molecules to Cooperative and Regulatory Mechanisms In Vivo”. International Journal of Molecular Sciences. 2022; 23(12):6605. https://doi.org/10.3390/ijms23126605
Chicago/Turabian StyleCapitanio, Marco, and Massimo Reconditi. 2022. "Editorial to the Special Issue “Molecular Motors: From Single Molecules to Cooperative and Regulatory Mechanisms In Vivo”" International Journal of Molecular Sciences 23, no. 12: 6605. https://doi.org/10.3390/ijms23126605
APA StyleCapitanio, M., & Reconditi, M. (2022). Editorial to the Special Issue “Molecular Motors: From Single Molecules to Cooperative and Regulatory Mechanisms In Vivo”. International Journal of Molecular Sciences, 23(12), 6605. https://doi.org/10.3390/ijms23126605