RNA Polymerase II Transcription in Pneumocystis: TFIIB from Pneumocystis carinii Can Replace the Transcriptional Functions of Fission Yeast Schizosaccharomyces pombe TFIIB In Vivo and In Vitro
Abstract
:1. Introduction
2. Results
2.1. Protein Structures of P. carinii and S. pombe TFIIB Have Conserved Regions
2.2. Characterization of a S. pombe Strain Expressing P. carinii TFIIB
2.3. Pneumocystis TFIIB Cannot Support the Formation of a Promoter–TBP–TFIIB Complex but Is Able to Form a Promoter–TBP–TFIIB-RNAPII/TFIIF Complex
2.4. The Expression Levels of TBP, TFIIF and RNAPII Do Not Change by the Replacement of Fission Yeast TFIIB by P. carinii TFIIB
2.5. Pneumocystis TFIIB Can Complement Transcription in a TFIIB-Depleted Fission Yeast Cell Extract
2.6. Pneumocystis TFIIB Does Not Change the Transcription Start Site of the nmt1 and adh1 Fission Yeast Genes within a Narrow Window
3. Discussion
4. Materials and Methods
4.1. Sequences and Protein Modeling
4.2. Yeast Strains and Media
4.3. Gene Replacement
4.4. Pneumocystis TFIIB Expression and Purification in E. coli
4.5. S. pombe RNAPII and GTFs Purification
4.6. Electrophoretic Mobility Shift Assay (EMSA)
4.7. TFIIB Depletion
4.8. In Vitro Transcription Assay
4.9. Primer Extension
4.10. Statistics
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schier, A.C.; Taatjes, D.J. Structure and Mechanism of the RNA Polymerase II Transcription Machinery. Genes Dev. 2020, 34, 465–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramer, P. Organization and Regulation of Gene Transcription. Nature 2019, 573, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Elsby, L.M.; Roberts, S.G.E. The Role of TFIIB Conformation in Transcriptional Regulation. Biochem. Soc. Trans. 2004, 32, 1098–1099. [Google Scholar] [CrossRef]
- Deng, W.; Roberts, S.G.E. TFIIB and the Regulation of Transcription by RNA Polymerase II. Chromosoma 2007, 116, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Kostrewa, D.; Zeller, M.E.; Armache, K.-J.; Seizl, M.; Leike, K.; Thomm, M.; Cramer, P. RNA Polymerase II–TFIIB Structure and Mechanism of Transcription Initiation. Nature 2009, 462, 323–330. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, M.J.; Ansari, A. Beyond the Canonical Role of TFIIB in Eukaryotic Transcription. Curr. Genet. 2022, 68, 61–67. [Google Scholar] [CrossRef]
- Ma, L.; Cissé, O.H.; Kovacs, J.A. A Molecular Window into the Biology and Epidemiology of Pneumocystis Spp. Clin. Microbiol. Rev. 2018, 31, e00009-18. [Google Scholar] [CrossRef] [Green Version]
- Slaven, B.E.; Meller, J.; Porollo, A.; Sesterhenn, T.; Smulian, A.G.; Cushion, M.T. Draft Assembly and Annotation of the Pneumocystis Carinii Genome. J. Eukaryot. Microbiol. 2006, 53, S89–S91. [Google Scholar] [CrossRef] [PubMed]
- Cissé, O.H.; Pagni, M.; Hauser, P.M. De Novo Assembly of the Pneumocystis Jirovecii Genome from a Single Bronchoalveolar Lavage Fluid Specimen from a Patient. mBio 2013, 4, e00428-12. [Google Scholar] [CrossRef] [Green Version]
- Cushion, M.T.; Keely, S.P. Assembly and Annotation of Pneumocystis Jirovecii from the Human Lung Microbiome. mBio 2013, 4, e00224-13. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.; Chen, Z.; Huang, D.W.; Kutty, G.; Ishihara, M.; Wang, H.; Abouelleil, A.; Bishop, L.; Davey, E.; Deng, R.; et al. Genome Analysis of Three Pneumocystis Species Reveals Adaptation Mechanisms to Life Exclusively in Mammalian Hosts. Nat. Commun. 2016, 7, 10740. [Google Scholar] [CrossRef] [PubMed]
- Cushion, M.T.; Tisdale-Macioce, N.; Sayson, S.G.; Porollo, A. The Persistent Challenge of Pneumocystis Growth Outside the Mammalian Lung: Past and Future Approaches. Front. Microbiol. 2021, 12, 681474. [Google Scholar] [CrossRef]
- Cushion, M.T.; Smulian, A.G.; Slaven, B.E.; Sesterhenn, T.; Arnold, J.; Staben, C.; Porollo, A.; Adamczak, R.; Meller, J. Transcriptome of Pneumocystis Carinii during Fulminate Infection: Carbohydrate Metabolism and the Concept of a Compatible Parasite. PLoS ONE 2007, 2, e423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cissé, O.H.; Hauser, P.M. Genomics and Evolution of Pneumocystis Species. Infect. Genet. Evol. 2018, 65, 308–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddens, T.; Elsegeiny, W.; Ricks, D.; Goodwin, M.; Horne, W.T.; Zheng, M.; Kolls, J.K. Transcriptomic and Proteomic Approaches to Finding Novel Diagnostic and Immunogenic Candidates in Pneumocystis. mSphere 2019, 4, e00488-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kottom, T.J.; Limper, A.H. The Pneumocystis Ace2 Transcription Factor Regulates Cell Wall-Remodeling Genes and Organism Virulence. J. Biol. Chem. 2013, 288, 23893–23902. [Google Scholar] [CrossRef] [Green Version]
- Kottom, T.J.; Limper, A.H. Evidence for a Pneumocystis Carinii Flo8-like Transcription Factor: Insights into Organism Adhesion. Med. Microbiol. Immunol. 2016, 205, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Sunkin, S.M.; Stringer, J.R. Transcription Factor Genes from Rat Pneumocystis Carinii. J. Eukaryot. Microbiol. 1995, 42, 12–19. [Google Scholar] [CrossRef]
- Vyas, A.; Freitas, A.V.; Ralston, Z.A.; Tang, Z. Fission Yeast Schizosaccharomyces Pombe: A Unicellular “Micromammal” Model Organism. Curr. Protoc. 2021, 1, e151. [Google Scholar] [CrossRef]
- Choi, W.S.; Yan, M.; Nusinow, D.; Gralla, J.D. In Vitro Transcription and Start Site Selection in Schizosaccharomyces Pombe. J. Mol. Biol. 2002, 319, 1005–1013. [Google Scholar] [CrossRef]
- Thomas, C.F.; Limper, A.H. Pneumocystis Pneumonia. N. Engl. J. Med. 2004, 350, 2487–2498. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, L.D.; McDowell, J.M.; Tidwell, R.R.; Meagher, R.B.; Dykstra, C.C. Structure, Expression and Phylogenetic Analysis of the Gene Encoding Actin I in Pneumocystis Carinii. Genetics 1994, 137, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Christopher, L.J.; Fletcher, L.D.; Dykstra, C.C. Cloning and Identification of Arp1, an Actin-Related Protein from Pneumocystis Carinii. J Eukaryot. Microbiol. 1995, 42, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Banerji, S.; Wakefield, A.E.; Allen, A.G.; Maskell, D.J.; Peters, S.E.; Hopkin, J.M. The Cloning and Characterization of the Arom Gene of Pneumocystis Carinii. J. Gen. Microbiol. 1993, 139, 2901–2914. [Google Scholar] [CrossRef] [Green Version]
- Banerji, S.; Lugli, E.B.; Miller, R.F.; Wakefield, A.E. Analysis of Genetic Diversity at the Arom Locus in Isolates of Pneumocystis Carinii. J. Eukaryot. Microbiol. 1995, 42, 675–679. [Google Scholar] [CrossRef]
- Ma, L.; Chen, Z.; Huang, D.W.; Cissé, O.H.; Rothenburger, J.L.; Latinne, A.; Bishop, L.; Blair, R.; Brenchley, J.M.; Chabé, M.; et al. Diversity and Complexity of the Large Surface Protein Family in the Compacted Genomes of Multiple Pneumocystis Species. mBio 2020, 11, e02878-19. [Google Scholar] [CrossRef] [Green Version]
- Keely, S.P.; Stringer, J.R. Complexity of the MSG Gene Family of Pneumocystis Carinii. BMC Genom. 2009, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- Keely, S.P.; Cushion, M.T.; Stringer, J.R. Diversity at the Locus Associated with Transcription of a Variable Surface Antigen of Pneumocystis Carinii as an Index of Population Structure and Dynamics in Infected Rats. Infect. Immun. 2003, 71, 47–60. [Google Scholar] [CrossRef] [Green Version]
- Kutty, G.; Ma, L.; Kovacs, J.A. Characterization of the Expression Site of the Major Surface Glycoprotein of Human-Derived Pneumocystis Carinii: MSG Expression in P. Carinii f. Sp. Hominis. Mol. Microbiol. 2008, 42, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Kutty, G.; Shroff, R.; Kovacs, J.A. Characterization of Pneumocystis Major Surface Glycoprotein Gene (Msg) Promoter Activity in Saccharomyces Cerevisiae. Eukaryot. Cell 2013, 12, 1349–1355. [Google Scholar] [CrossRef] [Green Version]
- Pinto, I.; Ware, D.E.; Hampsey, M. The Yeast SUA7 Gene Encodes a Homolog of Human Transcription Factor TFIIB and is Required for Normal Start Site Selection in Vivo. Cell 1992, 68, 977–988. [Google Scholar] [CrossRef]
- Li, Y.; Flanagan, P.M.; Tschochner, H.; Kornberg, R.D. RNA Polymerase II Initiation Factor Interactions and Transcription Start Site Selection. Science 1994, 263, 805–807. [Google Scholar] [CrossRef]
- Berroteran, R.W.; Ware, D.E.; Hampsey, M. The Sua8 Suppressors of Saccharomyces Cerevisiae Encode Replacements of Conserved Residues within the Largest Subunit of RNA Polymerase II and Affect Transcription Start Site Selection Similarly to Sua7 (TFIIB) Mutations. Mol. Cell Biol. 1994, 14, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, N.A.; Roberts, S.G.E. The Role of Human TFIIB in Transcription Start Site Selection in Vitro and in Vivo. J. Biol. Chem. 1999, 274, 14337–14343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.-Y. The Role of TFIIB-RNA Polymerase II Interaction in Start Site Selection in Yeast Cells. Nucleic Acids Res. 2002, 30, 3078–3085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamayo, E.; Bernal, G.; Teno, U.; Maldonado, E. Mediator is Required for Activated Transcription in a Schizosaccharomyces Pombe in Vitro System. Eur. J. Biochem. 2004, 271, 2561–2572. [Google Scholar] [CrossRef] [PubMed]
- Tamayo, E.; Maldonado, E. Cloning, Expression and Functional Characterization of Schizosaccharomyces Pombe TFIIB. Biochim. Biophys. Acta BBA Gene Struct. Expr. 2002, 1577, 395–400. [Google Scholar] [CrossRef]
- Rojas, D.A.; Urbina, F.; Valenzuela-Pérez, L.; Leiva, L.; Miralles, V.J.; Maldonado, E. Initiator-Directed Transcription: Fission Yeast Nmtl Initiator Directs Preinitiation Complex Formation and Transcriptional Initiation. Genes 2022, 13, 256. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, D.A.; Urbina, F.; Solari, A.; Maldonado, E. RNA Polymerase II Transcription in Pneumocystis: TFIIB from Pneumocystis carinii Can Replace the Transcriptional Functions of Fission Yeast Schizosaccharomyces pombe TFIIB In Vivo and In Vitro. Int. J. Mol. Sci. 2022, 23, 6865. https://doi.org/10.3390/ijms23126865
Rojas DA, Urbina F, Solari A, Maldonado E. RNA Polymerase II Transcription in Pneumocystis: TFIIB from Pneumocystis carinii Can Replace the Transcriptional Functions of Fission Yeast Schizosaccharomyces pombe TFIIB In Vivo and In Vitro. International Journal of Molecular Sciences. 2022; 23(12):6865. https://doi.org/10.3390/ijms23126865
Chicago/Turabian StyleRojas, Diego A., Fabiola Urbina, Aldo Solari, and Edio Maldonado. 2022. "RNA Polymerase II Transcription in Pneumocystis: TFIIB from Pneumocystis carinii Can Replace the Transcriptional Functions of Fission Yeast Schizosaccharomyces pombe TFIIB In Vivo and In Vitro" International Journal of Molecular Sciences 23, no. 12: 6865. https://doi.org/10.3390/ijms23126865
APA StyleRojas, D. A., Urbina, F., Solari, A., & Maldonado, E. (2022). RNA Polymerase II Transcription in Pneumocystis: TFIIB from Pneumocystis carinii Can Replace the Transcriptional Functions of Fission Yeast Schizosaccharomyces pombe TFIIB In Vivo and In Vitro. International Journal of Molecular Sciences, 23(12), 6865. https://doi.org/10.3390/ijms23126865