The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders
Abstract
:1. Introduction
2. The Role of Inflammation in the Development of Ileus
3. Presence of Cytokine/Chemokine Receptors on Cells of the Gastrointestinal Tract
3.1. Interleukin-1 Receptors
3.2. Interleukin-4 Receptors
3.3. Interleukin-6 Receptors
3.4. Interleukin-13 Receptors
3.5. Interleukin-17 Receptors
3.6. CXCR1 and CXCR2 Receptors
3.7. TGF-β Receptors
3.8. Interferon-γ Receptors
3.9. TNF-α Receptors
4. Cytokine Sources in the Gastrointestinal Tract
5. Effects of Cytokines/Chemokines on Gastrointestinal Motility
5.1. IL-1
5.2. IL-4
5.3. IL-6
5.4. IL-8
5.5. IL-13
5.6. IL-17
5.7. TNF-α
5.8. IFN-γ
5.9. TGF-α
5.10. MCP-1 (Monocyte Chemoattractant Protein 1, CCL2)
5.11. Other Inflammatory Mmediators and Signaling Pathways
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grocott, M.; Browne, J.; Van der Meulen, J.; Matejowsky, C.; Mutch, M.; Hamilton, M.; Levett, D.; Emberton, M.; Haddad, F.; Mythen, M. The Postoperative Morbidity Survey was validated and used to describe morbidity after major surgery. J. Clin. Epidemiol. 2007, 60, 919–928. [Google Scholar] [CrossRef]
- Virani, F.R.; Peery, T.; Rivas, O.; Tomasek, J.; Huerta, R.; Wade, C.E.; Lee, J.; Holcomb, J.B.; Uray, K. Incidence and Effects of Feeding Intolerance in Trauma Patients. J. Parenter. Enter. Nutr. 2018, 43, 742–749. [Google Scholar] [CrossRef] [Green Version]
- Blaser, A.R.; Starkopf, J.; Deane, K.A.M. Definition, prevalence, and outcome of feeding intolerance in intensive care: A systematic review and meta-analysis. Acta Anaesthesiol. Scand. 2014, 58, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Venara, A.; Slim, K.; Regimbeau, J.-M.; Ortega-Deballon, P.; Vielle, B.; Lermite, E.; Meurette, G.; Hamy, A. Proposal of a new classification of postoperative ileus based on its clinical impact—results of a global survey and preliminary evaluation in colorectal surgery. Int. J. Color. Dis. 2017, 32, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Vather, R.; Trivedi, S.; Bissett, I. Defining Postoperative Ileus: Results of a Systematic Review and Global Survey. J. Gastrointest. Surg. 2013, 17, 962–972. [Google Scholar] [CrossRef]
- Gero, D.; Gié, O.; Hübner, M.; Demartines, N.; Hahnloser, D. Postoperative ileus: In search of an international consensus on definition, diagnosis, and treatment. Langenbeck’s Arch. Surg. 2016, 402, 149–158. [Google Scholar] [CrossRef]
- Chapman, S.J.; Pericleous, A.; Downey, C.; Jayne, D.G. Postoperative ileus following major colorectal surgery. Br. J. Surg. 2018, 105, 797–810. [Google Scholar] [CrossRef]
- Ladopoulos, T. Gastrointestinal dysmotility in critically ill patients. Ann. Gastroenterol. 2018, 31, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Alhashemi, M.; Fiore, J.F.; Safa, N.; Al Mahroos, M.; Mata, J.; Pecorelli, N.; Baldini, G.; Dendukuri, N.; Stein, B.L.; Liberman, A.S.; et al. Incidence and predictors of prolonged postoperative ileus after colorectal surgery in the context of an enhanced recovery pathway. Surg. Endosc. 2018, 33, 2313–2322. [Google Scholar] [CrossRef]
- Wolthuis, A.; Bislenghi, G.; Fieuws, S.; Overstraeten, A.D.B.V.; Boeckxstaens, G.; D’Hoore, A. Incidence of prolonged postoperative ileus after colorectal surgery: A systematic review and meta-analysis. Color. Dis. 2016, 18, O1–O9. [Google Scholar] [CrossRef]
- Tevis, S.E.; Carchman, E.H.; Foley, E.F.; Harms, B.A.; Heise, C.P.; Kennedy, G.D. Postoperative Ileus—More than Just Prolonged Length of Stay? J. Gastrointest. Surg. 2015, 19, 1684–1690. [Google Scholar] [CrossRef]
- Bragg, D.; El-Sharkawy, A.M.; Psaltis, E.; Maxwell-Armstrong, C.A.; Lobo, D.N. Postoperative ileus: Recent developments in pathophysiology and management. Clin. Nutr. 2015, 34, 367–376. [Google Scholar] [CrossRef]
- Kiely, P.D.; Mount, L.E.; Du, J.Y.; Nguyen, J.T.; Weitzman, G.; Memstoudis, S.; Waldman, S.A.; Lebl, D.R. The incidence and risk factors for post-operative ileus after spinal fusion surgery: A multivariate analysis. Int. Orthop. 2016, 40, 1067–1074. [Google Scholar] [CrossRef]
- Wright, A.K.; La Selva, D.; Nkrumah, L.; Yanamadala, V.; Leveque, J.-C.; Sethi, R.K. Postoperative Ileus: Old and New Observations on Prevention and Treatment in Adult Spinal Deformity Surgery. World Neurosurg. 2019, 132, e618–e622. [Google Scholar] [CrossRef]
- Berend, K.R.; Lombardi, A.V.; Mallory, T.H.; Dodds, K.L.; Adams, J.B. Ileus following total hip or knee arthroplasty is associated with increased risk of deep venous thrombosis and pulmonary embolism. J. Arthroplast. 2004, 19, 82–86. [Google Scholar] [CrossRef]
- Senagore, A.J. Pathogenesis and clinical and economic consequences of postoperative ileus. Clin. Exp. Gastroenterol. 2010, 3, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Milne, T.G.; O’Grady, G.; Vather, R.; Edlin, R.; Bissett, I. Prolonged Postoperative Ileus Significantly Increases the Cost of Inpatient Stay for Patients Undergoing Elective Colorectal Surgery: Results of a Multivariate Analysis of Prospective Data at a Single Institution. Dis. Colon Rectum 2019, 62, 631–637. [Google Scholar] [CrossRef]
- Peters, E.G.; Pattamatta, M.; Smeets, B.J.J.; Brinkman, D.J.; Evers, S.M.A.A.; De Jonge, W.J.; Hiligsmann, M.; Luyer, M.D.P. The clinical and economical impact of postoperative ileus in patients undergoing colorectal surgery. Neurogastroenterol. Motil. 2020, 32, e13862. [Google Scholar] [CrossRef]
- Traut, U.; Brügger, L.; Kunz, R.; Pauli-Magnus, C.; Haug, K.; Bucher, H.; Koller, M.T. Systemic prokinetic pharmacologic treatment for postoperative adynamic ileus following abdominal surgery in adults. Cochrane Database Syst. Rev. 2008, 1, CD004930. [Google Scholar] [CrossRef]
- Sommer, N.P.; Schneider, R.; Wehner, S.; Kalff, J.C.; Vilz, T.O. State-of-the-art colorectal disease: Postoperative ileus. Int. J. Color. Dis. 2021, 36, 2017–2025. [Google Scholar] [CrossRef]
- Smart, C.J.; I Malik, K. Prucalopride for the treatment of ileus. Expert Opin. Investig. Drugs 2017, 26, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-L.; Zhou, X.-Q.; Yi, P.-S.; Zhang, M.; Li, J.; Xu, M.-Q. Alvimopan combined with enhanced recovery strategy for managing postoperative ileus after open abdominal surgery: A systematic review and meta-analysis. J. Surg. Res. 2016, 203, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Pham, N.T.; Olate, N.; Kislitsyna, K.; Day, M.-C.; LeTourneau, P.A.; Kots, A.; Stewart, R.H.; Laine, G.A.; Cox, C.S.; et al. Biphasic Regulation of Myosin Light Chain Phosphorylation by p21-activated Kinase Modulates Intestinal Smooth Muscle Contractility. J. Biol. Chem. 2013, 288, 1200–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Docsa, T.; Bhattarai, D.; Sipos, A.; Wade, C.E.; Jr, C.S.C.; Uray, K. CXCL1 is upregulated during the development of ileus resulting in decreased intestinal contractile activity. Neurogastroenterol. Motil. 2019, 32, e13757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehner, S.; Behrendt, F.F.; Lyutenski, B.N.; Lysson, M.; Bauer, A.J.; Hirner, A.; Kalff, J.C. Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 2007, 56, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Hupa, K.J.; Stein, K.; Schneider, R.; Lysson, M.; Schneiker, B.; Hornung, V.; Latz, E.; Iwakura, Y.; Kalff, J.C.; Wehner, S. AIM2 inflammasome-derived IL-1β induces postoperative ileus in mice. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.J.; Schwarz, N.T.; A Moore, B.; Türler, A.; Kalff, J.C. Ileus in critical illness: Mechanisms and management. Curr. Opin. Crit. Care 2002, 8, 152–157. [Google Scholar] [CrossRef]
- Engel, D.R.; Koscielny, A.; Wehner, S.; Maurer, J.; Schiwon, M.; Franken, L.; Schumak, B.; Limmer, A.; Sparwasser, T.; Hirner, A.; et al. T helper type 1 memory cells disseminate postoperative ileus over the entire intestinal tract. Nat. Med. 2010, 16, 1407–1413. [Google Scholar] [CrossRef]
- Kalff, J.C.; Carlos, T.M.; Schraut, W.H.; Billiar, T.R.; Simmons, R.L.; Bauer, A.J. Surgically induced leukocytic infiltrates within the rat intestinal muscularis mediate postoperative ileus. Gastroenterology 1999, 117, 378–387. [Google Scholar] [CrossRef]
- Kalff, J.C.; Schraut, W.H.; Simmons, R.L.; Bauer, A.J. Surgical Manipulation of the Gut Elicits an Intestinal Muscularis Inflammatory Response Resulting in Postsurgical Ileus. Ann. Surg. 1998, 228, 652–663. [Google Scholar] [CrossRef]
- Kalff, J.C.; Türler, A.; Schwarz, N.T.; Schraut, W.H.; Lee, K.K.W.; Tweardy, D.J.; Billiar, T.R.; Simmons, R.L.; Bauer, A.J. Intra-Abdominal Activation of a Local Inflammatory Response Within the Human Muscularis Externa During Laparotomy. Ann. Surg. 2003, 237, 301–315. [Google Scholar] [CrossRef] [PubMed]
- De Jonge, W.J.; The, F.O.; van der Coelen, D.; Bennink, R.J.; Reitsma, P.H.; van Deventer, S.J.; Wijngaard, R.M.V.D.; Boeckxstaens, G.E. Mast cell degranulation during abdominal surgery initiates postoperative ileus in mice. Gastroenterology 2004, 127, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Peters, E.G.; De Jonge, W.J.; Smeets, B.J.J.; Luyer, M.D.P. The contribution of mast cells to postoperative ileus in experimental and clinical studies. Neurogastroenterol. Motil. 2015, 27, 743–749. [Google Scholar] [CrossRef]
- The, F.O.; Buist, M.R.; Lei, A.; Bennink, R.J.; Hofland, J.; Wijngaard, R.M.V.D.; De Jonge, W.J.; Boeckxstaens, G.E. The Role of Mast Cell Stabilization in Treatment of Postoperative Ileus: A Pilot Study. Am. J. Gastroenterol. 2009, 104, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
- Ashcroft, J.; Singh, A.A.; Ramachandran, B.; Habeeb, A.; Hudson, V.; Meyer, J.; Simillis, C.; Davies, R.J. Reducing ileus after colorectal surgery: A network meta-analysis of therapeutic interventions. Clin. Nutr. 2021, 40, 4772–4782. [Google Scholar] [CrossRef]
- Smeets, B.J.; Luyer, M.D. Nutritional interventions to improve recovery from postoperative ileus. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 394–398. [Google Scholar] [CrossRef]
- Lubbers, T.; Luyer, M.D.P.; de Haan, J.-J.; Hadfoune, M.; Buurman, W.A.; Greve, J.W.M. Lipid-Rich Enteral Nutrition Reduces Postoperative Ileus in Rats via Activation of Cholecystokinin-Receptors. Ann. Surg. 2009, 249, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, D.; Italiani, P.; Weil, S.; Martin, M.U. The family of the interleukin-1 receptors. Immunol. Rev. 2017, 281, 197–232. [Google Scholar] [CrossRef]
- Colotta, F.; Dower, S.K.; Sims, J.; Mantovani, A. The type II ‘decoy’ receptor: A novel regulatory pathway for interleukin 1. Immunol. Today 1994, 15, 562–566. [Google Scholar] [CrossRef]
- ougeon, P.-Y.; Lourenssen, S.; Han, T.Y.; Nair, D.G.; Ropeleski, M.J.; Blennerhassett, M. The Pro-Inflammatory Cytokines IL-1β and TNFα Are Neurotrophic for Enteric Neurons. J. Neurosci. 2013, 33, 3339–3351. [Google Scholar] [CrossRef] [Green Version]
- Stoffels, B.; Hupa, K.J.; Snoek, S.A.; van Bree, S.; Stein, K.; Schwandt, T.; Vilz, T.O.; Lysson, M.; Veer, C.V.; Kummer, M.; et al. Postoperative Ileus Involves Interleukin-1 Receptor Signaling in Enteric Glia. Gastroenterology 2014, 146, 176–187.e1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, F.; Wang, H.; Yin, C.; Huang, J.; Mahavadi, S.; Murthy, K.S.; Hu, W. Immune/Inflammatory Response and Hypocontractility of Rabbit Colonic Smooth Muscle After TNBS-Induced Colitis. Am. J. Dig. Dis. 2016, 61, 1925–1940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelms, K.; Keegan, A.D.; Zamorano, J.; Ryan, J.J.; Paul, W.E. THE IL-4 RECEPTOR: Signaling Mechanisms and Biologic Functions. Annu. Rev. Immunol. 1999, 17, 701–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiho, H.; Blennerhassett, P.; Deng, Y.; Collins, S.M. Role of IL-4, IL-13, and STAT6 in inflammation-induced hypercontractility of murine smooth muscle cells. Am. J. Physiol. Liver Physiol. 2002, 282, G226–G232. [Google Scholar] [CrossRef] [PubMed]
- Akiho, H.; Deng, Y.; Blennerhassett, P.; Kanbayashi, H.; Collins, S.M. Mechanisms Underlying the Maintenance of Muscle Hypercontractility in a Model of Postinfective Gut Dysfunction. Gastroenterology 2005, 129, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, M.; Morimoto, M.; Zhao, A.; Madden, K.B.; Dawson, H.; Finkelman, F.D.; Mentink-Kane, M.; Urban, J.F.; Wynn, T.A.; Shea-Donohue, T. Functional Importance of Regional Differences in Localized Gene Expression of Receptors for IL-13 in Murine Gut. J. Immunol. 2005, 176, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Taga, T.; Hibi, M.; Hirata, Y.; Yamasaki, K.; Yasukawa, K.; Matsuda, T.; Hirano, T.; Kishimoto, T. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 1989, 58, 573–581. [Google Scholar] [CrossRef]
- O’Malley, D.; Dinan, T.; Cryan, J. Altered expression and secretion of colonic Interleukin-6 in a stress-sensitive animal model of brain-gut axis dysfunction. J. Neuroimmunol. 2011, 235, 48–55. [Google Scholar] [CrossRef]
- O’Brien, R.; O’Malley, D. The Glucagon-like peptide-1 receptor agonist, exendin-4, ameliorated gastrointestinal dysfunction in the Wistar Kyoto rat model of Irritable Bowel Syndrome. Neurogastroenterol. Motil. 2019, 32, e13738. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, L.; Chen, M.; Yu, B. Exogenous Interleukin-6 Facilitated the Contraction of the Colon in a Depression Rat Model. Am. J. Dig. Dis. 2013, 58, 2187–2196. [Google Scholar] [CrossRef]
- Deng, J.; Yang, S.; Yuan, Q.; Chen, Y.; Li, D.; Sun, H.; Tan, X.; Zhang, F.; Zhou, D. Acupuncture Ameliorates Postoperative Ileus via IL-6–miR-19a–KIT Axis to Protect Interstitial Cells of Cajal. Am. J. Chin. Med. 2017, 45, 737–755. [Google Scholar] [CrossRef] [PubMed]
- Karo-Atar, D.; Bitton, A.; Benhar, I.; Munitz, A. Therapeutic Targeting of the Interleukin-4/Interleukin-13 Signaling Pathway: In Allergy and Beyond. BioDrugs 2018, 32, 201–220. [Google Scholar] [CrossRef] [PubMed]
- LaPorte, S.L.; Juo, Z.S.; Vaclavikova, J.; Colf, L.A.; Qi, X.; Heller, N.M.; Keegan, A.D.; Garcia, K.C. Molecular and Structural Basis of Cytokine Receptor Pleiotropy in the Interleukin-4/13 System. Cell 2008, 132, 259–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toy, D.; Kugler, D.; Wolfson, M.; Bos, T.V.; Gurgel, J.; Derry, J.; Tocker, J.; Peschon, J. Cutting Edge: Interleukin 17 Signals through a Heteromeric Receptor Complex. J. Immunol. 2006, 177, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Ely, L.K.; Fischer, S.; Garcia, K.C. Structural basis of receptor sharing by interleukin 17 cytokines. Nat. Immunol. 2009, 10, 1245–1251. [Google Scholar] [CrossRef] [Green Version]
- Mori, D.; Watanabe, N.; Kaminuma, O.; Murata, T.; Hiroi, T.; Ozaki, H.; Hori, M. IL-17A Induces Hypo-contraction of Intestinal Smooth Muscle via Induction of iNOS in Muscularis Macrophages. J. Pharmacol. Sci. 2014, 125, 394–405. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A.; Urban, J.F.; Sun, R.; Stiltz, J.; Morimoto, M.; Notari, L.; Madden, K.B.; Yang, Z.; Grinchuk, V.; Ramalingam, T.R.; et al. Critical Role of IL-25 in Nematode Infection-Induced Alterations in Intestinal Function. J. Immunol. 2010, 185, 6921–6929. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.; You, Z. Expression of interleukin-17RC protein in normal human tissues. Int. Arch. Med. 2008, 1, 19. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, E.T.; Weber, I.T.; Charles, R.S.; Xuan, J.C.; Appella, E.; Yamada, M.; Matsushima, K.; Edwards, B.F.; Clore, G.M.; Gronenborn, A.M. Crystal structure of interleukin 8: Symbiosis of NMR and crystallography. Proc. Natl. Acad. Sci. USA 1991, 88, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Holmes, W.E.; Lee, J.; Kuang, W.-J.; Rice, G.C.; Wood, W.I. Structure and Functional Expression of a Human Interleukin-8 Receptor. Science 1991, 253, 1278–1280. [Google Scholar] [CrossRef]
- Govindaraju, V.; Michoud, M.-C.; Ferraro, P.; Arkinson, J.; Safka, K.; Valderrama-Carvajal, H.; Martin, J.G. The effects of interleukin-8 on airway smooth muscle contraction in cystic fibrosis. Respir. Res. 2008, 9, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segerer, S.; Henger, A.; Schmid, H.; Kretzler, M.; Draganovici, D.; Brandt, U.; Noessner, E.; Nelson, P.; Kerjaschki, D.; Schlöndorff, D.; et al. Expression of the chemokine receptor CXCR1 in human glomerular diseases. Kidney Int. 2006, 69, 1765–1773. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.-G.; A Strong, J.; Xie, W.; Yang, R.-H.; E Coyle, D.; Wick, D.M.; Dorsey, E.D.; Zhang, J.-M. The Chemokine CXCL1/Growth Related Oncogene Increases Sodium Currents and Neuronal Excitability in Small Diameter Sensory Neurons. Mol. Pain 2008, 4, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Z.; Zhou, H.; Ma, S.; Guan, X.; Chen, L.; Huang, J.; Gui, H.; Miao, X.; Yu, S.; Wang, J.H.; et al. FTY720 attenuates intestinal injury and suppresses inflammation in experimental necrotizing enterocolitis via modulating CXCL5/CXCR2 axis. Biochem. Biophys. Res. Commun. 2018, 505, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Heldin, C.-H.; Moustakas, A. Signaling Receptors for TGF-β Family Members. Cold Spring Harb. Perspect. Biol. 2016, 8, a022053. [Google Scholar] [CrossRef] [Green Version]
- Akiho, H.; Khan, W.I.; Al-Kaabi, A.; Blennerhassett, P.; Deng, Y.; Collins, S.M. Cytokine modulation of muscarinic receptors in the murine intestine. Am. J. Physiol. Liver Physiol. 2007, 293, G250–G255. [Google Scholar] [CrossRef]
- Hagl, C.; Schäfer, K.-H.; Hellwig, I.; Barrenschee, M.; Harde, J.; Holtmann, M.; Porschek, S.; Egberts, J.-H.; Becker, T.; Wedel, T.; et al. Expression and function of the Transforming Growth Factor-b system in the human and rat enteric nervous system. Neurogastroenterol. Motil. 2013, 25, 601-e464. [Google Scholar] [CrossRef]
- Green, D.S.; Young, H.A.; Valencia, J.C. Current prospects of type II interferon γ signaling and autoimmunity. J. Biol. Chem. 2017, 292, 13925–13933. [Google Scholar] [CrossRef] [Green Version]
- Sedger, L.M.; McDermott, M.F. TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants–past, present and future. Cytokine Growth Factor Rev. 2014, 25, 453–472. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.-Z.; Sarna, S.K. Transcriptional regulation of inflammatory mediators secreted by human colonic circular smooth muscle cells. Am. J. Physiol. Liver Physiol. 2005, 289, G274–G284. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekharan, B.; Jeppsson, S.; Pienkowski, S.; Belsham, D.D.; Sitaraman, S.V.; Merlin, D.; Kokkotou, E.; Nusrat, A.; Tansey, M.G.; Srinivasan, S. Tumor necrosis factor-neuropeptide Y cross talk regulates inflammation, epithelial barrier functions, and colonic motility. Inflamm. Bowel Dis. 2013, 19, 2535–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenman, S.T.; Gibbons, S.J.; Verhulst, P.-J.; Cipriani, G.; Saur, D.; Farrugia, G. Tumor necrosis factor alpha derived from classically activated “M1” macrophages reduces interstitial cell of Cajal numbers. Neurogastroenterol. Motil. 2016, 29, e12984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steel, N.; Faniyi, A.A.; Rahman, S.; Swietlik, S.; Czajkowska, B.I.; Chan, B.T.; Hardgrave, A.; Steel, A.; Sparwasser, T.; Assas, M.B.; et al. TGFβ-activation by dendritic cells drives Th17 induction and intestinal contractility and augments the expulsion of the parasite Trichinella spiralis in mice. PLOS Pathog. 2019, 15, e1007657. [Google Scholar] [CrossRef] [PubMed]
- Kuemmerle, J.F.; Murthy, K.S.; Bowers, J.G. IGFBP-3 activates TGF-β receptors and directly inhibits growth in human intestinal smooth muscle cells. Am. J. Physiol. Liver Physiol. 2004, 287, G795–G802. [Google Scholar] [CrossRef] [PubMed]
- Coletta, R.; Roberts, N.A.; Randles, M.J.; Morabito, A.; Woolf, A.S. Exogenous transforming growth factor-β1 enhances smooth muscle differentiation in embryonic mouse jejunal explants. J. Tissue Eng. Regen. Med. 2018, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Mason, K.L.; Huffnagle, G.B.; Noverr, M.C.; Kao, J.Y. Overview of Gut Immunology. Taurine 9 2008, 635, 1–14. [Google Scholar] [CrossRef]
- Vighi, G.; Marcucci, F.; Sensi, L.; Di Cara, G.; Frati, F. Allergy and the gastrointestinal system. Clin. Exp. Immunol. 2008, 153, 3–6. [Google Scholar] [CrossRef]
- Königsrainer, I.; Türck, M.H.; Eisner, F.; Meile, T.; Hoffmann, J.; Küper, M.; Zieker, D.; Glatzle, J. The Gut is not only the Target but a Source of Inflammatory Mediators Inhibiting Gastrointestinal Motility During Sepsis. Cell. Physiol. Biochem. 2011, 28, 753–760. [Google Scholar] [CrossRef]
- Pochard, C.; Coquenlorge, S.; Freyssinet, M.; Naveilhan, P.; Bourreille, A.; Neunlist, M.; Rolli-Derkinderen, M. The multiple faces of inflammatory enteric glial cells: Is Crohn’s disease a gliopathy? Am. J. Physiol. Liver Physiol. 2018, 315, G1–G11. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Blennerhassett, M.G.; Kataeva, G.V.; Collins, S.M. Interleukin 1β induces the expression of interleukin 6 in rat intestinal smooth muscle cells. Gastroenterology 1995, 108, 1720–1728. [Google Scholar] [CrossRef]
- Van Assche, G.; Barbara, G.; Deng, Y.; Lovato, P.; Gauldie, J.; Collins, S.M. Neurotransmitters modulate cytokine-stimulated interleukin 6 secretion in rat intestinal smooth muscle cells. Gastroenterology 1999, 116, 346–353. [Google Scholar] [CrossRef]
- Al-Dwairi, A.; Alqudah, M.; Al-Shboul, O.; Alfaqih, M.; Alomari, D. Metformin exerts anti-inflammatory effects on mouse colon smooth muscle cells in vitro. Exp. Ther. Med. 2018, 16, 985–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salinthone, S.; Singer, C.A.; Gerthoffer, W.T. Inflammatory gene expression by human colonic smooth muscle cells. Am. J. Physiol. Liver Physiol. 2004, 287, G627–G637. [Google Scholar] [CrossRef]
- Rumio, C.; Besusso, D.; Arnaboldi, F.; Palazzo, M.; Selleri, S.; Gariboldi, S.; Akira, S.; Uematsu, S.; Bignami, P.; Ceriani, V.; et al. Activation of smooth muscle and myenteric plexus cells of jejunum via toll-like receptor 4. J. Cell. Physiol. 2006, 208, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Wehner, S.; Buchholz, B.M.; Schuchtrup, S.; Rocke, A.; Schaefer, N.; Lysson, M.; Hirner, A.; Kalff, J.C. Mechanical strain and TLR4 synergistically induce cell-specific inflammatory gene expression in intestinal smooth muscle cells and peritoneal macrophages. Am. J. Physiol. Liver Physiol. 2010, 299, G1187–G1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgueño, J.F.; Barba, A.; Eyre, E.; Romero, C.; Neunlist, M.; Fernández, E. TLR2 and TLR9 modulate enteric nervous system inflammatory responses to lipopolysaccharide. J. Neuroinflamm. 2016, 13, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Coquenlorge, S.; Duchalais, E.; Chevalier, J.; Cossais, F.; Rolli-Derkinderen, M.; Neunlist, M. Modulation of lipopolysaccharide-induced neuronal response by activation of the enteric nervous system. J. Neuroinflamm. 2014, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zeng, L.; Li, K.; Wei, H.; Hu, J.; Jiao, L.; Yu, S.; Xiong, Y. A Novel EphA2 Inhibitor Exerts Beneficial Effects in PI-IBS in Vivo and in Vitro Models via Nrf2 and NF-κB Signaling Pathways. Front. Pharmacol. 2018, 9, 272. [Google Scholar] [CrossRef]
- Köylüoğlu, G.; Kaya, T.; Bagcivan, I.; Yildiz, T. Effect of L-NAME on decreased ileal muscle contractility induced by peritonitis in rats. J. Pediatr. Surg. 2002, 37, 901–905. [Google Scholar] [CrossRef]
- Moreels, T.G.; De Man, J.G.; Dick, J.M.; Nieuwendijk, R.J.; De Winter, B.Y.; A Lefebvre, R.; Herman, A.G.; A Pelckmans, P. Effect of TNBS-induced morphological changes on pharmacological contractility of the rat ileum. Eur. J. Pharmacol. 2001, 423, 211–222. [Google Scholar] [CrossRef]
- Lin, S.; Kühn, F.; Schiergens, T.S.; Zamyatnin, A.A.; Isayev, O.; Gasimov, E.; Werner, J.; Li, Y.; Bazhin, A.V. Experimental postoperative ileus: Is Th2 immune response involved? Int. J. Med Sci. 2021, 18, 3014–3025. [Google Scholar] [CrossRef] [PubMed]
- Koscielny, A.; Kalff, J.C. T-helper cell type 1 memory cells and postoperative ileus in the entire gut. Curr. Opin. Gastroenterol. 2011, 27, 509–514. [Google Scholar] [CrossRef]
- Aube, A.C.; Blottiere, H.M.; Scarpignato, C.; Cherbut, C.; Roze, C.; Galmiche, J.P. Inhibition of acetylcholine induced intestinal motility by interleukin 1 beta in the rat. Gut 1996, 39, 470–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, A.; Huber, A.; Neumayer, N.; Allescher, H.-D. Effect of interleukin-1β on the ascending and descending reflex in rat small intestine. Eur. J. Pharmacol. 1998, 359, 201–209. [Google Scholar] [CrossRef]
- Lodato, R.F.; Khan, A.R.; Zembowicz, M.J.; Weisbrodt, N.W.; Pressley, T.A.; Li, Y.-F.; Lodato, J.A.; Zembowicz, A.; Moody, F.G. Roles of IL-1 and TNF in the decreased ileal muscle contractility induced by lipopolysaccharide. Am. J. Physiol. Content 1999, 276, G1356–G1362. [Google Scholar] [CrossRef]
- Main, C.; Blennerhassett, P.; Collins, S.M. Human recombinant interleukin 1β suppresses acetylcholine release from rat myenteric plexus. Gastroenterology 1993, 104, 1648–1654. [Google Scholar] [CrossRef]
- Ohama, T.; Hori, M.; Momotani, E.; Iwakura, Y.; Guo, F.; Kishi, H.; Kobayashi, S.; Ozaki, H. Intestinal inflammation downregulates smooth muscle CPI-17 through induction of TNF-α and causes motility disorders. Am. J. Physiol. Liver Physiol. 2007, 292, G1429–G1438. [Google Scholar] [CrossRef]
- Ohama, T.; Hori, M.; Sato, K.; Ozaki, H.; Karaki, H. Chronic Treatment with Interleukin-1β Attenuates Contractions by Decreasing the Activities of CPI-17 and MYPT-1 in Intestinal Smooth Muscle. J. Biol. Chem. 2003, 278, 48794–48804. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Mahavadi, S.; Li, F.; Murthy, K.S. Upregulation of RGS4 and downregulation of CPI-17 mediate inhibition of colonic muscle contraction by interleukin-1β. Am. J. Physiol. Physiol. 2007, 293, C1991–C2000. [Google Scholar] [CrossRef]
- Kindt, S.; Berghe, P.V.; Boesmans, W.; Roosen, L.; Tack, J. Prolonged IL-1β exposure alters neurotransmitter and electrically induced Ca2+ responses in the myenteric plexus. Neurogastroenterol. Motil. 2010, 22, 321-e85. [Google Scholar] [CrossRef]
- Wu, L.; Walas, S.J.; Leung, W.; Lo, E.H.; Lok, J. Neuregulin-1 and Neurovascular Protection. In Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects; Kobeissy, F.H., Ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Nalli, A.D.; Kumar, D.P.; Mahavadi, S.; Al-Shboul, O.; Alkahtani, R.; Kuemmerle, J.F.; Grider, J.R.; Murthy, K.S. Hypercontractility of Intestinal Longitudinal Smooth Muscle Induced by Cytokines Is Mediated by the Nuclear Factor-κ B/AMP-Activated Kinase/Myosin Light Chain Kinase Pathway. J. Pharmacol. Exp. Ther. 2014, 350, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelles, A.; Janssens, J.; Tack, J. IL-1beta and IL-6 excite neurones and suppress cholinergic neurotransmission in the myenteric plexus of the guinea pig. Neurogastroenterol. Motil. 2000, 12, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Sütó, G.; Király, A.; Taché, Y. Interleukin 1β inhibits gastric emptying in rats: Mediation through prostaglandin and corticotropin-releasing factor. Gastroenterology 1994, 106, 1568–1575. [Google Scholar] [CrossRef]
- Coimbra, C.R.; Plourde, V. Abdominal surgery-induced inhibition of gastric emptying is mediated in part by interleukin-1 beta. Am. J. Physiol. Integr. Comp. Physiol. 1996, 270, R556–R560. [Google Scholar] [CrossRef] [PubMed]
- Greis, C.; Rasuly, Z.; Janosi, R.A.; Kordelas, L.; Beelen, D.W.; Liebregts, T. Intestinal T lymphocyte homing is associated with gastric emptying and epithelial barrier function in critically ill: A prospective observational study. Crit. Care 2017, 21, 70. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiya, Y.; Nozu, T.; Kumei, S.; Ohhira, M.; Okumura, T. IL-1 Receptor Antagonist Blocks the Lipopolysaccharide-Induced Inhibition of Gastric Motility in Freely Moving Conscious Rats. Am. J. Dig. Dis. 2012, 57, 2555–2561. [Google Scholar] [CrossRef] [Green Version]
- Cao, W.; Vrees, M.D.; Potenti, F.M.; Harnett, K.M.; Fiocchi, C.; Pricolo, V.E. Interleukin 1β-Induced Production of H2O2Contributes to Reduced Sigmoid Colonic Circular Smooth Muscle Contractility in Ulcerative Colitis. J. Pharmacol. Exp. Ther. 2004, 311, 60–70. [Google Scholar] [CrossRef]
- Vrees, M.D.; Pricolo, V.E.; Potenti, F.M.; Cao, W. Abnormal Motility in Patients with Ulcerative Colitis. Arch. Surg. 2002, 137, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Yuan, P.-Q.; Taché, Y. Abdominal surgery induced gastric ileus and activation of M1-like macrophages in the gastric myenteric plexus: Prevention by central vagal activation in rats. Am. J. Physiol. Liver Physiol. 2017, 313, G320–G329. [Google Scholar] [CrossRef] [Green Version]
- Boersema, G.S.A.; Wu, Z.; Menon, A.G.; Kleinrensink, G.J.; Jeekel, J.; Lange, J.F. Systemic Inflammatory Cytokines Predict the Infectious Complications but Not Prolonged Postoperative Ileus after Colorectal Surgery. Mediat. Inflamm. 2018, 2018, 7141342. [Google Scholar] [CrossRef]
- Zhu, P.; Jiang, H.; Fu, J.; Chen, W.; Wang, Z.; Cui, L. Cytokine levels in abdominal exudate predict prolonged postoperative ileus following surgery for colorectal carcinoma. Oncol. Lett. 2013, 6, 835–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldhill, J.; Morris, S.C.; Maliszewski, C.; Urban, J.F.; Funk, C.D.; Finkelman, F.D.; Shea-Donohue, T. Interleukin-4 modulates cholinergic neural control of mouse small intestinal longitudinal muscle. Am. J. Physiol. Content 1997, 272, G1135–G1140. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; McDermott, J.; Urban, J.F.; Gause, W.; Madden, K.B.; Yeung, K.A.; Morris, S.C.; Finkelman, F.D.; Shea-Donohue, T. Dependence of IL-4, IL-13, and Nematode-Induced Alterations in Murine Small Intestinal Smooth Muscle Contractility on Stat6 and Enteric Nerves. J. Immunol. 2003, 171, 948–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallance, B.A.; Radojevic, N.; Hogaboam, C.M.; Deng, Y.; Gauldie, J.; Collins, S.M. IL-4 gene transfer to the small bowel serosa leads to intestinal inflammation and smooth muscle hyperresponsiveness. Am. J. Physiol. Liver Physiol. 2007, 292, G385–G394. [Google Scholar] [CrossRef] [PubMed]
- Brandt, E.B.; Munitz, A.; Orekov, T.; Mingler, M.K.; McBride, M.; Finkelman, F.D.; Rothenberg, M.E. Targeting IL-4/IL-13 signaling to alleviate oral allergen–induced diarrhea. J. Allergy Clin. Immunol. 2009, 123, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiho, H.; Lovato, P.; Deng, Y.; Ceponis, P.J.M.; Blennerhassett, P.; Collins, S.M. Interleukin-4- and -13-induced hypercontractility of human intestinal muscle cells-implication for motility changes in Crohn’s disease. Am. J. Physiol. Liver Physiol. 2005, 288, G609–G615. [Google Scholar] [CrossRef] [PubMed]
- Darkoh, C.; Comer, L.; Zewdie, G.; Harold, S.; Snyder, N.; Dupont, H.L. Chemotactic Chemokines Are Important in the Pathogenesis of Irritable Bowel Syndrome. PLoS ONE 2014, 9, e93144. [Google Scholar] [CrossRef]
- Nullens, S.; Staessens, M.; Peleman, C.; Plaeke, P.; Malhotra-Kumar, S.; Francque, S.; De Man, J.G.; De Winter, B.Y. Beneficial Effects of Anti-Interleukin-6 Antibodies on Impaired Gastrointestinal Motility, Inflammation and Increased Colonic Permeability in a Murine Model of Sepsis Are Most Pronounced When Administered in a Preventive Setup. PLoS ONE 2016, 11, e0152914. [Google Scholar] [CrossRef] [Green Version]
- Buchholz, B.M.; Chanthaphavong, R.S.; Billiar, T.R.; Bauer, A.J. Role of interleukin-6 in hemopoietic and non-hemopoietic synergy mediating TLR4-triggered late murine ileus and endotoxic shock1. Neurogastroenterol. Motil. 2012, 24, 658-e294. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Xiong, J.; Chen, Z. IL-6, TNF-α, and iNOS is associated with decreased colonic contraction in rats with multiple organ dysfunction syndrome. J. Surg. Res. 2012, 178, e51–e57. [Google Scholar] [CrossRef]
- Hierholzer, C.; Kalff, J.C.; Chakraborty, A.; Watkins, S.C.; Billiar, T.R.; Bauer, A.J.; Tweardy, D.J. Impaired Gut Contractility Following Hemorrhagic Shock is Accompanied by IL-6 and G-CSF Production and Neutrophil Infiltration. Am. J. Dig. Dis. 2001, 46, 230–241. [Google Scholar] [CrossRef]
- Buckley, M.M.; O’Brien, R.; Devlin, M.; Creed, A.A.; Rae, M.G.; Hyland, N.P.; Quigley, E.M.M.; McKernan, D.P.; O’Malley, D. Leptin modifies the prosecretory and prokinetic effects of the inflammatory cytokine interleukin-6 on colonic function in Sprague-Dawley rats. Exp. Physiol. 2016, 101, 1477–1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, M.M.; O’Halloran, K.D.; Rae, M.G.; Dinan, T.G.; O’Malley, D. Modulation of enteric neurons by interleukin-6 and corticotropin-releasing factor contributes to visceral hypersensitivity and altered colonic motility in a rat model of irritable bowel syndrome. J. Physiol. 2014, 592, 5235–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, X.-W.; Qin, Y.; Jin, Z.; Xi, T.-F.; Yang, X.; Lu, Z.-H.; Tang, Y.-P.; Cai, W.-T.; Chen, S.-J.; Xie, D.-P. Interleukin-6 (IL-6) mediated the increased contraction of distal colon in streptozotocin-induced diabetes in rats via IL-6 receptor pathway. Int. J. Clin. Exp. Pathol. 2015, 8, 4514–4524. [Google Scholar]
- Lehrskov, L.L.; Christensen, R.H. The role of interleukin-6 in glucose homeostasis and lipid metabolism. Semin. Immunopathol. 2019, 41, 491–499. [Google Scholar] [CrossRef]
- Rana, S.V.; Sharma, S.; Kaur, J.; Prasad, K.K.; Sinha, S.K.; Kochhar, R.; Malik, A.; Morya, R.K. Relationship of cytokines, oxidative stress and GI motility with bacterial overgrowth in ulcerative colitis patients. J. Crohn’s Colitis 2014, 8, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Lodha, A.; Howlett, A.; Ahmed, T.; Moore, A.M. The Role of Interleukin-6 and Interleukin-8 Circulating Cytokines in Differentiating between Feeding Intolerance and Necrotizing Enterocolitis in Preterm Infants. Am. J. Perinatol. 2017, 34, 1286–1292. [Google Scholar] [CrossRef]
- Fukaura, K.; Ihara, E.; Ogino, H.; Iboshi, Y.; Muta, K.; Xiaopeng, B.; Hamada, S.; Hata, Y.; Iwasa, T.; Aso, A.; et al. Mucosally Expressed Cytokines are Associated with the Esophageal Motility Function. Digestion 2018, 98, 95–103. [Google Scholar] [CrossRef]
- Plattner, V.; Leray, V.; Leclair, M.-D.; Aubé, A.-C.; Cherbut, C.; Galmiche, J.P. Interleukin-8 increases acetylcholine response of rat intestinal segments. Aliment. Pharmacol. Ther. 2001, 15, 1227–1232. [Google Scholar] [CrossRef]
- Krzystek-Korpacka, M.; Zawadzki, M.; Lewandowska, P.; Szufnarowski, K.; Bednarz-Misa, I.; Jacyna, K.; Witkiewicz, W.; Gamian, A. Distinct Chemokine Dynamics in Early Postoperative Period after Open and Robotic Colorectal Surgery. J. Clin. Med. 2019, 8, 879. [Google Scholar] [CrossRef] [Green Version]
- Bennet, S.M.P.; Palsson, O.; Whitehead, W.E.; Barrow, D.A.; Törnblom, H.; Öhman, L.; Simrén, M.; van Tilburg, M. Systemic cytokines are elevated in a subset of patients with irritable bowel syndrome but largely unrelated to symptom characteristics. Neurogastroenterol. Motil. 2018, 30, e13378. [Google Scholar] [CrossRef]
- Jonefjäll, B.; Öhman, L.; Simrén, M.; Strid, H. IBS-like Symptoms in Patients with Ulcerative Colitis in Deep Remission Are Associated with Increased Levels of Serum Cytokines and Poor Psychological Well-being. Inflamm. Bowel Dis. 2016, 22, 2630–2640. [Google Scholar] [CrossRef]
- Bennet, S.M.P.; Polster, A.; Törnblom, H.; Isaksson, S.; Capronnier, S.; Tessier, A.; Le Nevé, B.; Simrén, M.; Öhman, L. Global Cytokine Profiles and Association with Clinical Characteristics in Patients With Irritable Bowel Syndrome. Am. J. Gastroenterol. 2016, 111, 1165–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhen, Y.; Chu, C.; Zhou, S.; Qi, M.; Shu, R. Imbalance of tumor necrosis factor-α, interleukin-8 and interleukin-10 production evokes barrier dysfunction, severe abdominal symptoms and psychological disorders in patients with irritable bowel syndrome-associated diarrhea. Mol. Med. Rep. 2015, 12, 5239–5245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruna, P.; Frasko, R.; Gürlich, R. Plasma procalcitonin in patients with ileus. Relations to other inflammatory parameters. Physiol. Res. 2008, 57, 481–486. [Google Scholar] [CrossRef]
- Jiang, Z.-D.; Dupont, H.L.; Garey, K.W.; Price, M.; E Graham, G.; Okhuysen, P.; Dao-Tran, T.; Larocco, M.T. A Common Polymorphism in the Interleukin 8 Gene Promoter Is Associated with Clostridium difficile Diarrhea. Am. J. Gastroenterol. 2006, 101, 1112–1116. [Google Scholar] [CrossRef]
- Jiang, Z.; Okhuysen, P.C.; Guo, D.; He, R.; King, T.M.; DuPont, H.L.; Milewicz, D.M. Genetic Susceptibility to Enteroaggregative Escherichia coli Diarrhea: Polymorphism in the Interleukin-8 Promotor Region. J. Infect. Dis. 2003, 188, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Zhao, A.; Morimoto, M.; Dawson, H.; Elfrey, J.E.; Madden, K.B.; Gause, W.C.; Min, B.; Finkelman, F.D.; Urban, J.; Shea-Donohue, T. Immune Regulation of Protease-Activated Receptor-1 Expression in Murine Small Intestine duringNippostrongylus brasiliensisInfection. J. Immunol. 2005, 175, 2563–2569. [Google Scholar] [CrossRef] [Green Version]
- Finkelman, F.D.; Shea-Donohue, T.; Morris, S.C.; Gildea, L.; Strait, R.; Madden, K.B.; Schopf, L.; Urban, J. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol. Rev. 2004, 201, 139–155. [Google Scholar] [CrossRef]
- Khan, W.I.; Vallance, B.A.; Blennerhassett, P.A.; Deng, Y.; Verdu, E.F.; Matthaei, K.I.; Collins, S.M. Critical Role for Signal Transducer and Activator of Transcription Factor 6 in Mediating Intestinal Muscle Hypercontractility and Worm Expulsion in Trichinella spiralis -Infected Mice. Infect. Immun. 2001, 69, 838–844. [Google Scholar] [CrossRef] [Green Version]
- Wouters, M.M.; Lambrechts, D.; Knapp, M.; Cleynen, I.; Whorwell, P.; Agréus, L.; Dlugosz, A.; Schmidt, P.T.; Halfvarson, J.; Simrén, M.; et al. Genetic variants in CDC42 and NXPH1 as susceptibility factors for constipation and diarrhoea predominant irritable bowel syndrome. Gut 2013, 63, 1103–1111. [Google Scholar] [CrossRef]
- Akiho, H.; Tokita, Y.; Nakamura, K.; Satoh, K.; Nishiyama, M.; Tsuchiya, N.; Tsuchiya, K.; Ohbuchi, K.; Iwakura, Y.; Ihara, E.; et al. Involvement of Interleukin-17A-Induced Hypercontractility of Intestinal Smooth Muscle Cells in Persistent Gut Motor Dysfunction. PLoS ONE 2014, 9, e92960. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.; Wang, W.; Tong, J.; Pan, Q.; Long, Y.; Qian, W.; Hou, X. Th17: A New Participant in Gut Dysfunction in Mice Infected withTrichinella spiralis. Mediat. Inflamm. 2009, 2009, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dann, S.M.; Manthey, C.F.; Le, C.; Miyamoto, Y.; Gima, L.; Abrahim, A.; Cao, A.T.; Hanson, E.M.; Kolls, J.K.; Raz, E.; et al. IL-17A promotes protective IgA responses and expression of other potential effectors against the lumen-dwelling enteric parasite Giardia. Exp. Parasitol. 2015, 156, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Kong, P.; Chen, C.; Tang, J.; Jin, X.; Yan, J.; Wang, Y. Targeting IL-17A Improves the Dysmotility of the Small Intestine and Alleviates the Injury of the Interstitial Cells of Cajal during Sepsis. Oxidative Med. Cell. Longev. 2019, 2019, 1475729-15. [Google Scholar] [CrossRef]
- Buchholz, B.M.; Shapiro, R.A.; Vodovotz, Y.; Billiar, T.R.; Sodhi, C.P.; Hackam, D.J.; Bauer, A.J. Myocyte TLR4 enhances enteric and systemic inflammation driving late murine endotoxic ileus. Am. J. Physiol. Liver Physiol. 2015, 308, G852–G862. [Google Scholar] [CrossRef] [Green Version]
- Olsen, A.B.; Hetz, R.A.; Xue, H.; Aroom, K.; Bhattarai, D.; Johnson, E.; Bedi, S.; Cox, C.S.; Uray, K. Effects of traumatic brain injury on intestinal contractility. Neurogastroenterol. Motil. 2013, 25, 593-e463. [Google Scholar] [CrossRef] [Green Version]
- Indrio, F.; Riezzo, G.; Tafuri, S.; Ficarella, M.; Carlucci, B.; Bisceglia, M.; Polimeno, L.; Francavilla, R. Probiotic Supplementation in Preterm: Feeding Intolerance and Hospital Cost. Nutrients 2017, 9, 965. [Google Scholar] [CrossRef]
- Safdari, B.; Sia, T.; Wattchow, D.; Smid, S. Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability. Cytokine 2016, 83, 231–238. [Google Scholar] [CrossRef]
- Kinoshita, K.; Hori, M.; Fujisawa, M.; Sato, K.; Ohama, T.; Momotani, E.; Ozaki, H. Role of TNF-alpha in muscularis inflammation and motility disorder in a TNBS-induced colitis model: Clues from TNF-alpha-deficient mice. Neurogastroenterol. Motil. 2006, 18, 578–588. [Google Scholar] [CrossRef]
- Mahavadi, S.; Nalli, A.D.; Kumar, D.P.; Hu, W.; Kuemmerle, J.F.; Grider, J.R.; Murthy, K.S. Cytokine-induced iNOS and ERK1/2 inhibit adenylyl cyclase type 5/6 activity and stimulate phosphodiesterase 4D5 activity in intestinal longitudinal smooth muscle. Am. J. Physiol. Cell Physiol. 2014, 307, C402-11. [Google Scholar] [CrossRef] [Green Version]
- Al-Shboul, O.; Nalli, A.D.; Kumar, D.P.; Zhou, R.; Mahavadi, S.; Kuemmerle, J.F.; Grider, J.R.; Murthy, K.S. Jun kinase-induced overexpression of leukemia-associated Rho GEF (LARG) mediates sustained hypercontraction of longitudinal smooth muscle in inflammation. Am. J. Physiol. Physiol. 2014, 306, C1129-41. [Google Scholar] [CrossRef] [Green Version]
- Ford, C.L.; Wang, Y.; Morgan, K.; Boktor, M.; Jordan, P.; Castor, T.P.; Alexander, J.S. Interferon-gamma depresses human intestinal smooth muscle cell contractility: Relevance to inflammatory gut motility disturbances. Life Sci. 2019, 222, 69–77. [Google Scholar] [CrossRef]
- A Leslie, K.; Behme, R.; Clift, A.; Martin, S.; Grant, D.; Duff, J.H. Synergistic effects of tumour necrosis factor and morphine on gut barrier function. Can. J. Surg. 1994, 37, 143–147. [Google Scholar]
- Pazdrak, K.; Shi, X.-Z.; Sarna, S.K. TNFα suppresses human colonic circular smooth muscle cell contractility by SP1- and NF-κB-mediated induction of ICAM-1. Gastroenterology 2004, 127, 1096–1109. [Google Scholar] [CrossRef]
- Shi, X.-Z.; Sarna, S.K. Homeostatic and therapeutic roles of VIP in smooth muscle function: Myo-neuroimmune interactions. Am. J. Physiol. Liver Physiol. 2009, 297, G716–G725. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Cheng, M.-H.; Xi, F.-C.; Chen, Y.; Su, T.; Li, W.-Q.; Yu, W.-K. Changes of plasma acetylcholine and inflammatory markers in critically ill patients during early enteral nutrition: A prospective observational study. J. Crit. Care 2019, 52, 219–226. [Google Scholar] [CrossRef]
- Crona, D.; MacLaren, R. Gastrointestinal Hormone Concentrations Associated with Gastric Feeding in Critically Ill Patients. J. Parenter. Enter. Nutr. 2011, 36, 189–196. [Google Scholar] [CrossRef]
- Bashashati, M.; Rezaei, N.; Shafieyoun, A.; McKernan, D.; Chang, L.; Öhman, L.; Quigley, E.M.; Schmulson, M.; Sharkey, K.; Simrén, M. Cytokine imbalance in irritable bowel syndrome: A systematic review and meta-analysis. Neurogastroenterol. Motil. 2014, 26, 1036–1048. [Google Scholar] [CrossRef]
- Motomura, Y.; Khan, W.I.; El-Sharkawy, R.; Verma-Gandhu, M.; Grencis, R.K.; Collins, S.M. Mechanisms underlying gut dysfunction in a murine model of chronic parasitic infection. Am. J. Physiol. Liver Physiol. 2010, 299, G1354–G1360. [Google Scholar] [CrossRef]
- Moore-Olufemi, S.D.; Olsen, A.B.; Hook-Dufresne, D.M.; Bandla, V.; Cox, C.S. Transforming Growth Factor-Beta 3 Alters Intestinal Smooth Muscle Function: Implications for Gastroschisis-Related Intestinal Dysfunction. Am. J. Dig. Dis. 2014, 60, 1206–1214. [Google Scholar] [CrossRef] [Green Version]
- Thoua, N.M.; Derrett-Smith, E.C.; Khan, K.; Dooley, A.; Shi-Wen, X.; Denton, C.P. Gut fibrosis with altered colonic contractility in a mouse model of scleroderma. Rheumatology 2012, 51, 1989–1998. [Google Scholar] [CrossRef] [Green Version]
- Monteleone, G.; Kumberova, A.; Croft, N.M.; McKenzie, C.; Steer, H.W.; Macdonald, T.T. Blocking Smad7 restores TGF-β1 signaling in chronic inflammatory bowel disease. J. Clin. Investig. 2001, 108, 601–609. [Google Scholar] [CrossRef]
- Kotlarz, D.; Marquardt, B.; Barøy, T.; Lee, W.S.; Konnikova, Y.; Hollizeck, S.; Magg, T.; Lehle, A.S.; Walz, C.; Borggraefe, I.; et al. Human TGF-β1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nat. Genet. 2018, 50, 344–348. [Google Scholar] [CrossRef]
- Hong, G.; Zillekens, A.; Schneiker, B.; Pantelis, D.; De Jonge, W.J.; Schaefer, N.; Kalff, J.C.; Wehner, S. Non-invasive transcutaneous auricular vagus nerve stimulation prevents postoperative ileus and endotoxemia in mice. Neurogastroenterol. Motil. 2018, 31, e13501. [Google Scholar] [CrossRef]
- Morais, T.C.; Arruda, B.R.; Magalhães, H.D.S.; Trevisan, M.T.S.; Viana, D.D.A.; Rao, V.S.; Santos, F.A. Mangiferin ameliorates the intestinal inflammatory response and the impaired gastrointestinal motility in mouse model of postoperative ileus. Naunyn-Schmiedebergs Arch. fur Exp. Pathol. und Pharmakol. 2015, 388, 531–538. [Google Scholar] [CrossRef]
- Maehara, T.; Matsumoto, K.; Horiguchi, K.; Kondo, M.; Iino, S.; Horie, S.; Murata, T.; Tsubone, H.; Shimada, S.; Ozaki, H.; et al. Therapeutic action of 5-HT3 receptor antagonists targeting peritoneal macrophages in post-operative ileus. J. Cereb. Blood Flow Metab. 2014, 172, 1136–1147. [Google Scholar] [CrossRef] [Green Version]
- Sonnier, D.I.; Bailey, S.R.; Schuster, R.M.; Gangidine, M.M.; Lentsch, A.B.; Pritts, T. Proinflammatory Chemokines in the Intestinal Lumen Contribute to Intestinal Dysfunction During Endotoxemia. Shock 2012, 37, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.N.; Joung, J.-G.; Bae, J.S.; Lee, C.S.; Koo, J.S.; Park, S.J.; Im, J.P.; Kim, Y.S.; Kim, J.W.; Park, W.-Y.; et al. RNA-seq Reveals Transcriptomic Differences in Inflamed and Noninflamed Intestinal Mucosa of Crohn’s Disease Patients Compared with Normal Mucosa of Healthy Controls. Inflamm. Bowel Dis. 2017, 23, 1098–1108. [Google Scholar] [CrossRef]
- Hori, M.; Nobe, H.; Horiguchi, K.; Ozaki, H. MCP-1 targeting inhibits muscularis macrophage recruitment and intestinal smooth muscle dysfunction in colonic inflammation. Am. J. Physiol. Physiol. 2008, 294, C391–C401. [Google Scholar] [CrossRef]
- Türler, A.; Schwarz, N.T.; Türler, E.; Kalff, J.C.; Bauer, A.J. MCP-1 causes leukocyte recruitment and subsequently endotoxemic ileus in rat. Am. J. Physiol. Liver Physiol. 2002, 282, G145–G155. [Google Scholar] [CrossRef] [Green Version]
- Farro, G.; Pinilla, P.J.G.; Di Giovangiulio, M.; Stakenborg, N.; Auteri, M.; Thijs, T.; Depoortere, I.; Matteoli, G.; Boeckxstaens, G.E. Smooth muscle and neural dysfunction contribute to different phases of murine postoperative ileus. Neurogastroenterol. Motil. 2016, 28, 934–947. [Google Scholar] [CrossRef]
- Stein, K.; Lysson, M.; Schumak, B.; Vilz, T.; Specht, S.; Heesemann, J.; Roers, A.; Kalff, J.C.; Wehner, S. Leukocyte-Derived Interleukin-10 Aggravates Postoperative Ileus. Front. Immunol. 2018, 9, 2599. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Shi, H.; Hong, Z.; Chi, P. Inhibition of JAK1 mitigates postoperative ileus in mice. Surgery 2019, 166, 1048–1054. [Google Scholar] [CrossRef]
- Uray, K.S.; Laine, G.A.; Xue, H.; Allen, S.J.; Cox, C.S. Edema-induced intestinal dysfunction is mediated by STAT3 activation. Shock 2007, 28, 239–244. [Google Scholar] [CrossRef]
- Mitchell, E.L.; Davis, A.T.; Brass, K.; Dendinger, M.; Barner, R.; Gharaibeh, R.; Fodor, A.A.; Kavanagh, K. Reduced intestinal motility, mucosal barrier function, and inflammation in aged monkeys. J. Nutr. Health Aging 2016, 21, 354–361. [Google Scholar] [CrossRef]
- Moore, B.A.; Albers, K.M.; Davis, B.M.; Grandis, J.R.; Tögel, S.; Bauer, A.J. Altered inflammatory gene expression underlies increased susceptibility to murine postoperative ileus with advancing age. Am. J. Physiol. Liver Physiol. 2007, 292, G1650–G1659. [Google Scholar] [CrossRef] [Green Version]
- Becker, L.; Nguyen, L.; Gill, J.; Kulkarni, S.; Pasricha, P.J.; Habtezion, A. Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut 2017, 67, 827–836. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Stoffels, B.; Chanthaphavong, R.S.; Buchholz, B.M.; Nakao, A.; Bauer, A.J. Differential molecular and cellular immune mechanisms of postoperative and LPS-induced ileus in mice and rats. Cytokine 2012, 59, 49–58. [Google Scholar] [CrossRef] [Green Version]
Receptor | Small Intestine | Colon | |||||
---|---|---|---|---|---|---|---|
SMC | ICC | ENS | SMC | ICC | ENS | REF | |
IL-1R1 | SD rats, protein | - | SD rats, protein; C57BL/6 mice, protein | NZ rabbit, mRNA | - | - | [38,39,40] |
IL-4Rα | Balb/c mouse, mRNA; C57Bl/6 mice, mRNA; NIH Swiss mouse, mRNA | Balb/c mouse, mRNA | Balb/c mouse, mRNA | Balb/c mouse, mRNA | Balb/c mouse, mRNA | Balb/c mouse, mRNA | [41,42,43] |
IL-6R | - | - | - | SD rats, mRNA and protein | C57Bl/6 mouse, protein | SD and WKY rats, protein; SD rats, mRNA and protein | [44,45,46,47] |
IL-13RA1 | Balb/c mouse, mRNA | Balb/c mouse, mRNA | Balb/c mouse, mRNA | Balb/c mouse, mRNA | Balb/c mouse, mRNA | Balb/c mouse, mRNA | [41] |
IL-13RA2 | Balb/c mouse, mRNA | - | - | Balb/c mouse, mRNA | - | - | [41] |
IL-17RA | SD rat, mRNA; BABL/c mice, mRNA; C57Bl/6 mice, mRNA | - | - | - | - | - | [48,49,50] |
IL-17RC | SD rat, mRNA | - | - | - | - | - | [48] |
CXCR2 | - | - | - | - | - | - | |
TGFR-1 | Human, protein; C57Bl/6 mice, mRNA; Wistar rats, mRNA; CD1 mice, protein | Wistar rats, mRNA; | human, mRNA | human, mRNA | [51,52,53,54] | ||
TGFR-2 | Human, protein; C57Bl/6 mouse, mRNA; NIH Swiss mouse, mRNA; Wistar rats, mRNA; CD1 mice, protein | Wistar rats, mRNA; | human, mRNA | human, mRNA | [43,51,52,53,54] | ||
TGFR-3 | Wistar rats, mRNA | - | Wistar rats, mRNA; | human, mRNA | - | human, mRNA | [53] |
IFNGR1 | C57Bl/6 mouse, mRNA | - | - | - | - | - | [52] |
TNFR1 | SD rat, protein | - | SD rat, protein; 129 mice, mRNA | Human, protein | - | - | [38,55,56] |
TNFR2 | - | - | 129 mice, mRNA | Human, protein | - | - | [55,56] |
Location | Effect | Inflammatory Mediator |
---|---|---|
Small intestine | ↓ contractility | IL-1β, IL-6, IL-17, IFN-γ, CXCL-1 |
↑ contractility | IL-4, IL-13, IL-17, TGF-α | |
↓ acetyl choline-induced contractions | IL-1β, TNF-α | |
↑ acetyl choline-induced i contractions | IL-4, IL-8, IL-13, IL-17, TGF-α | |
Colon | ↓ colonic motility | IL-1β, IL-6, TNF-α, IFN-γ, TGF-α |
↑ colonic motility | IL-1β, IL-6, IL-8, TNF-α, MCP-1 | |
↑ acetyl choline-induced colonic contractions | IL-1β | |
Stomach | ↓ gastric emptying | IL-1β, IL-6 |
↑ gastric emptying | IL-17 | |
Whole Animal | ↑ POI | IL-1β, IL-6, IL-17, IL-10 |
↓ GI transit | IL-6, IL-17, MCP-1 | |
↑ GI transit | TGF-α |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Docsa, T.; Sipos, A.; Cox, C.S.; Uray, K. The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders. Int. J. Mol. Sci. 2022, 23, 6917. https://doi.org/10.3390/ijms23136917
Docsa T, Sipos A, Cox CS, Uray K. The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders. International Journal of Molecular Sciences. 2022; 23(13):6917. https://doi.org/10.3390/ijms23136917
Chicago/Turabian StyleDocsa, Tibor, Adám Sipos, Charles S. Cox, and Karen Uray. 2022. "The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders" International Journal of Molecular Sciences 23, no. 13: 6917. https://doi.org/10.3390/ijms23136917
APA StyleDocsa, T., Sipos, A., Cox, C. S., & Uray, K. (2022). The Role of Inflammatory Mediators in the Development of Gastrointestinal Motility Disorders. International Journal of Molecular Sciences, 23(13), 6917. https://doi.org/10.3390/ijms23136917