Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications
Abstract
:1. Introduction
1.1. Phages among Us
1.2. Broader Applications of the Viruses of Bacteria
1.3. An Exploitable Evolutionary Tradeoff
2. The Flagellotropic Phage Niche
2.1. Phages and Their Myriad Host Receptors
2.2. The Bacterial Flagellum
2.3. Distinct Advantages of the Flagellotropic Lifestyle
3. Host Bacteria and Their Respective Flagellotropic Phages of Study
3.1. Salmonella Phage χ
3.2. Bacillus Phage PBS1
3.3. Agrobacterium Phage 7-7-1
3.4. Caulobacter Phage ΦCbK
3.5. Campylobacter Phage F341
3.6. Pseudomonas Phage ΦCTX
3.7. Other Flagellotropic Phages and Their Hosts
4. Overall Infection Process and Interactions with Flagella
4.1. Requirements for Adsorption into the Bacterial Flagellum
4.2. After Adsorption: Translocation to the Cell Surface
5. Applications
Specific Applications for Flagellum-Dependent Phages
6. Significant Gaps in Knowledge and Directions for Future Research
6.1. In Vivo Research
6.2. The Role of RBPs and Flagellin in Determining Host Range
6.3. Translocation to the Cell Surface
6.4. Secondary Receptors and other Required Cellular Components
6.5. Discovery and Categorization of Novel Flagellotropic Phages
7. Concluding Remarks
Phage | Host Bacteria | Putative Secondary Receptor(s) | References |
---|---|---|---|
χ | Salmonella enterica Escherichia coli Serratia marcescens | AcrAB/TolC | [65,87,112,114,115,116,117,181,258] |
YSD1 | Salmonella enterica | unknown | [180] |
Utah | Escherichia coli | unknown | [177] |
iEPS5 | Salmonella enterica | unknown | [179] |
PBS1 | Bacillus subtilis | unknown | [87,126,127,128,129,131,132] |
AR9 | Bacillus subtilis | unknown | [129,183,184] |
SP3 | Bacillus subtilis | unknown | [130] |
PBP1 | Bacillus subtilis | unknown | [131] |
7-7-1 | Agrobacterium sp. H13-3 | LPS | [68,88,140,142,143] |
Milano | Agrobacterium tumefaciens | unknown | [185] |
GS2 | Agrobacterium tumefaciens | unknown | [186] |
GS6 | Agrobacterium tumefaciens | unknown | [186] |
ΦCbK | Caulobacter crescentus | Type IV pili secretion apparatus | [151,152,154,187,188,246] |
ΦCb13 | Caulobacter crescentus | unknown | [149,187] |
ΦC6 | Caulobacter crescentus | unknown | [149,187] |
F341 | Campylobacter jejuni | unknown | [160] |
ΦCTX | Pseudomonas aeruginosa | unknown | [166] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in Nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [Green Version]
- D’Herelle, F. Bacteriophage as a Treatment in Acute Medical and Surgical Infections. Bull. N. Y. Acad. Med. 1931, 7, 329–348. [Google Scholar]
- Romero-Calle, D.; Guimarães Benevides, R.; Góes-Neto, A.; Billington, C. Bacteriophages as Alternatives to Antibiotics in Clinical Care. Antibiotics 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Ackermann, H.-W. Tailed Bacteriophages: The Order Caudovirales. Adv. Virus Res. 1998, 51, 135–201. [Google Scholar] [CrossRef]
- Suhanovsky, M.M.; Teschke, C.M. Nature’s favorite building block: Deciphering folding and capsid assembly of proteins with the HK97-fold. Virology 2015, 479, 487–497. [Google Scholar] [CrossRef] [Green Version]
- Rehman, S.; Ali, Z.; Khan, M.; Bostan, N.; Naseem, S. The dawn of phage therapy. Rev. Med. Virol. 2019, 29, e2041. [Google Scholar] [CrossRef]
- Chanishvili, N. Phage Therapy—History from Twort and d’Herelle through soviet experience to current approaches. Adv. Virus Res. 2012, 82, 3–40. [Google Scholar]
- Summers, W.C. The strange history of phage therapy. Bacteriophage 2012, 2, 130–133. [Google Scholar] [CrossRef] [Green Version]
- D’Hérelle, F. Le Bactériophage: Son Role Dans l’Immunité; Kessinger Publishing: Whitefish, MT, USA, 1921. [Google Scholar]
- Aminov, R.I. A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future. Front. Microbiol. 2010, 1, 134. [Google Scholar] [CrossRef] [Green Version]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe 2019, 25, 219–232. [Google Scholar] [CrossRef] [Green Version]
- Aswani, V.H.; Shukla, S.K. An Early History of Phage Therapy in the United States: Is It Time to Reconsider? Clin. Med. Res. 2021, 19, 82–89. [Google Scholar] [CrossRef]
- Gelman, D.; Eisenkraft, A.; Chanishvili, N.; Nachman, D.; Glazer, S.C.; Hazan, R. The history and promising future of phage therapy in the military service. J. Trauma Acute Care Surg. 2018, 85, S18–S26. [Google Scholar] [CrossRef]
- Steele, A.; Stacey, H.; De Soir, S.; Jones, J. The Safety and Efficacy of Phage Therapy for Superficial Bacterial Infections: A Systematic Review. Antibiotics 2020, 9, 754. [Google Scholar] [CrossRef]
- Golkar, Z.; Bagasra, O.; Pace, D.G. Bacteriophage therapy: A potential solution for the antibiotic resistance crisis. J. Infect. Dev. Ctries. 2014, 8, 129–136. [Google Scholar] [CrossRef]
- Maltezou, H.C. Metallo-Beta-Lactamases in Gram-Negative Bacteria: Introducing the Era of Pan-Resistance? Int. J. Antimicrob. Agents 2009, 33, 405.e1–405.e7. [Google Scholar] [CrossRef]
- Maseda, E.; Mensa, J.; Valía, J.-C.; Gomez-Herreras, J.-I.; Ramasco, F.; Samso, E.; Chiveli, M.-A.; Pereira, J.; González, R.; Aguilar, G.; et al. Bugs, hosts and ICU environment: Countering pan-resistance in nosocomial microbiota and treating bacterial infections in the critical care setting. Rev. Esp. Anestesiol. Reanim. 2014, 61, e1–e19. [Google Scholar] [CrossRef] [PubMed]
- Bathoorn, E.; Tsioutis, C.; da Silva Voorham, J.M.; Scoulica, E.V.; Ioannidou, E.; Zhou, K.; Rossen, J.W.; Gikas, A.; Friedrich, A.W.; Grundmann, H. Emergence of Pan-Resistance in KPC-2 Carbapenemase-Producing Klebsiella pneumoniae in Crete, Greece: A Close Call. J. Antimicrob. Chemother. 2016, 71, 1207–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, F.; Cai, J.; He, Q.; Wang, W.; Luo, Y.; Wang, X.; Mi, N.; Zhao, Z.; Li, G.; Luo, W. Overexpression of Efflux Pumps Mediate Pan Resistance of Klebsiella pneumoniae Sequence Type 11. Microb. Drug Resist. 2021, 27, 1405–1411. [Google Scholar] [CrossRef]
- Dion, M.B.; Oechslin, F.; Moineau, S. Phage Diversity, Genomics and Phylogeny. Nat. Rev. Microbiol. 2020, 18, 125–138. [Google Scholar] [CrossRef]
- Jurczak-Kurek, A.; Gąsior, T.; Nejman-Faleńczyk, B.; Bloch, S.; Dydecka, A.; Topka, G.; Necel, A.; Jakubowska-Deredas, M.; Narajczyk, M.; Richert, M.; et al. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Sci. Rep. 2016, 6, 34338. [Google Scholar] [CrossRef] [PubMed]
- Aghaee, B.L.; Mirzaei, M.K.; Alikhani, M.Y.; Mojtahedi, A. Sewage and sewage-contaminated environments are the most prominent sources to isolate phages against Pseudomonas aeruginosa. BMC Microbiol. 2021, 21, 132. [Google Scholar] [CrossRef] [PubMed]
- Pelzek, A.J.; Schuch, R.; Schmitz, J.E.; Fischetti, V.A. Isolation of Bacteriophages from Environmental Sources, and Creation and Functional Screening of Phage DNA Libraries. Curr. Protoc. Essent. Lab. Tech. 2013, 7, 13.3.1–13.3.35. [Google Scholar] [CrossRef]
- Bonilla, N.; Rojas, M.I.; Cruz, G.N.F.; Hung, S.-H.; Rohwer, F.; Barr, J.J. Phage on tap–a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 2016, 4, e2261. [Google Scholar] [CrossRef] [Green Version]
- Koskella, B.; Meaden, S. Understanding Bacteriophage Specificity in Natural Microbial Communities. Viruses 2013, 5, 806–823. [Google Scholar] [CrossRef] [Green Version]
- Ross, A.; Ward, S.; Hyman, P. More Is Better: Selecting for Broad Host Range Bacteriophages. Front. Microbiol. 2016, 7, 1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.B.; Young, K.; Silver, L.L. What Is an “Ideal” Antibiotic? Discovery Challenges and Path Forward. Biochem. Pharmacol. 2017, 133, 63–73. [Google Scholar] [CrossRef]
- Picconi, P.; Hind, C.; Nahar, K.S.; Jamshidi, S.; Di Maggio, L.; Saeed, N.; Evans, B.; Solomons, J.; Wand, M.E.; Sutton, J.M.; et al. New Broad-Spectrum Antibiotics Containing a Pyrrolobenzodiazepine Ring with Activity against Multidrug-Resistant Gram-Negative Bacteria. J. Med. Chem. 2020, 63, 6941–6958. [Google Scholar] [CrossRef]
- Richter, M.F.; Hergenrother, P.J. The challenge of converting Gram-positive-only compounds into broad-spectrum antibiotics. Ann. N. Y. Acad. Sci. 2019, 1435, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Wang, Z.L.; Liu, X.C.; Ji, Y.C.; He, Y.; Ai, Q.; Li, L.Q. Effect of the Course of Treatment with Broad-Spectrum Antibiotics on Intestinal Flora and Short-Chain Fatty Acids in Feces of Very Low Birth Weight Infants: A Prospective Study. Chin. J. Contemp. Pediatr. 2021, 23, 1008–1014. [Google Scholar]
- Angelucci, F.; Cechova, K.; Amlerova, J.; Hort, J. Antibiotics, Gut Microbiota, and Alzheimer’s Disease. J. Neuroinflamm. 2019, 16, 108. [Google Scholar] [CrossRef]
- van Werkhoven, C.H.; The ANTICIPATE Study Group; Ducher, A.; Berkell, M.; Mysara, M.; Lammens, C.; Torre-Cisneros, J.; Rodríguez-Baño, J.; Herghea, D.; Cornely, O.A.; et al. Incidence and predictive biomarkers of Clostridioides difficile infection in hospitalized patients receiving broad-spectrum antibiotics. Nat. Commun. 2021, 12, 2240. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.X.; Wong, G.W.; Tan, Y.H. Superinfection associated with prolonged antibiotic use in non-ventilator associated hospital-acquired pneumonia. Int. J. Clin. Pharm. 2021, 43, 1555–1562. [Google Scholar] [CrossRef]
- Al Muqati, H.; Al Turaiki, A.; Al Dhahri, F.; Al Enazi, H.; Althemery, A. Superinfection rate among the patients treated with carbapenem versus piperacillin/tazobactam: Retrospective observational study. J. Infect. Public Health 2021, 14, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Verdugo, F.; Laksmana, T.; Uribarri, A. Systemic antibiotics and the risk of superinfection in peri-implantitis. Arch. Oral Biol. 2016, 64, 39–50. [Google Scholar] [CrossRef]
- Dunne, M.; Prokhorov, N.S.; Loessner, M.J.; Leiman, P.G. Reprogramming Bacteriophage Host Range: Design Principles and Strategies for Engineering Receptor Binding Proteins. Curr. Opin. Biotechnol. 2021, 68, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Holtzman, T.; Globus, R.; Molshanski-Mor, S.; Ben-Shem, A.; Yosef, I.; Qimron, U. A continuous evolution system for contracting the host range of bacteriophage T7. Sci. Rep. 2020, 10, 307. [Google Scholar] [CrossRef]
- Yehl, K.; Lemire, S.; Yang, A.C.; Ando, H.; Mimee, M.; Torres, M.D.T.; de la Fuente-Nunez, C.; Lu, T.K. Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail Fiber Mutagenesis. Cell 2019, 179, 459–469.e9. [Google Scholar] [CrossRef]
- Dunne, M.; Rupf, B.; Tala, M.; Qabrati, X.; Ernst, P.; Shen, Y.; Sumrall, E.; Heeb, L.; Plückthun, A.; Loessner, M.J.; et al. Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins. Cell Rep. 2019, 29, 1336–1350.e4. [Google Scholar] [CrossRef] [Green Version]
- Cesta, N.; Di Luca, M.; Corbellino, M.; Tavio, M.; Galli, M.; Andreoni, M. Bacteriophage Therapy: An Overview and the Position of Italian Society of Infectious and Tropical Diseases. Infez. Med. 2020, 28, 322–331. [Google Scholar]
- Sillankorva, S.M.; Oliveira, H.; Azeredo, J. Bacteriophages and Their Role in Food Safety. Int. J. Microbiol. 2012, 2012, 863945. [Google Scholar] [CrossRef] [Green Version]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for Food Production and Processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endersen, L.; Coffey, A. The use of bacteriophages for food safety. Curr. Opin. Food Sci. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- Sarhan, W.A.; Azzazy, H.M. Phage Approved in Food, Why Not as a Therapeutic? Expert Rev. Anti-Infect. Ther. 2015, 13, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, A.R.; Fortier, A.; Roush, C.; Lessing, A.J.; Bender, R.G.; Barahman, R.; Grant, R.; Chan, B.K.; Turner, P.E. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl. Acad. Sci. USA 2020, 117, 11207–11216. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Sistrom, M.; Wertz, J.E.; Kortright, K.E.; Narayan, D.; Turner, P.E. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 26717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dessau, M.; Goldhill, D.; McBride, R.L.; Turner, P.E.; Modis, Y. Selective Pressure Causes an RNA Virus to Trade Reproductive Fitness for Increased Structural and Thermal Stability of a Viral Enzyme. PLoS Genet. 2012, 8, e1003102. [Google Scholar] [CrossRef]
- Burmeister, A.R.; Sullivan, R.M.; Lenski, R.E. Fitness Costs and Benefits of Resistance to Phage Lambda in Experimentally Evolved Escherichia coli. In Evolution in Action: Past, Present and Future; Springer: Cham, Switzerland, 2020; pp. 123–143. [Google Scholar] [CrossRef]
- Goldhill, D.; E Turner, P. The evolution of life history trade-offs in viruses. Curr. Opin. Virol. 2014, 8, 79–84. [Google Scholar] [CrossRef]
- Chan, B.K.; Turner, P.E.; Kim, S.; Mojibian, H.R.; Elefteriades, J.A.; Narayan, D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 2018, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Gu, H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr. Microbiol. 2017, 74, 863–869. [Google Scholar] [CrossRef] [Green Version]
- Duan, Q.; Zhou, M.; Zhu, L.; Zhu, G. Flagella and bacterial pathogenicity. J. Basic Microbiol. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Jonson, A.-B.; Normark, S.; Rhen, M. Fimbriae, Pili, Flagella and Bacterial Virulence. Contrib. Microbiol. 2004, 12, 67–89. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, Y.; Chen, P.; Hu, H.; Hardwidge, P.R.; Zhu, G. More than a locomotive organelle: Flagella in Escherichia coli. Appl. Microbiol. Biotechnol. 2015, 99, 8883–8890. [Google Scholar] [CrossRef]
- Stevenson, E.; Minton, N.P.; Kuehne, S.A. The role of flagella in Clostridium difficile pathogenicity. Trends Microbiol. 2015, 23, 275–282. [Google Scholar] [CrossRef]
- Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002. [Google Scholar] [CrossRef] [Green Version]
- Dowah, A.S.A.; Clokie, M.R.J. Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria. Biophys. Rev. 2018, 10, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.; Lee, J.-H.; Kim, H.; Choi, Y.; Heu, S.; Ryu, S. Receptor Diversity and Host Interaction of Bacteriophages Infecting Salmonella enterica Serovar Typhimurium. PLoS ONE 2012, 7, e43392. [Google Scholar] [CrossRef]
- Grayson, P.; Molineux, I.J. Is Phage DNA ‘Injected’ into Cells—Biologists and Physicists Can Agree. Curr. Opin. Microbiol. 2007, 10, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Rossmann, M.G.; Mesyanzhinov, V.V.; Arisaka, F.; Leiman, P. The bacteriophage T4 DNA injection machine. Curr. Opin. Struct. Biol. 2004, 14, 171–180. [Google Scholar] [CrossRef]
- Watanabe, K.; Ishibashi, K.; Nakashima, Y.; Sakurai, T. A Phage-resistant Mutant of Lactobacillus casei which Permits Phage Adsorption but Not Genome Injection. J. Gen. Virol. 1984, 65, 981–986. [Google Scholar] [CrossRef]
- Garcia-Doval, C.; van Raaij, M.J. Bacteriophage Receptor Recognition and Nucleic Acid Transfer. Subcell. Biochem. 2013, 68, 489–518. [Google Scholar]
- Stern, A.; Sorek, R. The phage-host arms race: Shaping the evolution of microbes. BioEssays 2011, 33, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Burmeister, A.R.; Turner, P.E. Trading-off and trading-up in the world of bacteria–phage evolution. Curr. Biol. 2020, 30, R1120–R1124. [Google Scholar] [CrossRef]
- Esteves, N.C.; Porwollik, S.; McClelland, M.; Scharf, B.E. The Multi-Drug Efflux System AcrABZ-TolC Is Essential for Infection of Salmonella Typhimurium by the Flagellum-Dependent Bacteriophage Chi. J. Virol. 2021, 95, e00394-21. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Wang, X.; Huang, H.; Sun, Y.; Qian, X.; Xue, F.; Ren, J.; Dai, J.; Tang, F. Novel Host Recognition Mechanism of the K1 Capsule-Specific Phage of Escherichia coli: Capsular Polysaccharide as the First Receptor and Lipopolysaccharide as the Secondary Receptor. J. Virol. 2021, 95, JVI0092021. [Google Scholar] [CrossRef] [PubMed]
- Tittes, C.; Schwarzer, S.; Quax, T.E.F. Viral Hijack of Filamentous Surface Structures in Archaea and Bacteria. Viruses 2021, 13, 164. [Google Scholar] [CrossRef]
- Gonzalez, F.; Helm, R.F.; Broadway, K.M.; Scharf, B.E. More than Rotating Flagella: Lipopolysaccharide as a Secondary Receptor for Flagellotropic Phage 7-7-1. J. Bacteriol. 2018, 200. [Google Scholar] [CrossRef] [Green Version]
- Magariyama, Y.; Sugiyama, S.; Kudo, S. Bacterial Swimming Speed and Rotation Rate of Bundled Flagella. FEMS Microbiol. Lett. 2001, 199, 125–129. [Google Scholar] [CrossRef]
- Nakamura, S.; Minamino, T. Flagella-Driven Motility of Bacteria. Biomolecules 2019, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Berry, R.M.; Armitage, J.P. The Bacterial Flagella Motor. Adv. Microb. Physiol. 1999, 41, 291–337. [Google Scholar] [CrossRef]
- Morehouse, K.A.; Goodfellow, I.G.; Sockett, R.E. A Chimeric N-Terminal Escherichia coli—C-Terminal Rhodobacter Sphaeroides FliG Rotor Protein Supports Bidirectional E. coli Flagellar Rotation and Chemotaxis. J. Bacteriol. 2005, 187, 1695–1701. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.S.; Philominathan, P. The physics of flagellar motion of E. coli during chemotaxis. Biophys. Rev. 2010, 2, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Fukuoka, H.; Inoue, Y.; Ishijima, A. Coordinated regulation of multiple flagellar motors by the Escherichia coli chemotaxis system. Biophysics 2012, 8, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, M.K.; Paul, K.; Blair, D. Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc. Natl. Acad. Sci. USA 2010, 107, 9370–9375. [Google Scholar] [CrossRef] [Green Version]
- Scharf, B.; Schmitt, R. Sensory transduction to the flagellar motor of Sinorhizobium meliloti. J. Mol. Microbiol. Biotechnol. 2002, 4, 183–186. [Google Scholar]
- Lux, R.; Shi, W. Chemotaxis-guided Movements in Bacteria. Crit. Rev. Oral Biol. Med. 2004, 15, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Vladimirov, N.; Sourjik, V. Chemotaxis: How bacteria use memory. Biol. Chem. 2009, 390, 1097–1104. [Google Scholar] [CrossRef]
- Tola, Y.H.; Fujitani, Y.; Tani, A. Bacteria with natural chemotaxis towards methanol revealed by chemotaxis fishing technique. Biosci. Biotechnol. Biochem. 2019, 83, 2163–2171. [Google Scholar] [CrossRef]
- Jakuszeit, T.; Lindsey-Jones, J.; Peaudecerf, F.J.; Croze, O.A. Migration and Accumulation of Bacteria with Chemotaxis and Chemokinesis. Eur. Phys. J. E 2021, 44, 32. [Google Scholar] [CrossRef]
- Adler, J. Chemotaxis in Bacteria. Annu. Rev. Biochem. 1975, 44, 341–356. [Google Scholar] [CrossRef]
- Grognot, M.; Taute, K.M. More than propellers: How flagella shape bacterial motility behaviors. Curr. Opin. Microbiol. 2021, 61, 73–81. [Google Scholar] [CrossRef]
- Silverman, M.; Simon, M.I. Bacterial Flagella. Annu. Rev. Microbiol. 1977, 31, 397–419. [Google Scholar] [CrossRef]
- Samatey, F.A.; Matsunami, H.; Imada, K.; Nagashima, S.; Shaikh, T.R.; Thomas, D.R.; Chen, J.Z.; De Rosier, D.J.; Kitao, A.; Namba, K. Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature 2004, 431, 1062–1068. [Google Scholar] [CrossRef]
- Fujii, M.; Shibata, S.; Aizawa, S.-I. Polar, Peritrichous, and Lateral Flagella Belong to Three Distinguishable Flagellar Families. J. Mol. Biol. 2008, 379, 273–283. [Google Scholar] [CrossRef]
- Constantino, M.A.; Jabbarzadeh, M.; Fu, H.C.; Shen, Z.; Fox, J.G.; Haesebrouck, F.; Linden, S.K.; Bansil, R. Bipolar lophotrichous Helicobacter suis combine extended and wrapped flagella bundles to exhibit multiple modes of motility. Sci. Rep. 2018, 8, 14415. [Google Scholar] [CrossRef] [Green Version]
- Schade, S.Z.; Adler, J.; Ris, H. How Bacteriophage χ Attacks Motile Bacteria. J. Virol. 1967, 1, 599–609. [Google Scholar] [CrossRef] [Green Version]
- Yen, J.Y.; Broadway, K.M.; Scharf, B.E. Minimum Requirements of Flagellation and Motility for Infection of Agrobacterium sp. Strain H13-3 by Flagellotropic Bacteriophage 7-7-1. Appl. Environ. Microbiol. 2012, 78, 7216–7222. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, O.V.; Kostyukova, A.S. Domain structure of flagellin. FEBS Lett. 1984, 171, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Beatson, S.A.; Minamino, T.; Pallen, M.J. Variation in bacterial flagellins: From sequence to structure. Trends Microbiol. 2006, 14, 151–155. [Google Scholar] [CrossRef]
- Logan, S.M. Flagellar Glycosylation—A New Component of the Motility Repertoire? Microbiol. Read. 2006, 152, 1249–1262. [Google Scholar] [CrossRef] [Green Version]
- Merino, S.; Tomás, J.M. Gram-Negative Flagella Glycosylation. Int. J. Mol. Sci. 2014, 15, 2840–2857. [Google Scholar] [CrossRef] [Green Version]
- Twine, S.M.; Paul, C.J.; Vinogradov, E.; McNally, D.J.; Brisson, J.-R.; Mullen, J.A.; McMullin, D.R.; Jarrell, H.C.; Austin, J.W.; Kelly, J.F.; et al. Flagellar glycosylation in Clostridium botulinum. FEBS J. 2008, 275, 4428–4444. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Nehls, C.; Baabe, D.; Burghaus, O.; Hurwitz, R.; Gutsmann, T.; Bröring, M.; Kolbe, M. Flagellin lysine methyltransferase FliB catalyzes a [4Fe-4S] mediated methyl transfer reaction. PLoS Pathog. 2021, 17, e1010052. [Google Scholar] [CrossRef]
- Zhu, S.; Nishikino, T.; Hu, B.; Kojima, S.; Homma, M.; Liu, J. Molecular architecture of the sheathed polar flagellum in Vibrio alginolyticus. Proc. Natl. Acad. Sci. USA 2017, 114, 10966–10971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuerst, J.A. Bacterial sheathed flagella and the rotary motor model for the mechanism of bacterial motility. J. Theor. Biol. 1980, 84, 761–774. [Google Scholar] [CrossRef]
- Chen, M.-T.; Lo, C.-J. Using Biophysics to Monitor the Essential Protonmotive Force in Bacteria. Adv. Exp. Med. Biol. 2016, 915, 69–79. [Google Scholar] [CrossRef]
- Konings, W.N.; Hellingwerf, K.J.; Elferink, M.G.L. The interaction between electron transfer, proton motive force and solute transport in bacteria. Antonie Van Leeuwenhoek 1984, 50, 545–555. [Google Scholar] [CrossRef]
- Iqbal, A.; Panta, P.R.; Ontoy, J.; Bruno, J.; Ham, J.H.; Doerrler, W.T. Chemical or Genetic Alteration of Proton Motive Force Results in Loss of Virulence of Burkholderia glumae, the Cause of Rice Bacterial Panicle Blight. Appl. Environ. Microbiol. 2021, 87, AEM0091521. [Google Scholar] [CrossRef]
- Soutourina, O.A.; Bertin, P.N. Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol. Rev. 2003, 27, 505–523. [Google Scholar] [CrossRef] [Green Version]
- Barembruch, C.; Hengge, R. Cellular Levels and Activity of the Flagellar Sigma Factor FliA of Escherichia coli Are Controlled by FlgM-Modulated Proteolysis. Mol. Microbiol. 2007, 65, 76–89. [Google Scholar] [CrossRef] [PubMed]
- McCarter, L.L. Regulation of flagella. Curr. Opin. Microbiol. 2006, 9, 180–186. [Google Scholar] [CrossRef]
- Thomason, M.K.; Fontaine, F.; De Lay, N.; Storz, G. A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol. Microbiol. 2012, 84, 17–35. [Google Scholar] [CrossRef]
- Rudenko, I.; Ni, B.; Glatter, T.; Sourjik, V. Inefficient Secretion of Anti-sigma Factor FlgM Inhibits Bacterial Motility at High Temperature. iScience 2019, 16, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Ahmer, B.M.M.; Gunn, J.S. Interaction of Salmonella spp. With the Intestinal Microbiota. Front. Microbiol. 2011, 2, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- dos Santos, A.M.P.; Ferrari, R.G.; Conte-Junior, C.A. Virulence Factors in Salmonella Typhimurium: The Sagacity of a Bacterium. Curr. Microbiol. 2019, 76, 762–773. [Google Scholar] [CrossRef]
- Huang, K.-Y.; Wang, Y.-H.; Chien, K.-Y.; Janapatla, R.P.; Chiu, C.-H. Hyperinvasiveness of Salmonella enterica serovar Choleraesuis linked to hyperexpression of type III secretion systems in vitro. Sci. Rep. 2016, 6, 37642. [Google Scholar] [CrossRef] [Green Version]
- Grimont, P.A.D.; Weill, F.-X. Antigenic Formulae of the Salmonella Serovars; WHO: Geneva, Switzerland, 2007.
- Marchello, C.S.; Hong, C.Y.; Crump, J.A. Global Typhoid Fever Incidence: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2019, 68 (Suppl. 2), S105–S116. [Google Scholar] [CrossRef] [Green Version]
- Amoutzias, G.D.; Nikolaidis, M.; Hesketh, A. The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms 2022, 10, 1040. [Google Scholar] [CrossRef]
- Meynell, E.W.A. A Phage, Øχ, which attacks motile bacteria. J. Gen. Microbiol. 1961, 25, 253–290. [Google Scholar] [CrossRef] [Green Version]
- Sertić, V.; Boulgakov, N.A. Bacteriophages Specific for Flagellated Forms of Bacteria. Compte Rendu Seances Soc. Biol. 1936, 123, 887–888. [Google Scholar]
- Schade, S.; Adler, J. Purification and chemistry of bacteriophage chi. J. Virol. 1967, 1, 591–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iino, T.; Mitani, M. Infection of Serratia marcescens by bacteriophage chi. J. Virol. 1967, 1, 445–447. [Google Scholar] [CrossRef] [Green Version]
- Samuel, A.D.; Pitta, T.P.; Ryu, W.S.; Danese, P.N.; Leung, E.C.; Berg, H.C. Flagellar Determinants of Bacterial Sensitivity to Chi-Phage. Proc. Natl. Acad. Sci. USA 1999, 96, 9863–9866. [Google Scholar] [CrossRef] [Green Version]
- Hendrix, R.W.; Ko, C.-C.; Jacobs-Sera, D.; Hatfull, G.F.; Erhardt, M.; Hughes, K.T.; Casjens, S.R. Genome Sequence of Salmonella Phage χ. Genome Announc. 2015, 3, e01229-14. [Google Scholar] [CrossRef] [Green Version]
- Ehling-Schulz, M.; Lereclus, D.; Koehler, T.M. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Pilo, P.; Frey, J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. Infect. Genet. Evol. 2018, 64, 115–125. [Google Scholar] [CrossRef]
- Sirec, T.; Cangiano, G.; Baccigalupi, L.; Ricca, E.; Isticato, R. The spore surface of intestinal isolates of Bacillus subtilis. FEMS Microbiol. Lett. 2014, 358, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Euzéby, J.P. List of Bacterial Names with Standing in Nomenclature: A Folder Available on the Internet. Int. J. Syst. Evol. Microbiol. 1997, 47, 590–592. [Google Scholar] [CrossRef] [Green Version]
- Barras, V.; Greub, G. History of biological warfare and bioterrorism. Clin. Microbiol. Infect. 2014, 20, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Agata, N.; Ohta, M.; Yokoyama, K. Production of Bacillus cereus emetic toxin (cereulide) in various foods. Int. J. Food Microbiol. 2002, 73, 23–27. [Google Scholar] [CrossRef]
- Kovács, Á.T. Bacillus subtilis. Trends Microbiol. 2019, 27, 724–725. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Kearns, D.B. The Structure and Regulation of Flagella in Bacillus subtilis. Annu. Rev. Genet. 2014, 48, 319–340. [Google Scholar] [CrossRef] [Green Version]
- Frankel, R.W.; Joys, T.M. Adsorption Specificity of Bacteriophage PBS1. J. Bacteriol. 1966, 92, 388–389. [Google Scholar] [CrossRef] [Green Version]
- Joys, T.M. Correlation between susceptibility to bacteriophage PBS1 and motility in Bacillus subtilis. J. Bacteriol. 1965, 90, 1575–1577. [Google Scholar] [CrossRef] [Green Version]
- Yasbin, R.E.; Young, F.E. Transduction in Bacillus subtilis by bacteriophage SPP1. J. Virol. 1974, 14, 1343–1348. [Google Scholar] [CrossRef] [Green Version]
- Lavysh, D.; Sokolova, M.; Minakhin, L.; Yakunina, M.; Artamonova, T.; Kozyavkin, S.; Makarova, K.S.; Koonin, E.V.; Severinov, K. The genome of AR9, a giant transducing Bacillus phage encoding two multisubunit RNA polymerases. Virology 2016, 495, 185–196. [Google Scholar] [CrossRef]
- Shea, T.B.; Seaman, E. SP3: A Flagellotropic Bacteriophage of Bacillus subtilis. J. Gen. Virol. 1984, 65, 2073–2076. [Google Scholar] [CrossRef]
- Lovett, P.S.; Bramucci, D.; Bramucci, M.G.; Burdick, B.D. Some properties of the PBP1 transduction system in Bacillus pumilus. J. Virol. 1974, 13, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Raimondo, L.M.; Lundh, N.P.; Martinez, R.J. Primary adsorption site of phage PBS1: The flagellum of Bacillus subtilis. J. Virol. 1968, 2, 256–264. [Google Scholar] [CrossRef] [Green Version]
- Eiserling, F.A. The structure of Bacillus subtilis bacteriophage PBS 1. J. Ultrastruct. Res. 1967, 17, 342–347. [Google Scholar] [CrossRef]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. Genbank. Nucleic Acids Res. 2017, 45, D37–D42. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, I.; Marmur, J. Replacement of Thymidylic Acid by Deoxyuridylic Acid in the Deoxyribonucleic Acid of a Transducing Phage for Bacillus subtilis. Nature 1963, 197, 794–795. [Google Scholar] [CrossRef] [PubMed]
- Escobar, M.A.; Dandekar, A.M. Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci. 2003, 8, 380–386. [Google Scholar] [CrossRef]
- Sawhney, S.; Naab, T.; Oneal, P. Rhizobium Radiobacter Infection in a 27-Year-Old African American Woman with Munchausen Syndrome. Lab. Med. 2016, 47, e32–e34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulse, M.; Johnson, S.; Ferrieri, P. Agrobacterium Infections in Humans: Experience at One Hospital and Review. Clin. Infect. Dis. 1993, 16, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Krenek, P.; Samajova, O.; Luptovciak, I.; Doskocilova, A.; Komis, G.; Samaj, J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol. Adv. 2015, 33, 1024–1042. [Google Scholar] [CrossRef]
- Lotz, W.; Acker, G.; Schmitt, R. Bacteriophage 7-7-1 Adsorbs to the Complex Flagella of Rhizobium lupini H13-3. J. Gen. Virol. 1977, 34, 9–17. [Google Scholar] [CrossRef]
- Wibberg, D.; Blom, J.; Jaenicke, S.; Kollin, F.; Rupp, O.; Scharf, B.; Schneiker-Bekel, S.; Sczcepanowski, R.; Goesmann, A.; Setubal, J.C.; et al. Complete genome sequencing of Agrobacterium sp. H13-3, the former Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid. J. Biotechnol. 2011, 155, 50–62. [Google Scholar] [CrossRef]
- Kropinski, A.M.; Van den Bossche, A.; Lavigne, R.; Noben, J.-P.; Babinger, P.; Schmitt, R. Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp. H13-3. Virol. J. 2012, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, F.; Scharf, B.E. Identification of Receptor Binding Proteins in Flagellotropic Agrobacterium Phage 7-7-1. Viruses 2021, 13, 1267. [Google Scholar] [CrossRef]
- Hughes, V.; Jiang, C.; Brun, Y. Caulobacter crescentus. Curr. Biol. 2012, 22, R507–R509. [Google Scholar] [CrossRef] [Green Version]
- Govers, S.K.; Jacobs-Wagner, C. Caulobacter crescentus: Model system extraordinaire. Curr. Biol. 2020, 30, R1151–R1158. [Google Scholar] [CrossRef]
- Abraham, W.R.; Stroempl, C.; Meyer, H.; Lindholst, S.; Moore, E.R.; Christ, R.; Vancanneyt, M.; Tindall, B.J.; Bennasar, A.; Smit, J.; et al. Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. Int. J. Syst. Bacteriol. 1999, 49, 1053–1073. [Google Scholar] [CrossRef] [Green Version]
- Rossmann, F.M.; Hug, I.; Sangermani, M.; Jenal, U.; Beeby, M. In Situ Structure of the Caulobacter crescentus Flagellar Motor and Visualization of Binding of a CheY-Homolog. Mol. Microbiol. 2020, 114, 443–453. [Google Scholar] [CrossRef]
- Penner, F.; Brossa, S.; Barbui, A.M.; Ducati, A.; Cavallo, R.; Zenga, F. Caulobacter spp.: A Rare Pathogen Responsible for Paucisintomatic Persisitant Meningitis in a Glioblastoma Patient. World Neurosurg. 2016, 96, 611.e11–611.e13. [Google Scholar] [CrossRef]
- Jollick, J.D.; Wright, B.L. A Flagella Specific Bacteriophage for Caulobacter. J. Gen. Virol. 1974, 22, 197–205. [Google Scholar] [CrossRef]
- Fukuda, A.; Miyakawa, K.; Iba, H.; Okada, Y. A flagellotropic bacteriophage and flagella formation in Caulobacter. Virology 1976, 71, 583–592. [Google Scholar] [CrossRef]
- Agabian-Keshishian, N.; Shapiro, L. Stalked bacteria: Properties of deoxriybonucleic acid bacteriophage phiCbK. J. Virol. 1970, 5, 795–800. [Google Scholar] [CrossRef] [Green Version]
- Panis, G.; Lambert, C.; Viollier, P.H. Complete Genome Sequence of Caulobacter crescentus Bacteriophage ΦCbK. J. Virol. 2012, 86, 10234–10235. [Google Scholar] [CrossRef] [Green Version]
- Agabian-Keshishian, N.; Shapiro, L. Bacterial differentiation and phage infection. Virology 1971, 44, 46–53. [Google Scholar] [CrossRef]
- Guerrero-Ferreira, R.C.; Viollier, P.H.; Ely, B.; Poindexter, J.S.; Georgieva, M.; Jensen, G.J.; Wright, E.R. Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 2011, 108, 9963–9968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snelling, W.J.; Matsuda, M.; Moore, J.E.; Dooley, J.S.G. Campylobacter jejuni. Lett. Appl. Microbiol. 2005, 41, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Young, K.T.; Davis, L.M.; DiRita, V.J. Campylobacter jejuni: Molecular biology and pathogenesis. Nat. Rev. Genet. 2007, 5, 665–679. [Google Scholar] [CrossRef]
- Korolik, V. The role of chemotaxis during Campylobacter jejuni colonisation and pathogenesis. Curr. Opin. Microbiol. 2019, 47, 32–37. [Google Scholar] [CrossRef]
- Martínez, M.M.; Botella, A.G.; Renedo, F.P.; Del Río, B.O.; Castillo, B.A.; Arévalo, P.I.; García, L.E.A. Fatal Campylobacter jejuni ileocolitis. Rev. Esp. Enferm. Dig. 2016, 108, 662–663. [Google Scholar]
- Gallo, M.T.; Di Domenico, E.G.; Toma, L.; Marchesi, F.; Pelagalli, L.; Manghisi, N.; Ascenzioni, F.; Prignano, G.; Mengarelli, A.; Ensoli, F. Campylobacter jejuni Fatal Sepsis in a Patient with Non-Hodgkin’s Lymphoma: Case Report and Literature Review of a Difficult Diagnosis. Int. J. Mol. Sci. 2016, 17, 544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldvinsson, S.B.; Sørensen, M.C.H.; Vegge, C.S.; Clokie, M.R.J.; Brøndsted, L. Campylobacter jejuni Motility Is Required for Infection of the Flagellotropic Bacteriophage F341. Appl. Environ. Microbiol. 2014, 80, 7096–7106. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Crousilles, A.; Maunders, E.; Bartlett, S.; Fan, C.; Ukor, E.F.; Abdelhamid, Y.; Baker, Y.; Floto, A.; Spring, D.R.; Welch, M. Which Microbial Factors Really Are Important in Pseudomonas aeruginosa Infections? Future Microbiol. 2015, 10, 1825–1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malhotra, S.; Hayes, D., Jr.; Wozniak, D.J. Cystic Fibrosis and Pseudomonas aeruginosa: The Host-Microbe Interface. Clin. Microbiol. Rev. 2019, 32, e00138-18. [Google Scholar] [CrossRef] [PubMed]
- A Sala, M.; Jain, M. Pseudomonas aeruginosa and Children with Cystic Fibrosis. Clin. Infect. Dis. 2021, 73, e2529–e2530. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Yoon, S.S. Pseudomonas aeruginosa Biofilm, a Programmed Bacterial Life for Fitness. J. Microbiol. Biotechnol. 2017, 27, 1053–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiben-Lynn, R.; Sauber, K.; Lutz, F. Flagellin Inhibits Myoviridae Phage PhiCTX Infection of Pseudomonas aeruginosa Strain GuA18: Purification and Mapping of Binding Site. Arch. Microbiol. 2001, 176, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Mobley, H.L.T. Proteus mirabilis Overview. Methods Mol. Biol. 2019, 2021, 1–4. [Google Scholar] [CrossRef]
- Hamilton, A.L.; Kamm, M.A.; Ng, S.C.; Morrison, M. Proteus spp. as Putative Gastrointestinal Pathogens. Clin. Microbiol. Rev. 2018, 31, e00085-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, M.Z.; Poweleit, A.C. Proteus Vulgaris Meningitis. Am. J. Dis. Child. 1949, 77, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Kwil, I.; Kaźmierczak, D.; Różalski, A. Swarming Growth and Resistance of Proteus penneri and Proteus vulgaris Strains to Normal Human Serum. Adv. Clin. Exp. Med. 2013, 22, 165–175. [Google Scholar] [PubMed]
- Gazel, D.; Zer, Y.; Manay, A.B.; Akdoğan, H. Inhibition of swarming motility using in vitro hyperthermia. J. Therm. Biol. 2021, 100, 102955. [Google Scholar] [CrossRef] [PubMed]
- Zhilenkov, E.L.; Popova, V.M.; Popov, D.V.; Zavalsky, L.Y.; Svetoch, E.A.; Stern, N.J.; Seal, B.S. The ability of flagellum-specific Proteus vulgaris bacteriophage PV22 to interact with Campylobacter jejuni flagella in culture. Virol. J. 2006, 3, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, T.J.; Crow, M.A.; Williamson, N.R.; Orme, W.; Thomson, N.R.; Komitopoulou, E.; Salmond, G.P.C. Characterization of a broad-host-range flagellum-dependent phage that mediates high-efficiency generalized transduction in, and between, Serratia and Pantoea. Microbiol. Read. 2010, 156, 240–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walterson, A.M.; Stavrinides, J. Pantoea: Insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39, 968–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khanna, A.; Khanna, M.; Aggarwal, A. Serratia marcescens—A Rare Opportunistic Nosocomial Pathogen and Measures to Limit Its Spread in Hospitalized Patients. J. Clin. Diagn. Res. 2013, 7, 243–246. [Google Scholar] [PubMed]
- Cobbley, H.K.; Evans, S.I.; Brown, H.M.F.; Eberhard, B.; Eberhard, N.; Kim, M.; Moe, H.M.; Schaeffer, D.; Sharma, R.; Thompson, D.W.; et al. Complete Genome Sequences of Six Chi-Like Bacteriophages that Infect Proteus and Klebsiella. Microbiol. Resour. Announc. 2022, 11, e0121521. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, J.C.; Heitkamp, A.J.; Bhattacharjee, A.S.; Gilcrease, E.B.; Casjens, S.R. Genome Sequence of Escherichia coli Tailed Phage Utah. Genome Announc. 2017, 5, e01494-16. [Google Scholar] [CrossRef] [PubMed]
- Salazar, A.J.; Lessor, L.; O’Leary, C.; Gill, J.; Liu, M. Complete Genome Sequence of Klebsiella pneumoniae Siphophage Seifer. Microbiol. Resour. Announc. 2019, 8, e01289-19. [Google Scholar] [CrossRef] [Green Version]
- Choi, Y.; Shin, H.; Lee, J.-H.; Ryu, S. Identification and Characterization of a Novel Flagellum-Dependent Salmonella-Infecting Bacteriophage, iEPS5. Appl. Environ. Microbiol. 2013, 79, 4829–4837. [Google Scholar] [CrossRef] [Green Version]
- Dunstan, R.A.; Pickard, D.; Dougan, S.; Goulding, D.; Cormie, C.; Hardy, J.; Li, F.; Grinter, R.; Harcourt, K.; Yu, L.; et al. The flagellotropic bacteriophage YSD1 targets Salmonella Typhi with a Chi-like protein tail fibre. Mol. Microbiol. 2019, 112, 1831–1846. [Google Scholar] [CrossRef]
- Phothaworn, P.; Dunne, M.; Supokaivanich, R.; Ong, C.; Lim, J.; Taharnklaew, R.; Vesaratchavest, M.; Khumthong, R.; Pringsulaka, O.; Ajawatanawong, P.; et al. Characterization of Flagellotropic, Chi-Like Salmonella Phages Isolated from Thai Poultry Farms. Viruses 2019, 11, 520. [Google Scholar] [CrossRef] [Green Version]
- Switt, A.I.M.; Orsi, R.H.; den Bakker, H.C.; Vongkamjan, K.; Altier, C.; Wiedmann, M. Genomic characterization provides new insight into Salmonella phage diversity. BMC Genom. 2013, 14, 481. [Google Scholar] [CrossRef] [Green Version]
- Sokolova, M.; Borukhov, S.; Lavysh, D.; Artamonova, T.; Khodorkovskii, M.; Severinov, K. A non-canonical multisubunit RNA polymerase encoded by the AR9 phage recognizes the template strand of its uracil-containing promoters. Nucleic Acids Res. 2017, 45, 5958–5967. [Google Scholar] [CrossRef]
- Lavysh, D.; Sokolova, M.; Slashcheva, M.; Förstner, K.U.; Severinov, K. Transcription Profiling of Bacillus subtilis Cells Infected with AR9, a Giant Phage Encoding Two Multisubunit RNA Polymerases. mBio 2017, 8, e02041-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nittolo, T.; Ravindran, A.; Gonzalez, C.F.; Ramsey, J. Complete Genome Sequence of Agrobacterium tumefaciens Myophage Milano. Microbiol. Resour. Announc. 2019, 8, e00587-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, D.E.; Douglas, C.J.; Peschon, J. Flagella-specific bacteriophages of Agrobacterium tumefaciens: Demonstration of virulence of nonmotile mutants. Can. J. Microbiol. 1984, 30, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Montemayor, E.J.; Ploscariu, N.T.; Sanchez, J.C.; Parrell, D.; Dillard, R.S.; Shebelut, C.W.; Ke, Z.; Guerrero-Ferreira, R.C.; Wright, E.R. Flagellar Structures from the Bacterium Caulobacter crescentus and Implications for Phage ϕCbK Predation of Multiflagellin Bacteria. J. Bacteriol. 2021, 203, e00399-20. [Google Scholar] [CrossRef]
- Gill, J.J.; Berry, J.D.; Russell, W.K.; Lessor, L.; Escobar-Garcia, D.A.; Hernandez, D.; Kane, A.; Keene, J.; Maddox, M.; Martin, R.; et al. The Caulobacter crescentus phage phiCbK: Genomics of a canonical phage. BMC Genom. 2012, 13, 542. [Google Scholar] [CrossRef] [Green Version]
- Bonifield, H.R.; Hughes, K.T. Flagellar Phase Variation in Salmonella enterica Is Mediated by a Posttranscriptional Control Mechanism. J. Bacteriol. 2003, 185, 3567–3574. [Google Scholar] [CrossRef] [Green Version]
- Erhardt, M.; Hirano, T.; Su, Y.; Paul, K.; Wee, D.H.; Mizuno, S.; Aizawa, S.-I.; Hughes, K.T. The role of the FliK molecular ruler in hook-length control in Salmonella enterica. Mol. Microbiol. 2010, 75, 1272–1284. [Google Scholar] [CrossRef] [Green Version]
- Hajam, I.A.; Dar, P.A.; Shahnawaz, I.; Jaume, J.C.; Lee, J.H. Bacterial flagellin—A potent immunomodulatory agent. Exp. Mol. Med. 2017, 49, e373. [Google Scholar] [CrossRef]
- Hoare, A.; Bittner, M.; Carter, J.; Alvarez, S.; Zaldìvar, M.; Bravo, D.; Valvano, M.A.; Contreras, I. The Outer Core Lipopolysaccharide of Salmonella enterica Serovar Typhi Is Required for Bacterial Entry into Epithelial Cells. Infect. Immun. 2006, 74, 1555–1564. [Google Scholar] [CrossRef] [Green Version]
- Rietschel, E.T.; Kirikae, T.; Schade, F.U.; Mamat, U.; Schmidt, G.; Loppnow, H.; Ulmer, A.J.; Zähringer, U.; Seydel, U.; Di Padova, F.; et al. Bacterial endotoxin: Molecular relationships of structure to activity and function. FASEB J. 1994, 8, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Lindberg, A.A.; Karnell, A.; Weintraub, A. The Lipopolysaccharide of Shigella Bacteria as a Virulence Factor. Clin. Infect. Dis. 1991, 13 (Suppl. 4), S279–S284. [Google Scholar] [CrossRef]
- Paczosa, M.K.; Mecsas, J. Klebsiella pneumoniae: Going on the Offense with a Strong Defense. Microbiol. Mol. Biol. Rev. 2016, 80, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pier, G.B. Pseudomonas aeruginosa Lipopolysaccharide: A Major Virulence Factor, Initiator of Inflammation and Target for Effective Immunity. Int. J. Med. Microbiol. 2007, 297, 277–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapaque, N.; Moriyon, I.; Moreno, E.; Gorvel, J.-P. Brucella lipopolysaccharide acts as a virulence factor. Curr. Opin. Microbiol. 2005, 8, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Inzana, T.J. The Many Facets of Lipooligosaccharide as a Virulence Factor for Histophilus somni. Curr. Top. Microbiol. Immunol. 2016, 396, 131–148. [Google Scholar] [CrossRef]
- Skurnik, M.; Toivanen, P. Yersinia enterocolitica lipopolysaccharide: Genetics and virulence. Trends Microbiol. 1993, 1, 148–152. [Google Scholar] [CrossRef]
- Rosen, R.; Ron, E.Z. Proteomics of a plant pathogen: Agrobacterium tumefaciens. Proteomics 2011, 11, 3134–3142. [Google Scholar] [CrossRef]
- Stockwell, V.O.; Moore, L.W.; Loper, J.E. Fate of Agrobacterium radiobacter K84 in the environment. Appl. Environ. Microbiol. 1993, 59, 2112–2120. [Google Scholar] [CrossRef] [Green Version]
- Guo, M.; Huang, Z.; Yang, J. Is There Any Crosstalk between the Chemotaxis and Virulence Induction Signaling in Agrobacterium tumefaciens? Biotechnol. Adv. 2017, 35, 505–511. [Google Scholar] [CrossRef]
- Merritt, P.M.; Danhorn, T.; Fuqua, C. Motility and Chemotaxis in Agrobacterium tumefaciens Surface Attachment and Biofilm Formation. J. Bacteriol. 2007, 189, 8005–8014. [Google Scholar] [CrossRef] [Green Version]
- Girgis, H.S.; Liu, Y.; Ryu, W.S.; Tavazoie, S. A Comprehensive Genetic Characterization of Bacterial Motility. PLoS Genet. 2007, 3, 1644–1660. [Google Scholar] [CrossRef] [PubMed]
- Beumer, A.; Robinson, J.B. A Broad-Host-Range, Generalized Transducing Phage (SN-T) Acquires 16s rRNA Genes from Different Genera of Bacteria. Appl. Environ. Microbiol. 2005, 71, 8301–8304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, M.A.; Sacher, J.C.; Van Alphen, L.B.; Patry, R.T.; Szymanski, C.M. A Flagellar Glycan-Specific Protein Encoded by Campylobacter Phages Inhibits Host Cell Growth. Viruses 2015, 7, 6661–6674. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.A.; van Alphen, L.B.; Sacher, J.; Ding, W.; Kelly, J.; Nargang, C.; Smith, D.F.; Cummings, R.D.; Szymanski, C.M. A Receptor-Binding Protein of Campylobacter jejuni Bacteriophage NCTC 12673 Recognizes Flagellin Glycosylated with Acetamidino-Modified Pseudaminic Acid. Mol. Microbiol. 2015, 95, 101–115. [Google Scholar] [CrossRef]
- Sacher, J.C.; Shajahan, A.; Butcher, J.; Patry, R.T.; Flint, A.; Hendrixson, D.R.; Stintzi, A.; Azadi, P.; Szymanski, C.M. Binding of Phage-Encoded FlaGrab to Motile Campylobacter jejuni Flagella Inhibits Growth, Downregulates Energy Metabolism, and Requires Specific Flagellar Glycans. Front. Microbiol. 2020, 11, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Zachary, E.; Wells, K.; Loc-Carrillo, C. Phage Therapy: Future Inquiries. Postdoc J. 2013, 1, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, D.R.; Anderson, J.; Enright, M.C. Phage therapy: Delivering on the promise. Ther. Deliv. 2011, 2, 935–947. [Google Scholar] [CrossRef] [PubMed]
- Górski, A.; Międzybrodzki, R.; Łobocka, M.; Głowacka-Rutkowska, A.; Bednarek, A.; Borysowski, J.; Jończyk-Matysiak, E.; Łusiak-Szelachowska, M.; Weber-Dąbrowska, B.; Bagińska, N.; et al. Phage Therapy: What Have We Learned? Viruses 2018, 10, 288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedon, S.T.; Danis-Wlodarczyk, K.M.; Wozniak, D.J. Phage Cocktail Development for Bacteriophage Therapy: Toward Improving Spectrum of Activity Breadth and Depth. Pharmaceuticals 2021, 14, 1019. [Google Scholar] [CrossRef]
- Mijbel Ali, B.; Gatea Kaabi, S.A.; Al-Bayati, M.A.; Musafer, H.K. A Novel Phage Cocktail Therapy of the Urinary Tract Infection in a Mouse Model. Arch. Razi Inst. 2021, 76, 1229–1236. [Google Scholar] [PubMed]
- Liu, N.; Lewis, C.; Zheng, W.; Fu, Z.Q. Phage Cocktail Therapy: Multiple Ways to Suppress Pathogenicity. Trends Plant Sci. 2020, 25, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Kaabi, S.A.G.; Musafer, H.K. An experimental mouse model for phage therapy of bacterial pathogens causing bacteremia. Microb. Pathog. 2019, 137, 103770. [Google Scholar] [CrossRef] [PubMed]
- Manohar, P.; Loh, B.; Elangovan, N.; Loganathan, A.; Nachimuthu, R.; Leptihn, S. A Multiwell-Plate Caenorhabditis elegans Assay for Assessing the Therapeutic Potential of Bacteriophages against Clinical Pathogens. Microbiol. Spectr. 2022, 10, e0139321. [Google Scholar] [CrossRef]
- Tsai, C.J.; Loh, J.M.; Proft, T. Galleria mellonella Infection Models for the Study of Bacterial Diseases and for Antimicrobial Drug Testing. Virulence 2016, 7, 214–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antoine, C.; Laforêt, F.; Blasdel, B.; Glonti, T.; Kutter, E.; Pirnay, J.; Mainil, J.; Delcenserie, V.; Thiry, D. Efficacy assessment of PEV2 phage on Galleria mellonella larvae infected with a Pseudomonas aeruginosa dog otitis isolate. Res. Veter Sci. 2021, 136, 598–601. [Google Scholar] [CrossRef]
- Eriksson, U.; Lindberg, A.A. Adsorption of Phage P22 to Salmonella typhimurium. J. Gen. Virol. 1977, 34, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Knecht, L.E.; Veljkovic, M.; Fieseler, L. Diversity and Function of Phage Encoded Depolymerases. Front. Microbiol. 2019, 10, 2949. [Google Scholar] [CrossRef]
- Suga, A.; Kawaguchi, M.; Yonesaki, T.; Otsuka, Y. Manipulating Interactions between T4 Phage Long Tail Fibers and Escherichia coli Receptors. Appl. Environ. Microbiol. 2021, 87, e00423-21. [Google Scholar] [CrossRef]
- Gurnev, P.A.; Oppenheim, A.B.; Winterhalter, M.; Bezrukov, S.M. Docking of a Single Phage Lambda to its Membrane Receptor Maltoporin as a Time-resolved Event. J. Mol. Biol. 2006, 359, 1447–1455. [Google Scholar] [CrossRef]
- Davis, C.M.; McCutcheon, J.G.; Dennis, J.J. Aztreonam Lysine Increases the Activity of Phages E79 and phiKZ against Pseudomonas aeruginosa PA01. Microorganisms 2021, 9, 152. [Google Scholar] [CrossRef]
- McCutcheon, J.G.; Peters, D.L.; Dennis, J.J. Identification and Characterization of Type IV Pili as the Cellular Receptor of Broad Host Range Stenotrophomonas maltophilia Bacteriophages DLP1 and DLP2. Viruses 2018, 10, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, D.J.; Sacher, J.C.; Szymanski, C.M. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages. Viruses 2016, 8, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Chamorro, L.; Boulanger, P.; Rossier, O. Strategies for Bacteriophage T5 Mutagenesis: Expanding the Toolbox for Phage Genome Engineering. Front. Microbiol. 2021, 12, 667332. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.R. Site-Specific Mutagenesis of Bacillus subtilis Phage SPO1. Methods Mol. Biol. 2019, 1898, 57–67. [Google Scholar] [CrossRef]
- Wood, R.D.; Hutchinson, F. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli host cells irradiated with ultraviolet light. J. Mol. Biol. 1984, 173, 293–305. [Google Scholar] [CrossRef]
- Dodson, L.A.; Masker, W.E. Survival and mutagenesis of bacteriophage T7 damaged by methyl methanesulfonate and ethyl methanesulfonate. Mutat. Res. Mol. Mech. Mutagen. 1986, 162, 137–144. [Google Scholar] [CrossRef]
- Hutchinson, F.; Stein, J. Mutagenesis of lambda phage: 5-bromouracil and hydroxylamine. Mol. Gen. Genet. 1977, 152, 29–36. [Google Scholar] [CrossRef]
- Skopek, T.R.; Hutchinson, F. DNA base sequence changes induced by bromouracil mutagenesis of lambda phage. J. Mol. Biol. 1982, 159, 19–33. [Google Scholar] [CrossRef]
- Turzynski, V.; Monsees, I.; Moraru, C.; Probst, A.J. Imaging Techniques for Detecting Prokaryotic Viruses in Environmental Samples. Viruses 2021, 13, 2126. [Google Scholar] [CrossRef]
- de Jonge, N.; Peckys, D.B. Live Cell Electron Microscopy Is Probably Impossible. ACS Nano 2016, 10, 9061–9063. [Google Scholar] [CrossRef] [Green Version]
- Liv, N.; van Oosten Slingeland, D.S.B.; Baudoin, J.-P.; Kruit, P.; Piston, D.W.; Hoogenboom, J.P. Electron Microscopy of Living Cells During in Situ Fluorescence Microscopy. ACS Nano 2016, 10, 265–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, T.; Ogura, T. High-resolution imaging of living mammalian cells bound by nanobeads-connected antibodies in a medium using scanning electron-assisted dielectric microscopy. Sci. Rep. 2017, 7, srep43025. [Google Scholar] [CrossRef] [PubMed]
- Dearnaley, W.J.; Schleupner, B.; Varano, A.C.; Alden, N.A.; Gonzalez, F.; Casasanta, M.A.; Scharf, B.E.; Dukes, M.J.; Kelly, D.F. Liquid-Cell Electron Tomography of Biological Systems. Nano Lett. 2019, 19, 6734–6741. [Google Scholar] [CrossRef] [PubMed]
- Chaikeeratisak, V.; Nguyen, K.; Egan, M.; Erb, M.L.; Vavilina-Halstead, A.; Pogliano, J. The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. Cell Rep. 2017, 20, 1563–1571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schermelleh, L.; Ferrand, A.; Huser, T.; Eggeling, C.; Sauer, M.; Biehlmaier, O.; Drummen, G.P.C. Super-resolution microscopy demystified. Nat. Cell Biol. 2019, 21, 72–84. [Google Scholar] [CrossRef]
- López-Gallego, F.; Guisán, J.M.; Betancor, L. Glutaraldehyde-Mediated Protein Immobilization. Methods Mol. Biol. 2013, 1051, 33–41. [Google Scholar] [CrossRef]
- Cheung, D.T.; Perelman, N.; Ko, E.C.; Nimni, M.E. Mechanism of crosslinking of proteins by glutaraldehyde III. Reaction with collagen in tissues. Connect. Tissue Res. 1985, 13, 109–115. [Google Scholar] [CrossRef]
- Lopez, J.; Webster, R.E. Morphogenesis of filamentous bacteriophage f1: Orientation of extrusion and production of polyphage. Virology 1983, 127, 177–193. [Google Scholar] [CrossRef]
- Andersen, O.A.; Schönfeld, D.L.; Toogood-Johnson, I.; Felicetti, B.; Albrecht, C.; Fryatt, T.; Whittaker, M.; Hallett, D.; Barker, J. Cross-Linking of Protein Crystals as an Aid in the Generation of Binary Protein-Ligand Crystal Complexes, Exemplified by the Human PDE10a-Papaverine Structure. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 872–874. [Google Scholar] [CrossRef]
- Yan, E.-K.; Cao, H.-L.; Zhang, C.-Y.; Lu, Q.-Q.; Ye, Y.-J.; He, J.; Huang, L.-J.; Yin, D.-C. Cross-linked protein crystals by glutaraldehyde and their applications. RSC Adv. 2015, 5, 26163–26174. [Google Scholar] [CrossRef]
- O’Reilly, F.J.; Rappsilber, J. Cross-linking mass spectrometry: Methods and applications in structural, molecular and systems biology. Nat. Struct. Mol. Biol. 2018, 25, 1000–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.; Urlaub, H. Combining cryo-electron microscopy (cryo-EM) and cross-linking mass spectrometry (CX-MS) for structural elucidation of large protein assemblies. Curr. Opin. Struct. Biol. 2017, 46, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Christen, M.; Beusch, C.; Bösch, Y.; Cerletti, D.; Flores-Tinoco, C.E.; Del Medico, L.; Tschan, F.; Christen, B. Quantitative Selection Analysis of Bacteriophage ΦCbK Susceptibility in Caulobacter crescentus. J. Mol. Biol. 2016, 428, 419–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohm, K.; Porwollik, S.; Chu, W.; Dover, J.A.; Gilcrease, E.B.; Casjens, S.R.; McClelland, M.; Parent, K.N. Genes Affecting Progression of Bacteriophage P22 Infection in Salmonella Identified by Transposon and Single Gene Deletion Screens. Mol. Microbiol. 2018, 108, 288–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kharitonova, M.A.; Evtugyn, V.G.; Kolpakov, A.I. Pleiotropic Effect of Salt Stress on Motility and Synthesis of Secreted Ribonucleases by Bacillus pumilus. BioNanoScience 2017, 7, 623–626. [Google Scholar] [CrossRef]
- Qin, H.; Liu, Y.; Cao, X.; Jiang, J.; Lian, W.; Qiao, D.; Xu, H.; Cao, Y. RpoS is a pleiotropic regulator of motility, biofilm formation, exoenzymes, siderophore and prodigiosin production, and trade-off during prolonged stationary phase in Serratia marcescens. PLoS ONE 2020, 15, e0232549. [Google Scholar] [CrossRef]
- Lavander, M.; Ericsson, S.K.; Bröms, J.E.; Forsberg, A. Twin Arginine Translocation in Yersinia. Adv. Exp. Med. Biol. 2007, 603, 258–267. [Google Scholar] [CrossRef]
- Jofre, J.; Muniesa, M. Bacteriophage Isolation and Characterization: Phages of Escherichia coli. Methods Mol. Biol. 2020, 2075, 61–79. [Google Scholar] [CrossRef]
- Sillankorva, S. Isolation of Bacteriophages for Clinically Relevant Bacteria. Methods Mol. Biol. 2018, 1693, 23–30. [Google Scholar] [CrossRef]
- Bao, H.; Zhang, H.; Wang, R. Isolation and characterization of bacteriophages of Salmonella enterica serovar Pullorum. Poult. Sci. 2011, 90, 2370–2377. [Google Scholar] [CrossRef]
- Clarridge, J.E., 3rd. Impact of 16s rRNA Gene Sequence Analysis for Identification of Bacteria on Clinical Microbiology and Infectious Diseases. Clin. Microbiol. Rev. 2004, 17, 840–862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanschagrin, S.; Yergeau, E. Next-generation Sequencing of 16S Ribosomal RNA Gene Amplicons. J. Vis. Exp. 2014, 90, e51709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, J.B. 16S rRNA Gene Sequencing for Bacterial Pathogen Identification in the Clinical Laboratory. Mol. Diagn. 2001, 6, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, H.-W. Phage Classification and Characterization. Methods Mol. Biol. 2009, 501, 127–140. [Google Scholar] [CrossRef]
- Kagawa, H.; Ono, N.; Enomoto, M.; Komeda, Y. Bacteriophage chi sensitivity and motility of Escherichia coli K-12 and Salmonella typhimurium Fla-mutants possessing the hook structure. J. Bacteriol. 1984, 157, 649–654. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, N.C.; Scharf, B.E. Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. Int. J. Mol. Sci. 2022, 23, 7084. https://doi.org/10.3390/ijms23137084
Esteves NC, Scharf BE. Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. International Journal of Molecular Sciences. 2022; 23(13):7084. https://doi.org/10.3390/ijms23137084
Chicago/Turabian StyleEsteves, Nathaniel C., and Birgit E. Scharf. 2022. "Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications" International Journal of Molecular Sciences 23, no. 13: 7084. https://doi.org/10.3390/ijms23137084
APA StyleEsteves, N. C., & Scharf, B. E. (2022). Flagellotropic Bacteriophages: Opportunities and Challenges for Antimicrobial Applications. International Journal of Molecular Sciences, 23(13), 7084. https://doi.org/10.3390/ijms23137084