Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons
Abstract
:1. Introduction
2. Results
2.1. Pharmacological Stimulation of Nurr1 Increases Nurr1 and BDNF Gene Expression
2.2. Membrane Depolarization Induces Nurr1 and BDNF Gene Expression
2.3. Basal BDNF Gene Expression Is Not Regulated by Nurr1
2.4. Activity-Dependent BDNF Gene Expression Is Not Regulated by Nurr1
3. Discussion
4. Materials and Methods
4.1. Neuronal Cell Culture
4.2. RNA Extraction
4.3. Amodiaquine (AQ) Treatment
4.4. Membrane Depolarization
4.5. Nurr1 Knockdown
4.6. Complementary DNA (cDNA) Synthesis
4.7. Real-Time Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR)
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ohkura, N.; Hijikuro, M.; Yamamoto, A.; Miki, K. Molecular Cloning of a Novel Thyroid/Steroid Receptor Superfamily Gene from Cultured Rat Neuronal Cells. Biochem. Biophys. Res. Commun. 1994, 205, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Zetterström, R.H.; Solomin, L.; Jansson, L.; Hoffer, B.J.; Olson, L.; Perlmann, T. Dopamine Neuron Agenesis in Nurr1-Deficient Mice. Science 1997, 276, 248–250. [Google Scholar] [CrossRef] [PubMed]
- Volpicelli, F.; Caiazzo, M.; Greco, D.; Consales, C.; Leone, L.; Perrone-Capano, C.; D’Amato, L.C.; di Porzio, U. Bdnf Gene Is a Downstream Target of Nurr1 Transcription Factor in Rat Midbrain Neurons in Vitro. J. Neurochem. 2007, 102, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Volpicelli, F.; Perrone-Capano, C.; Da Pozzo, P.; Colucci-D’Amato, L.; di Porzio, U. Modulation of Nurr1 Gene Expression in Mesencephalic Dopaminergic Neurones. J. Neurochem. 2004, 88, 1283–1294. [Google Scholar] [CrossRef] [PubMed]
- Volpicelli, F.; De Gregorio, R.; Pulcrano, S.; Perrone-Capano, C.; di Porzio, U.; Bellenchi, G.C. Direct Regulation of Pitx3 Expression by Nurr1 in Culture and in Developing Mouse Midbrain. PLoS ONE 2012, 7, e30661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, J.W.; Mazei-Robison, M.S.; LaPlant, Q.; Egervari, G.; Braunscheidel, K.M.; Adank, D.N.; Ferguson, D.; Feng, J.; Sun, H.; Scobie, K.N.; et al. Epigenetic Basis of Opiate Suppression of Bdnf Gene Expression in the Ventral Tegmental Area. Nat. Neurosci. 2015, 18, 415. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Saarma, M.; Arumäe, U. Death Receptors and Caspases but Not Mitochondria are Activated in the GDNF-or BDNF-Deprived Dopaminergic Neurons. J. Neurosci. 2008, 28, 7467–7475. [Google Scholar] [CrossRef] [Green Version]
- Notaras, M.; van den Buuse, M. Brain-Derived Neurotrophic Factor (BDNF): Novel Insights into Regulation and Genetic Variation. Neuroscientist 2019, 25, 434–454. [Google Scholar] [CrossRef]
- Fuster, J.M. Cortex and Memory: Emergence of a New Paradigm. J. Cogn. Neurosci. 2009, 21, 2047–2072. [Google Scholar] [CrossRef]
- Preston, A.R.; Eichenbaum, H. Interplay of Hippocampus and Prefrontal Cortex in Memory. Curr. Biol. 2013, 23, R764–R773. [Google Scholar] [CrossRef] [Green Version]
- Saucedo-Cardenas, O.; Conneely, O.M. Comparative Distribution of NURR1 and NUR77 Nuclear Receptors in the Mouse Central Nervous System. J. Mol. Neurosci. 1996, 7, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Xing, G.; Zhang, L.; Zhang, L.; Heynen, T.; Li, X.-L.; Smith, M.A.; Weiss, S.R.B.; Feldman, A.N.; Detera-Wadleigh, S.; Chuang, D.-M.; et al. Rat Nurr1 Is Prominently Expressed in Perirhinal Cortex, and Differentially Induced in the Hippocampal Dentate Gyrus by Electroconvulsive vs. Kindled Seizures. Mol. Brain Res. 1997, 47, 251–261. [Google Scholar] [CrossRef]
- Zhou, B.; Cai, Q.; Xie, Y.; Sheng, Z.-H. Snapin Recruits Dynein to BDNF-TrkB Signaling Endosomes for Retrograde Axonal Transport and Is Essential for Dendrite Growth of Cortical Neurons. Cell Rep. 2012, 2, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringstedt, T.; Linnarsson, S.; Wagner, J.; Lendahl, U.; Kokaia, Z.; Arenas, E.; Ernfors, P.; Ibáñez, C.F. BDNF Regulates Reelin Expression and Cajal-Retzius Cell Development in the Cerebral Cortex. Neuron 1998, 21, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.J.; Kirkwood, A.; Pizzorusso, T.; Porciatti, V.; Morales, B.; Bear, M.F.; Maffei, L.; Tonegawa, S. BDNF Regulates the Maturation of Inhibition and the Critical Period of Plasticity in Mouse Visual Cortex. Cell 1999, 98, 739–755.16. [Google Scholar] [CrossRef] [Green Version]
- Antal, A.; Chaieb, L.; Moliadze, V.; Monte-Silva, K.; Poreisz, C.; Thirugnanasambandam, N.; Nitsche, M.A.; Shoukier, M.; Ludwig, H.; Paulus, W. Brain-Derived Neurotrophic Factor (BDNF) Gene Polymorphisms Shape Cortical Plasticity in Humans. Brain Stimulat. 2010, 3, 230–237. [Google Scholar] [CrossRef]
- Ghosh, A.; Carnahan, J.; Greenberg, M.E. Requirement for BDNF in Activity-Dependent Survival of Cortical Neurons. Science 1994, 263, 1618–1623. [Google Scholar] [CrossRef]
- Liu, L.; Cavanaugh, J.E.; Wang, Y.; Sakagami, H.; Mao, Z.; Xia, Z. ERK5 Activation of MEF2-Mediated Gene Expression Plays a Critical Role in BDNF-Promoted Survival of Developing but Not Mature Cortical Neurons. Proc. Natl. Acad. Sci. USA 2003, 100, 8532–8537. [Google Scholar] [CrossRef] [Green Version]
- Vutskits, L.; Djebbara-Hannas, Z.; Zhang, H.; Paccaud, J.; Durbec, P.; Rougon, G.; Muller, D.; Kiss, J.Z. PSA-NCAM Modulates BDNF-dependent Survival and Differentiation of Cortical Neurons. Eur. J. Neurosci. 2001, 13, 1391–1402. [Google Scholar] [CrossRef]
- Wheeler, A.L.; Felsky, D.; Viviano, J.D.; Stojanovski, S.; Ameis, S.H.; Szatmari, P.; Lerch, J.P.; Chakravarty, M.M.; Voineskos, A.N. BDNF-Dependent Effects on Amygdala–Cortical Circuitry and Depression Risk in Children and Youth. Cereb. Cortex 2018, 28, 1760–1770. [Google Scholar] [CrossRef]
- Holsinger, R.M.D.; Schnarr, J.; Henry, P.; Castelo, V.T.; Fahnestock, M. Quantitation of BDNF mRNA in Human Parietal Cortex by Competitive Reverse Transcription-Polymerase Chain Reaction: Decreased Levels in Alzheimer’s Disease. Mol. Brain Res. 2000, 76, 347–354. [Google Scholar] [CrossRef]
- Christensen, R.; Marcussen, A.B.; Wörtwein, G.; Knudsen, G.M.; Aznar, S. Aβ (1–42) Injection Causes Memory Impairment, Lowered Cortical and Serum BDNF Levels, and Decreased Hippocampal 5-HT2A Levels. Exp. Neurol. 2008, 210, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Keifer, J. Comparative Genomics of the BDNF Gene, Non-Canonical Modes of Transcriptional Regulation, and Neurological Disease. Mol. Neurobiol. 2021, 58, 2851–2861. [Google Scholar] [CrossRef]
- Hawk, J.D.; Bookout, A.L.; Poplawski, S.G.; Bridi, M.; Rao, A.J.; Sulewski, M.E.; Kroener, B.T.; Manglesdorf, D.J.; Abel, T. NR4A Nuclear Receptors Support Memory Enhancement by Histone Deacetylase Inhibitors. J. Clin. Investig. 2012, 122, 3593–3602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levenson, J.M.; Choi, S.; Lee, S.-Y.; Cao, Y.A.; Ahn, H.J.; Worley, K.C.; Pizzi, M.; Liou, H.-C.; Sweatt, J.D. A Bioinformatics Analysis of Memory Consolidation Reveals Involvement of the Transcription Factor C-Rel. J. Neurosci. 2004, 24, 3933–3943. [Google Scholar] [CrossRef] [PubMed]
- Baloh, R.H.; Enomoto, H.; Johnson, E.M.; Milbrandt, J. The GDNF Family Ligands and Receptors—Implications for Neural Development. Curr. Opin. Neurobiol. 2000, 10, 103–110. [Google Scholar] [CrossRef]
- Pei, L.; Castrillo, A.; Tontonoz, P. Regulation of Macrophage Inflammatory Gene Expression by the Orphan Nuclear Receptor Nur77. Mol. Endocrinol. 2006, 20, 786–794. [Google Scholar] [CrossRef]
- de Ortiz, S.P.; Maldonado-Vlaar, C.S.; Carrasquillo, Y. Hippocampal Expression of the Orphan Nuclear Receptor Gene Hzf-3/Nurr1 during Spatial Discrimination Learning. Neurobiol. Learn. Mem. 2000, 74, 161–178. [Google Scholar] [CrossRef] [Green Version]
- Colón-Cesario, W.I.; Martínez-Montemayor, M.M.; Morales, S.; Félix, J.; Cruz, J.; Adorno, M.; Pereira, L.; Colón, N.; Maldonado-Vlaar, C.S.; Peña de Ortiz, S. Knockdown of Nurr1 in the Rat Hippocampus: Implications to Spatial Discrimination Learning and Memory. Learn. Mem. Cold Spring Harb. N 2006, 13, 734–744. [Google Scholar] [CrossRef] [Green Version]
- Hawk, J.D.; Abel, T. The Role of NR4A Transcription Factors in Memory Formation. Brain Res. Bull. 2011, 85, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Ibi, D.; Takuma, K.; Koike, H.; Mizoguchi, H.; Tsuritani, K.; Kuwahara, Y.; Kamei, H.; Nagai, T.; Yoneda, Y.; Nabeshima, T. Social Isolation Rearing-induced Impairment of the Hippocampal Neurogenesis Is Associated with Deficits in Spatial Memory and Emotion-related Behaviors in Juvenile Mice. J. Neurochem. 2008, 105, 921–932. [Google Scholar] [CrossRef] [PubMed]
- McNulty, S.E.; Barrett, R.M.; Vogel-Ciernia, A.; Malvaez, M.; Hernandez, N.; Davatolhagh, M.F.; Matheos, D.P.; Schiffman, A.; Wood, M.A. Differential Roles for Nr4a1 and Nr4a2 in Object Location vs. Object Recognition Long-Term Memory. Learn. Mem. 2012, 19, 588–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bridi, M.S.; Abel, T. The NR4A Orphan Nuclear Receptors Mediate Transcription-Dependent Hippocampal Synaptic Plasticity. Neurobiol. Learn. Mem. 2013, 105, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldavert-Vera, L.; Huguet, G.; Costa-Miserachs, D.; de Ortiz, S.P.; Kádár, E.; Morgado-Bernal, I.; Segura-Torres, P. Intracranial Self-Stimulation Facilitates Active-Avoidance Retention and Induces Expression of c-Fos and Nurr1 in Rat Brain Memory Systems. Behav. Brain Res. 2013, 250, 46–57. [Google Scholar] [CrossRef]
- Glaab, E.; Schneider, R. Comparative Pathway and Network Analysis of Brain Transcriptome Changes during Adult Aging and in Parkinson’s Disease. Neurobiol. Dis. 2015, 74, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, G.M.; Dayas, C.V.; Smith, D.W. Age-Related Gene Expression Changes in Substantia Nigra Dopamine Neurons of the Rat. Mech. Ageing Dev. 2015, 149, 41–49. [Google Scholar] [CrossRef]
- Zhang, L.; Le, W.; Xie, W.; Dani, J.A. Age-Related Changes in Dopamine Signaling in Nurr1 Deficient Mice as a Model of Parkinson’s Disease. Neurobiol. Aging 2012, 33, 1001.e7–1001.e16. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Kompoliti, K.; Cochran, E.J.; Mufson, E.J.; Kordower, J.H. Age-Related Decreases in Nurr1 Immunoreactivity in the Human Substantia Nigra. J. Comp. Neurol. 2002, 450, 203–214. [Google Scholar] [CrossRef]
- Umegaki, H.; Roth, G.S.; Ingram, D.K. Aging of the Striatum: Mechanisms and Interventions. Age Dordr. Neth. 2008, 30, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Kummari, E.; Guo-Ross, S.; Eells, J.B. Region Specific Effects of Aging and the Nurr1-Null Heterozygous Genotype on Dopamine Neurotransmission. Neurochem. Neuropharmacol. Open Access 2017, 3, 114. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.H.; Lee, J.S.; Cho, J.H.; Park, J.H.; Lee, T.-K.; Song, M.; Kim, H.; Kang, S.H.; Won, M.-H.; Lee, C.H. Age-Dependent Decrease of Nurr1 Protein Expression in the Gerbil Hippocampus. Biomed. Rep. 2018, 8, 517–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, M.; Jeong, I.; Kim, C.; Kim, J.; Lee, P.K.J.; Mook-Jung, I.; Leblanc, P.; Kim, K. Correlation between Orphan Nuclear Receptor Nurr1 Expression and Amyloid Deposition in 5XFAD Mice, an Animal Model of Alzheimer’s Disease. J. Neurochem. 2015, 132, 254–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunha, C.; Brambilla, R.; Thomas, K.L. A Simple Role for BDNF in Learning and Memory? Front. Mol. Neurosci. 2010, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacchetti, P.; Carpentier, R.; Segard, P.; Olive-Cren, C.; Lefebvre, P. Multiple Signaling Pathways Regulate the Transcriptional Activity of the Orphan Nuclear Receptor NURR1. Nucleic Acids Res. 2006, 34, 5515–5527. [Google Scholar] [CrossRef] [Green Version]
- Mulder, A.H.; van Amsterdam, R.G.M.; Wilbrink, M.; Schoffelmeer, A.N.M. Depolarization-Induced Release of [3H] Histamine by High Potassium Concentrations, Electrical Stimulation and Veratrine from Rat Brain Slices after Incubation with the Radiolabelled Amine. Neurochem. Int. 1983, 5, 291–297. [Google Scholar] [CrossRef]
- Tokuoka, H.; Hatanaka, T.; Metzger, D.; Ichinose, H. Nurr1 Expression Is Regulated by Voltage-Dependent Calcium Channels and Calcineurin in Cultured Hippocampal Neurons. Neurosci. Lett. 2014, 559, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Moon, H.; Jeon, S.G.; Kim, J.I.; Kim, H.S.; Lee, S.; Kim, D.; Park, S.; Moon, M.; Chung, H. Pharmacological Stimulation of Nurr1 Promotes Cell Cycle Progression in Adult Hippocampal Neural Stem Cells. Int. J. Mol. Sci. 2019, 21, 4. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Jeon, S.G.; Kim, K.A.; Kim, Y.J.; Song, E.J.; Choi, J.; Ahn, K.J.; Kim, C.-J.; Chung, H.Y.; Moon, M.; et al. The Pharmacological Stimulation of Nurr1 Improves Cognitive Functions via Enhancement of Adult Hippocampal Neurogenesis. Stem Cell Res. 2016, 17, 534–543. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.-H.; Han, B.-S.; Moon, J.; Kim, D.-J.; Shin, J.; Rajan, S.; Nguyen, Q.T.; Sohn, M.; Kim, W.-G.; Han, M.; et al. Nuclear Receptor Nurr1 Agonists Enhance Its Dual Functions and Improve Behavioral Deficits in an Animal Model of Parkinson’s Disease. Proc. Natl. Acad. Sci. USA 2015, 112, 8756–8761. [Google Scholar] [CrossRef] [Green Version]
- Kambey, P.A.; Chengcheng, M.; Xiaoxiao, G.; Abdulrahman, A.A.; Kanwore, K.; Nadeem, I.; Jiao, W.; Gao, D. The Orphan Nuclear Receptor Nurr1 Agonist Amodiaquine Mediates Neuroprotective Effects in 6-OHDA Parkinson’s Disease Animal Model by Enhancing the Phosphorylation of P38 Mitogen-Activated Kinase but Not PI3K/AKT Signaling Pathway. Metab. Brain Dis. 2020, 36, 609–625. [Google Scholar] [CrossRef]
- Moon, M.; Jung, E.S.; Jeon, S.G.; Cha, M.-Y.; Jang, Y.; Kim, W.; Lopes, C.; Mook-Jung, I.; Kim, K.-S. Nurr1 (NR4A2) Regulates Alzheimer’s Disease-Related Pathogenesis and Cognitive Function in the 5XFAD Mouse Model. Aging Cell 2019, 18, e12866. [Google Scholar] [CrossRef] [PubMed]
- Willems, S.; Kilu, W.; Ni, X.; Chaikuad, A.; Knapp, S.; Heering, J.; Merk, D. The Orphan Nuclear Receptor Nurr1 Is Responsive to Non-Steroidal Anti-Inflammatory Drugs. Commun. Chem. 2020, 3, 85. [Google Scholar] [CrossRef]
- Glass, C.K.; Rosenfeld, M.G. The Coregulator Exchange in Transcriptional Functions of Nuclear Receptors. Genes Dev. 2000, 14, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Jing, C.-Y.; Fu, Y.-P.; Zhou, C.; Zhang, M.-X.; Yi, Y.; Huang, J.-L.; Gan, W.; Zhang, J.; Zheng, S.-S.; Zhang, B.H.; et al. Hepatic Stellate Cells Promote Intrahepatic Cholangiocarcinoma Progression via NR4A2/Osteopontin/Wnt Signaling Axis. Oncogene 2021, 40, 2910–2922. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.R.; Harding, C.J.; Raines, S.; Tolley, K.; Parker, A.E.; Downey-Jones, M.; Needham, M.R.C. Nurr1 Dependent Regulation of Pro-Inflammatory Mediators in Immortalised Synovial Fibroblasts. J. Inflamm. 2005, 2, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B. BDNF and Activity-Dependent Synaptic Modulation. Learn. Mem. 2003, 10, 86–98. [Google Scholar] [CrossRef] [Green Version]
- Narisawa-Saito, M.; Wakabayashi, K.; Tsuji, S.; Takahashi, H.; Nawa, H. Regional Specificity of Alterations in NGF, BDNF and NT-3 Levels in Alzheimer’s Disease. Neuroreport 1996, 7, 2925–2928. [Google Scholar] [CrossRef]
- Barneda-Zahonero, B.; Servitja, J.-M.; Badiola, N.; Miñano-Molina, A.J.; Fadó, R.; Saura, C.A.; Rodríguez-Alvarez, J. Nurr1 Protein Is Required for N-Methyl-d-Aspartic Acid (NMDA) Receptor-Mediated Neuronal Survival. J. Biol. Chem. 2012, 287, 11351–11362. [Google Scholar] [CrossRef] [Green Version]
- Law, S.W.; Conneely, O.M.; DeMayo, F.J.; O’Malley, B.W. Identification of a New Brain-Specific Transcription Factor, NURR1. Mol. Endocrinol. 1992, 6, 2129–2135. [Google Scholar] [CrossRef] [Green Version]
- Shieh, P.B.; Hu, S.-C.; Bobb, K.; Timmusk, T.; Ghosh, A. Identification of a Signaling Pathway Involved in Calcium Regulation of BDNF Expression. Neuron 1998, 20, 727–740. [Google Scholar] [CrossRef] [Green Version]
- Tabuchi, A.; Nakaoka, R.; Amano, K.; Yukimine, M.; Andoh, T.; Kuraishi, Y.; Tsuda, M. Differential Activation of Brain-Derived Neurotrophic Factor Gene Promoters I and III by Ca2+ Signals Evoked Vial-Type Voltage-Dependent and N-Methyl-d-Aspartate Receptor Ca2+ Channels. J. Biol. Chem. 2000, 275, 17269–17275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauterborn, J.C.; Rivera, S.; Stinis, C.T.; Hayes, V.Y.; Isackson, P.J.; Gall, C.M. Differential Effects of Protein Synthesis Inhibition on the Activity-Dependent Expression of BDNF Transcripts: Evidence for Immediate-Early Gene Responses from Specific Promoters. J. Neurosci. 1996, 16, 7428–7436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tullai, J.W.; Schaffer, M.E.; Mullenbrock, S.; Sholder, G.; Kasif, S.; Cooper, G.M. Immediate-Early and Delayed Primary Response Genes are Distinct in Function and Genomic Architecture. J. Biol. Chem. 2007, 282, 23981–23995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zetterström, R.H.; Williams, R.; Perlmann, T.; Olson, L. Cellular Expression of the Immediate Early Transcription Factors Nurr1 and NGFI-B Suggests a Gene Regulatory Role in Several Brain Regions Including the Nigrostriatal Dopamine System. Mol. Brain Res. 1996, 41, 111–120. [Google Scholar] [CrossRef]
- Maxwell, M.A.; Muscat, G.E.O. The NR4A Subgroup: Immediate Early Response Genes with Pleiotropic Physiological Roles. Nucl. Recept. Signal. 2006, 4, nrs-04002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, G.; Zhang, L.; Russell, S.; Post, R. Reduction of Dopamine-Related Transcription Factors Nurr1 and NGFI-B in the Prefrontal Cortex in Schizophrenia and Bipolar Disorders. Schizophr. Res. 2006, 84, 36–56. [Google Scholar] [CrossRef]
- Jeon, S.G.; Yoo, A.; Chun, D.W.; Hong, S.B.; Chung, H.; Kim, J.; Moon, M. The Critical Role of Nurr1 as a Mediator and Therapeutic Target in Alzheimer’s Disease-Related Pathogenesis. Aging Dis. 2020, 11, 705. [Google Scholar] [CrossRef]
- Amidfar, M.; de Oliveira, J.; Kucharska, E.; Budni, J.; Kim, Y.-K. The Role of CREB and BDNF: Neurobiology and Treatment of Alzheimer’s Disease. Life Sci. 2020, 257, 118020. [Google Scholar] [CrossRef]
- Tao, X.; Finkbeiner, S.; Arnold, D.B.; Shaywitz, A.J.; Greenberg, M.E. Ca2+ Influx Regulates BDNF Transcription by a CREB Family Transcription Factor-Dependent Mechanism. Neuron 1998, 20, 709–726. [Google Scholar] [CrossRef] [Green Version]
- Volakakis, N.; Kadkhodaei, B.; Joodmardi, E.; Wallis, K.; Panman, L.; Silvaggi, J.; Spiegelman, B.M.; Perlmann, T. NR4A Orphan Nuclear Receptors as Mediators of CREB-Dependent Neuroprotection. Proc. Natl. Acad. Sci. USA 2010, 107, 12317–12322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapadia, M.; Mian, M.F.; Michalski, B.; Azam, A.B.; Ma, D.; Salwierz, P.; Christopher, A.; Rosa, E.; Zovkic, I.B.; Forsythe, P. Sex-Dependent Differences in Spontaneous Autoimmunity in Adult 3xTg-AD Mice. J. Alzheimers Dis. 2018, 63, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdollahi, M.; Fahnestock, M. Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons. Int. J. Mol. Sci. 2022, 23, 6853. https://doi.org/10.3390/ijms23126853
Abdollahi M, Fahnestock M. Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons. International Journal of Molecular Sciences. 2022; 23(12):6853. https://doi.org/10.3390/ijms23126853
Chicago/Turabian StyleAbdollahi, Mona, and Margaret Fahnestock. 2022. "Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons" International Journal of Molecular Sciences 23, no. 12: 6853. https://doi.org/10.3390/ijms23126853
APA StyleAbdollahi, M., & Fahnestock, M. (2022). Nurr1 Is Not an Essential Regulator of BDNF in Mouse Cortical Neurons. International Journal of Molecular Sciences, 23(12), 6853. https://doi.org/10.3390/ijms23126853