In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy
Abstract
:1. Introduction
- (1)
- Rapid isolation of chondrocytes from human nasoseptal cartilage (i.e., 4 h vs. 22 h treatment with type II collagenase) yields comparable numbers of viable cells capable of proliferating and generating hyaline-like cartilage in vitro,
- (2)
- rapidly isolated, non-expanded NCs embedded at low density in optimized PEG hydrogels enriched with human PL (NC-hPL-PEG gel) are able to proliferate and produce a cartilaginous matrix in vitro and in vivo, and
- (3)
- NC-hPL-PEG gels are capable to efficiently integrate with osteochondral tissues (obtained from allogenic knee joints) in an in vivo environment.
2. Results
2.1. Cell Yields after Rapid Digestion of Nasoseptal Cartilage Biopsies
2.2. Proliferation and Cartilage-Forming Capacity of Nasoseptal Chondrocytes (NCs) Isolated by Rapid Digestion
2.3. Proliferation and Cartilage-Forming Capacity of NCs Isolated with the Rapid Digestion Protocol in PEG Gels Containing hPL (hPL-PEG Gels)
2.4. In Vivo Cartilage Forming Capacity of NC-PL-PEG Gels
2.5. Optimization of NC-hPL-PEG Gels toward Clinical Use
3. Discussion
4. Materials and Methods
4.1. Collection of Human Nasoseptal Cartilage Specimens
4.2. Enzymatic Digestion of Human Nasoseptal Septal Cartilage Specimens
4.3. Cell Culture
4.3.1. Monolayer Culture
4.3.2. Culture of NCs in Pellets
4.3.3. Culture of NCs in PEG Gels
4.4. In Vivo Experiments
4.4.1. Ectopic Study
4.4.2. Ectopic Osteochondral Study
4.5. Analytical Methods
4.5.1. Histology
4.5.2. Immunofluorescence
4.5.3. Immunohistochemistry
4.5.4. Quantification of Glycosaminoglycans and DNA
4.5.5. Hydrogel Characterization by Rheometry
4.5.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, D.L.; Schenck, R.C.; Wascher, D.C.; Treme, G. Knee Articular Cartilage Repair and Restoration Techniques: A Review of the Literature. Sports Health 2016, 8, 153–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brittberg, M.; Lindahl, A.; Nilsson, A.; Ohlsson, C.; Isaksson, O.; Peterson, L. Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation. N. Engl. J. Med. 1994, 331, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.; Vasiliadis, H.S.; Brittberg, M.; Lindahl, A. Autologous Chondrocyte Implantation: A Long-Term Follow-Up. Am. J. Sports Med. 2010, 38, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Ogura, T.; Mosier, B.A.; Bryant, T.; Minas, T. A 20-Year Follow-up After First-Generation Autologous Chondrocyte Implantation. Am. J. Sports Med. 2017, 45, 2751–2761. [Google Scholar] [CrossRef]
- Brittberg, M.; Recker, D.; Ilgenfritz, J.; Saris, D.B.F.; SUMMIT Extension Study Group. Matrix-Applied Characterized Autologous Cultured Chondrocytes Versus Microfracture: Five-Year Follow-up of a Prospective Randomized Trial. Am. J. Sports Med. 2018, 46, 1343–1351. [Google Scholar] [CrossRef]
- Urlić, I.; Ivković, A. Cell Sources for Cartilage Repair-Biological and Clinical Perspective. Cells 2021, 10, 2496. [Google Scholar] [CrossRef]
- Hernigou, J.; Vertongen, P.; Rasschaert, J.; Hernigou, P. Role of Scaffolds, Subchondral, Intra-Articular Injections of Fresh Autologous Bone Marrow Concentrate Regenerative Cells in Treating Human Knee Cartilage Lesions: Different Approaches and Different Results. Int. J. Mol. Sci. 2021, 22, 3844. [Google Scholar] [CrossRef]
- Shah, S.S.; Lee, S.; Mithoefer, K. Next-Generation Marrow Stimulation Technology for Cartilage Repair: Basic Science to Clinical Application. JBJS Rev. 2021, 9, e20.00090. [Google Scholar] [CrossRef]
- Matricali, G.A.; Dereymaeker, G.P.E.; Luyten, F.P. Donor Site Morbidity after Articular Cartilage Repair Procedures: A Review. Acta Orthop. Belg. 2010, 76, 669–674. [Google Scholar]
- Barbero, A.; Grogan, S.; Schäfer, D.; Heberer, M.; Mainil-Varlet, P.; Martin, I. Age Related Changes in Human Articular Chondrocyte Yield, Proliferation and Post-Expansion Chondrogenic Capacity. Osteoarthr. Cartil. 2004, 12, 476–484. [Google Scholar] [CrossRef] [Green Version]
- Mistry, H.; Connock, M.; Pink, J.; Shyangdan, D.; Clar, C.; Royle, P.; Court, R.; Biant, L.C.; Metcalfe, A.; Waugh, N. Autologous Chondrocyte Implantation in the Knee: Systematic Review and Economic Evaluation. Health Technol. Assess. Winch. Engl. 2017, 21, 1–294. [Google Scholar] [CrossRef] [Green Version]
- Lan, M.Y.; Park, J.P.; Jang, Y.J. Donor Site Morbidities Resulting from Conchal Cartilage Harvesting in Rhinoplasty. J. Laryngol. Otol. 2017, 131, 529–533. [Google Scholar] [CrossRef]
- Duynstee, M.L.G.; Verwoerd-Verhoef, H.L.; Verwoerd, C.D.A.; Van Osch, G.J.V.M. The Dual Role of Perichondrium in Cartilage Wound Healing. Plast. Reconstr. Surg. 2002, 110, 1073–1079. [Google Scholar] [CrossRef]
- Kaiser, M.L.; Karam, A.M.; Sepehr, A.; Wong, H.; Liaw, L.L.; Vokes, D.E.; Wong, B.J. Cartilage Regeneration in the Rabbit Nasal Septum. Laryngoscope 2006, 116, 1730–1734. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, C.L.; Kamien, A.J.; Shah, P.A.; Chapman, B.J.; Cotanche, D.A. 5-Ethynyl-2′-Deoxyuridine Labeling Detects Proliferating Cells in the Regenerating Avian Cochlea. Laryngoscope 2009, 119, 1770–1775. [Google Scholar] [CrossRef] [Green Version]
- Rotter, N.; Tobias, G.; Lebl, M.; Roy, A.K.; Hansen, M.C.; Vacanti, C.A.; Bonassar, L.J. Age-Related Changes in the Composition and Mechanical Properties of Human Nasal Cartilage. Arch. Biochem. Biophys. 2002, 403, 132–140. [Google Scholar] [CrossRef]
- Wolf, F.; Haug, M.; Farhadi, J.; Candrian, C.; Martin, I.; Barbero, A. A Low Percentage of Autologous Serum Can Replace Bovine Serum to Engineer Human Nasal Cartilage. Eur. Cell. Mater. 2008, 15, 1–10. [Google Scholar] [CrossRef]
- Mumme, M.; Barbero, A.; Miot, S.; Wixmerten, A.; Feliciano, S.; Wolf, F.; Asnaghi, A.M.; Baumhoer, D.; Bieri, O.; Kretzschmar, M.; et al. Nasal Chondrocyte-Based Engineered Autologous Cartilage Tissue for Repair of Articular Cartilage Defects: An Observational First-in-Human Trial. Lancet Lond. Engl. 2016, 388, 1985–1994. [Google Scholar] [CrossRef]
- Centola, M.; Tonnarelli, B.; Hendriks, J.; van den Doel, M.; Feliciano, S.; Papadimitropoulos, A.; Piccinini, E.; Geurts, J.; Martin, I.; Barbero, A. An Improved Cartilage Digestion Method for Research and Clinical Applications. Tissue Eng. Part C Methods 2015, 21, 394–403. [Google Scholar] [CrossRef]
- Jakob, M.; Démarteau, O.; Schäfer, D.; Stumm, M.; Heberer, M.; Martin, I. Enzymatic Digestion of Adult Human Articular Cartilage Yields a Small Fraction of the Total Available Cells. Connect. Tissue Res. 2003, 44, 173–180. [Google Scholar] [CrossRef]
- Oseni, A.O.; Butler, P.E.; Seifalian, A.M. Optimization of Chondrocyte Isolation and Characterization for Large-Scale Cartilage Tissue Engineering. J. Surg. Res. 2013, 181, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedicherla, S.; Buckley, C.T. Rapid Chondrocyte Isolation for Tissue Engineering Applications: The Effect of Enzyme Concentration and Temporal Exposure on the Matrix Forming Capacity of Nasal Derived Chondrocytes. BioMed Res. Int. 2017, 2017, 2395138. [Google Scholar] [CrossRef] [PubMed]
- Lutolf, M.P.; Hubbell, J.A. Synthetic Biomaterials as Instructive Extracellular Microenvironments for Morphogenesis in Tissue Engineering. Nat. Biotechnol. 2005, 23, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Ehrbar, M.; Rizzi, S.C.; Schoenmakers, R.G.; Miguel, B.S.; Hubbell, J.A.; Weber, F.E.; Lutolf, M.P. Biomolecular Hydrogels Formed and Degraded via Site-Specific Enzymatic Reactions. Biomacromolecules 2007, 8, 3000–3007. [Google Scholar] [CrossRef]
- Ehrbar, M.; Rizzi, S.C.; Hlushchuk, R.; Djonov, V.; Zisch, A.H.; Hubbell, J.A.; Weber, F.E.; Lutolf, M.P. Enzymatic Formation of Modular Cell-Instructive Fibrin Analogs for Tissue Engineering. Biomaterials 2007, 28, 3856–3866. [Google Scholar] [CrossRef]
- Park, Y.; Lutolf, M.P.; Hubbell, J.A.; Hunziker, E.B.; Wong, M. Bovine Primary Chondrocyte Culture in Synthetic Matrix Metalloproteinase-Sensitive Poly(Ethylene Glycol)-Based Hydrogels as a Scaffold for Cartilage Repair. Tissue Eng. 2004, 10, 515–522. [Google Scholar] [CrossRef]
- Sridhar, B.V.; Brock, J.L.; Silver, J.S.; Leight, J.L.; Randolph, M.A.; Anseth, K.S. Development of a Cellularly Degradable PEG Hydrogel to Promote Articular Cartilage Extracellular Matrix Deposition. Adv. Healthc. Mater. 2015, 4, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Stüdle, C.; Vallmajó-Martín, Q.; Haumer, A.; Guerrero, J.; Centola, M.; Mehrkens, A.; Schaefer, D.J.; Ehrbar, M.; Barbero, A.; Martin, I. Spatially Confined Induction of Endochondral Ossification by Functionalized Hydrogels for Ectopic Engineering of Osteochondral Tissues. Biomaterials 2018, 171, 219–229. [Google Scholar] [CrossRef]
- Crespo-Diaz, R.; Behfar, A.; Butler, G.W.; Padley, D.J.; Sarr, M.G.; Bartunek, J.; Dietz, A.B.; Terzic, A. Platelet Lysate Consisting of a Natural Repair Proteome Supports Human Mesenchymal Stem Cell Proliferation and Chromosomal Stability. Cell Transplant. 2011, 20, 797–811. [Google Scholar] [CrossRef] [Green Version]
- Cowper, M.; Frazier, T.; Wu, X.; Curley, J.L.; Ma, M.H.; Mohiuddin, O.A.; Dietrich, M.; McCarthy, M.; Bukowska, J.; Gimble, J.M. Human Platelet Lysate as a Functional Substitute for Fetal Bovine Serum in the Culture of Human Adipose Derived Stromal/Stem Cells. Cells 2019, 8, 724. [Google Scholar] [CrossRef] [Green Version]
- Hildner, F.; Eder, M.J.; Hofer, K.; Aberl, J.; Redl, H.; van Griensven, M.; Gabriel, C.; Peterbauer-Scherb, A. Human Platelet Lysate Successfully Promotes Proliferation and Subsequent Chondrogenic Differentiation of Adipose-Derived Stem Cells: A Comparison with Articular Chondrocytes. J. Tissue Eng. Regen. Med. 2015, 9, 808–818. [Google Scholar] [CrossRef]
- Zaky, S.H.; Ottonello, A.; Strada, P.; Cancedda, R.; Mastrogiacomo, M. Platelet Lysate Favours in Vitro Expansion of Human Bone Marrow Stromal Cells for Bone and Cartilage Engineering. J. Tissue Eng. Regen. Med. 2008, 2, 472–481. [Google Scholar] [CrossRef]
- Pereira, R.C.; Scaranari, M.; Benelli, R.; Strada, P.; Reis, R.L.; Cancedda, R.; Gentili, C. Dual Effect of Platelet Lysate on Human Articular Cartilage: A Maintenance of Chondrogenic Potential and a Transient Proinflammatory Activity Followed by an Inflammation Resolution. Tissue Eng. Part A 2013, 19, 1476–1488. [Google Scholar] [CrossRef]
- Moreira Teixeira, L.S.; Leijten, J.C.H.; Wennink, J.W.H.; Chatterjea, A.G.; Feijen, J.; van Blitterswijk, C.A.; Dijkstra, P.J.; Karperien, M. The Effect of Platelet Lysate Supplementation of a Dextran-Based Hydrogel on Cartilage Formation. Biomaterials 2012, 33, 3651–3661. [Google Scholar] [CrossRef]
- Grogan, S.P.; Barbero, A.; Winkelmann, V.; Rieser, F.; Fitzsimmons, J.S.; O’Driscoll, S.; Martin, I.; Mainil-Varlet, P. Visual Histological Grading System for the Evaluation of in Vitro-Generated Neocartilage. Tissue Eng. 2006, 12, 2141–2149. [Google Scholar] [CrossRef] [Green Version]
- Homicz, M.R.; McGowan, K.B.; Lottman, L.M.; Beh, G.; Sah, R.L.; Watson, D. A Compositional Analysis of Human Nasal Septal Cartilage. Arch. Facial Plast. Surg. 2003, 5, 53–58. [Google Scholar] [CrossRef]
- Horton, E.R.; Vallmajo-Martin, Q.; Martin, I.; Snedeker, J.G.; Ehrbar, M.; Blache, U. Extracellular Matrix Production by Mesenchymal Stromal Cells in Hydrogels Facilitates Cell Spreading and Is Inhibited by FGF-2. Adv. Healthc. Mater. 2020, 9, e1901669. [Google Scholar] [CrossRef]
- Vonk, L.A.; Doulabi, B.Z.; Huang, C.; Helder, M.N.; Everts, V.; Bank, R.A. Preservation of the Chondrocyte’s Pericellular Matrix Improves Cell-Induced Cartilage Formation. J. Cell. Biochem. 2010, 110, 260–271. [Google Scholar] [CrossRef]
- Vonk, L.A.; de Windt, T.S.; Kragten, A.H.M.; Beekhuizen, M.; Mastbergen, S.C.; Dhert, W.J.A.; Lafeber, F.P.J.G.; Creemers, L.B.; Saris, D.B.F. Enhanced Cell-Induced Articular Cartilage Regeneration by Chondrons; the Influence of Joint Damage and Harvest Site. Osteoarthr. Cartil. 2014, 22, 1910–1917. [Google Scholar] [CrossRef] [Green Version]
- Wilusz, R.E.; Sanchez-Adams, J.; Guilak, F. The Structure and Function of the Pericellular Matrix of Articular Cartilage. Matrix Biol. 2014, 39, 25–32. [Google Scholar] [CrossRef]
- Guilak, F.; Nims, R.J.; Dicks, A.; Wu, C.L.; Meulenbelt, I. Osteoarthritis as a Disease of the Cartilage Pericellular Matrix. Matrix Biol. 2018, 71, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Bekkers, J.E.J.; Tsuchida, A.I.; van Rijen, M.H.P.; Vonk, L.A.; Dhert, W.J.A.; Creemers, L.B.; Saris, D.B.F. Single-Stage Cell-Based Cartilage Regeneration Using a Combination of Chondrons and Mesenchymal Stromal Cells: Comparison with Microfracture. Am. J. Sports Med. 2013, 41, 2158–2166. [Google Scholar] [CrossRef] [PubMed]
- Bekkers, J.E.J.; Creemers, L.B.; Tsuchida, A.I.; van Rijen, M.H.P.; Custers, R.J.H.; Dhert, W.J.A.; Saris, D.B.F. One-Stage Focal Cartilage Defect Treatment with Bone Marrow Mononuclear Cells and Chondrocytes Leads to Better Macroscopic Cartilage Regeneration Compared to Microfracture in Goats. Osteoarthr. Cartil. 2013, 21, 950–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Windt, T.S.; Vonk, L.A.; Slaper-Cortenbach, I.C.M.; van den Broek, M.P.H.; Nizak, R.; van Rijen, M.H.P.; de Weger, R.A.; Dhert, W.J.A.; Saris, D.B.F. Allogeneic Mesenchymal Stem Cells Stimulate Cartilage Regeneration and Are Safe for Single-Stage Cartilage Repair in Humans upon Mixture with Recycled Autologous Chondrons. Stem Cells Dayt. Ohio 2017, 35, 256–264. [Google Scholar] [CrossRef]
- Rosales, A.M.; Anseth, K.S. The Design of Reversible Hydrogels to Capture Extracellular Matrix Dynamics. Nat. Rev. Mater. 2016, 1, 15012. [Google Scholar] [CrossRef] [Green Version]
- Patterson, J.; Hubbell, J.A. Enhanced Proteolytic Degradation of Molecularly Engineered PEG Hydrogels in Response to MMP-1 and MMP-2. Biomaterials 2010, 31, 7836–7845. [Google Scholar] [CrossRef]
- Patterson, J.; Hubbell, J.A. SPARC-Derived Protease Substrates to Enhance the Plasmin Sensitivity of Molecularly Engineered PEG Hydrogels. Biomaterials 2011, 32, 1301–1310. [Google Scholar] [CrossRef]
- Vallmajo-Martin, Q.; Broguiere, N.; Millan, C.; Zenobi-Wong, M.; Ehrbar, M. PEG/HA Hybrid Hydrogels for Biologically and Mechanically Tailorable Bone Marrow Organoids. Adv. Funct. Mater. 2020, 30, 1910282. [Google Scholar] [CrossRef]
- Blache, U.; Vallmajo-Martin, Q.; Horton, E.R.; Guerrero, J.; Djonov, V.; Scherberich, A.; Erler, J.T.; Martin, I.; Snedeker, J.G.; Milleret, V.; et al. Notch-inducing Hydrogels Reveal a Perivascular Switch of Mesenchymal Stem Cell Fate. EMBO Rep. 2018, 19, e45964. [Google Scholar] [CrossRef] [Green Version]
- Metzger, S.; Lienemann, P.S.; Ghayor, C.; Weber, W.; Martin, I.; Weber, F.E.; Ehrbar, M. Modular Poly(Ethylene Glycol) Matrices for the Controlled 3D-Localized Osteogenic Differentiation of Mesenchymal Stem Cells. Adv. Healthc. Mater. 2015, 4, 550–558. [Google Scholar] [CrossRef]
- Astori, G.; Amati, E.; Bambi, F.; Bernardi, M.; Chieregato, K.; Schäfer, R.; Sella, S.; Rodeghiero, F. Platelet Lysate as a Substitute for Animal Serum for the Ex-Vivo Expansion of Mesenchymal Stem/Stromal Cells: Present and Future. Stem Cell Res. Ther. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Jooybar, E.; Abdekhodaie, M.J.; Alvi, M.; Mousavi, A.; Karperien, M.; Dijkstra, P.J. An Injectable Platelet Lysate-Hyaluronic Acid Hydrogel Supports Cellular Activities and Induces Chondrogenesis of Encapsulated Mesenchymal Stem Cells. Acta Biomater. 2019, 83, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Sykes, J.G.; Kuiper, J.H.; Richardson, J.B.; Roberts, S.; Wright, K.T.; Kuiper, N.J. Impact of Human Platelet Lysate on the Expansion and Chondrogenic Capacity of Cultured Human Chondrocytes for Cartilage Cell Therapy. Eur. Cell. Mater. 2018, 35, 255–267. [Google Scholar] [CrossRef]
- Rikkers, M.; Levato, R.; Malda, J.; Vonk, L.A. Importance of Timing of Platelet Lysate-Supplementation in Expanding or Redifferentiating Human Chondrocytes for Chondrogenesis. Front. Bioeng. Biotechnol. 2020, 8, 804. [Google Scholar] [CrossRef]
- Pippenger, B.E.; Ventura, M.; Pelttari, K.; Feliciano, S.; Jaquiery, C.; Scherberich, A.; Walboomers, X.F.; Barbero, A.; Martin, I. Bone-Forming Capacity of Adult Human Nasal Chondrocytes. J. Cell. Mol. Med. 2015, 19, 1390–1399. [Google Scholar] [CrossRef]
- Yanke, A.B.; Lee, A.S.; Karas, V.; Abrams, G.; Riccio, M.L.; Verma, N.N.; Bach, B.R.; Cole, B.J. Surgeon Ability to Appropriately Address the Calcified Cartilage Layer: An In Vitro Study of Arthroscopic and Open Techniques. Am. J. Sports Med. 2019, 47, 2584–2588. [Google Scholar] [CrossRef]
- Su, E.; Sun, H.; Juhasz, T.; Wong, B.J.F. Preclinical Investigations of Articular Cartilage Ablation with Femtosecond and Pulsed Infrared Lasers as an Alternative to Microfracture Surgery. J. Biomed. Opt. 2014, 19, 098001. [Google Scholar] [CrossRef] [Green Version]
- Nguendon Kenhagho, H.; Rauter, G.; Guzman, R.; Cattin, P.C.; Zam, A. Optoacoustic Tissue Differentiation Using a Mach-Zehnder Interferometer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 66, 1435–1443. [Google Scholar] [CrossRef]
- Nguendon Kenhagho, H.; Canbaz, F.; Gomez Alvarez-Arenas, T.E.; Guzman, R.; Cattin, P.; Zam, A. Machine Learning-Based Optoacoustic Tissue Classification Method for Laser Osteotomes Using an Air-Coupled Transducer. Lasers Surg. Med. 2020, 53, 377–389. [Google Scholar] [CrossRef]
- Słynarski, K.; de Jong, W.C.; Snow, M.; Hendriks, J.A.A.; Wilson, C.E.; Verdonk, P. Single-Stage Autologous Chondrocyte-Based Treatment for the Repair of Knee Cartilage Lesions: Two-Year Follow-up of a Prospective Single-Arm Multicenter Study. Am. J. Sports Med. 2020, 48, 1327–1337. [Google Scholar] [CrossRef]
- Saxer, F.; Scherberich, A.; Todorov, A.; Studer, P.; Miot, S.; Schreiner, S.; Güven, S.; Tchang, L.A.H.; Haug, M.; Heberer, M.; et al. Implantation of Stromal Vascular Fraction Progenitors at Bone Fracture Sites: From a Rat Model to a First-in-Man Study. Stem Cells 2016, 34, 2956–2966. [Google Scholar] [CrossRef] [PubMed]
- Asnaghi, M.A.; Power, L.; Barbero, A.; Haug, M.; Köppl, R.; Wendt, D.; Martin, I. Biomarker Signatures of Quality for Nasal Chondrocyte-Derived Engineered Cartilage. bioRxiv 2020. [Google Scholar] [CrossRef]
- Acevedo, L.; Pelttari, K.; Occhetta, P.; Geurts, J.; Manferdini, C.; Lisignoli, G.; Haug, M.; Feliciano, S.; Martin, I.; Barbero, A. Performance of Nasal Chondrocytes in an Osteoarthritic Environment. Osteoarthr. Cartil. 2018, 26, S37–S38. [Google Scholar] [CrossRef]
- Ruan, J.-L.; Tulloch, N.L.; Muskheli, V.; Genova, E.E.; Mariner, P.D.; Anseth, K.S.; Murry, C.E. An Improved Cryosection Method for Polyethylene Glycol Hydrogels Used in Tissue Engineering. Tissue Eng. Part C Methods 2013, 19, 794–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Experimental Group (Culture/Incubation Time) | Tot Bern Score | Intensity of Staining | Cell Morphology | |
---|---|---|---|---|
(a) in vitro | NC-hSA-PEG (control) (21 days) | 1.9 ± 2.0 | 0.2 ± 0.3 | 0.5 ± 0.7 |
NC-hPL-PEG (21 days) | 6.5 ± 1.8 *** | 1.6 ± 0.9 *** | 2.2 ± 0.7 *** | |
NC-hPL-PEG (28 days) | 6.9 ± 1.6 *** | 1.8 ± 0.6 *** | 2.4 ± 0.6 *** | |
(b) in vivo | hPL-PEG (control) (28 days) | 0 | 0 | 0 |
NC-hPL-PEG (28 days) | 5.7 ± 2.0 * | 1.3 ± 0.6 ** | 2.0 ± 0.8 |
Total Score (Range: 0–9) | Integration with Cartilage (Range: 0–3) | Integration with Bone (Range: 0–3) | Quality of Tissue (Range: 0–3) | |
---|---|---|---|---|
mean ± SD | 5.3 ± 1.5 | 2.4 ± 0.8 | 1.8 ± 1.1 | 1.4 ± 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lehoczky, G.; Trofin, R.E.; Vallmajo-Martin, Q.; Chawla, S.; Pelttari, K.; Mumme, M.; Haug, M.; Egloff, C.; Jakob, M.; Ehrbar, M.; et al. In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. Int. J. Mol. Sci. 2022, 23, 6900. https://doi.org/10.3390/ijms23136900
Lehoczky G, Trofin RE, Vallmajo-Martin Q, Chawla S, Pelttari K, Mumme M, Haug M, Egloff C, Jakob M, Ehrbar M, et al. In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. International Journal of Molecular Sciences. 2022; 23(13):6900. https://doi.org/10.3390/ijms23136900
Chicago/Turabian StyleLehoczky, Gyözö, Raluca Elena Trofin, Queralt Vallmajo-Martin, Shikha Chawla, Karoliina Pelttari, Marcus Mumme, Martin Haug, Christian Egloff, Marcel Jakob, Martin Ehrbar, and et al. 2022. "In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy" International Journal of Molecular Sciences 23, no. 13: 6900. https://doi.org/10.3390/ijms23136900
APA StyleLehoczky, G., Trofin, R. E., Vallmajo-Martin, Q., Chawla, S., Pelttari, K., Mumme, M., Haug, M., Egloff, C., Jakob, M., Ehrbar, M., Martin, I., & Barbero, A. (2022). In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. International Journal of Molecular Sciences, 23(13), 6900. https://doi.org/10.3390/ijms23136900