Deletion of Diterpenoid Biosynthetic Genes CYP76M7 and CYP76M8 Induces Cell Death and Enhances Bacterial Blight Resistance in Indica Rice ‘9311’
Abstract
:1. Introduction
2. Results
2.1. Characterization of the g380 Mutant
2.2. Fine Mapping of the g380 Locus
2.3. ROS Accumulation in g380
2.4. Activated Defense Response and Increased Resistance to Bacterial Blight in g380
2.5. RNA-Seq Data Output and DEG Analysis
2.6. Decreased Diterpenoid Biosynthesis in g380 Leaves
2.7. Increased Lignin Biosynthesis in g380
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growing Conditions
4.2. Measurement of Agronomic Traits and Chlorophyll Content
4.3. Linkage Analysis and Chromosome Walking
4.4. DAB Staining and ROS Related Physiological Indexes Measurement
4.5. qRT-PCR Expression Analysis
4.6. Disease Evaluation
4.7. RNA-Seq and Data Analysis
4.8. GO and KEGG Enrichment Analysis
4.9. Lignin and Diterpenoid Content Measurement
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruggeman, Q.; Raynaud, C.; Benhamed, M.; Delarue, M. To Die or Not to Die? Lessons from Lesion Mimic Mutants. Front. Plant Sci. 2015, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Nishimura, M.T.; Zhao, T.; Tang, D. ATG2, an Autophagy-Related Protein, Negatively Affects Powdery Mildew Resistance and Mildew-Induced Cell Death in Arabidopsis. Plant J. 2011, 68, 74–87. [Google Scholar] [CrossRef]
- Zhu, X.; Yin, J.; Liang, S.; Liang, R.; Zhou, X.; Chen, Z.; Zhao, W.; Wang, J.; Li, W.; He, M.; et al. The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice. PLoS Genet. 2016, 12, e1006311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, Y.; Hong, X.; Hu, D.; Liu, C.; Yang, J.; Li, Y.; Huang, Y.; Feng, Y.; Gong, H.; et al. Functional Inactivation of UDP-N-Acetylglucosamine Pyrophosphorylase 1 (UAP1) Induces Early Leaf Senescence and Defence Responses in Rice. J. Exp. Bot. 2015, 66, 973–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, R.J. Uncovering the Complex Metabolic Network Underlying Diterpenoid Phytoalexin Biosynthesis in Rice and Other Cereal Crop Plants. Phytochemistry 2006, 67, 2307–2317. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, S.; Morrone, D.; Wang, Q.; Bruce Fulton, D.; Peters, R.J. CYP76M7 Is an Ent-Cassadiene C11α-Hydroxylase Defining a Second Multifunctional Diterpenoid Biosynthetic Gene Cluster in Rice. Plant Cell 2009, 21, 3315–3325. [Google Scholar] [CrossRef] [Green Version]
- Prisic, S.; Xu, M.; Wilderman, P.R.; Peters, R.J. Rice Contains Two Disparate Ent-Copalyl Diphosphate Synthases with Distinct Metabolic Functions. Plant Physiol. 2004, 136, 4228–4236. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.M.; Okada, A.; Kenmoku, H.; Otomo, K.; Toyomasu, T.; Mitsuhashi, W.; Sassa, T.; Yajima, A.; Yabuta, G.; Mori, K.; et al. Molecular Cloning and Characterization of a CDNA Encoding Ent-Cassa-12,15-Diene Synthase, a Putative Diterpenoid Phytoalexin Biosynthetic Enzyme, from Suspension-Cultured Rice Cells Treated with a Chitin Elicitor. Plant J. 2004, 37, 1–8. [Google Scholar] [CrossRef]
- Xu, M.; Ross Wilderman, P.; Morrone, D.; Xu, J.; Roy, A.; Margis-Pinheiro, M.; Upadhyaya, N.M.; Coates, R.M.; Peters, R.J. Functional Characterization of the Rice Kaurene Synthase-like Gene Family. Phytochemistry 2007, 68, 312–326. [Google Scholar] [CrossRef]
- Kitaoka, N.; Wu, Y.; Xu, M.; Peters, R.J. Optimization of Recombinant Expression Enables Discovery of Novel Cytochrome P450 Activity in Rice Diterpenoid Biosynthesis. Appl. Microbiol. Biotechnol. 2015, 99, 7549–7558. [Google Scholar] [CrossRef] [Green Version]
- Shimura, K.; Okada, A.; Okada, K.; Jikumaru, Y.; Ko, K.W.; Toyomasu, T.; Sassa, T.; Hasegawa, M.; Kodama, O.; Shibuya, N.; et al. Identification of a Biosynthetic Gene Cluster in Rice for Momilactones. J. Biol. Chem. 2007, 282, 34013–34018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, Z.; Yamazaki, K.; Minoda, H.; Miyamoto, K.; Miyazaki, S.; Kawaide, H.; Yajima, A.; Nojiri, H.; Yamane, H.; Okada, K. In Planta Functions of Cytochrome P450 Monooxygenase Genes in the Phytocassane Biosynthetic Gene Cluster on Rice Chromosome 2. Biosci. Biotechnol. Biochem. 2018, 82, 1021–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Zhang, J.; Li, Z.; Peters, R.J.; Yang, B. Dissecting the Labdane-related Diterpenoid Biosynthetic Gene Clusters in Rice Reveals Directional Cross-cluster Phytotoxicity. New Phytol. 2022, 233, 878–889. [Google Scholar] [CrossRef]
- Rogers, L.A.; Campbell, M.M. The Genetic Control of Lignin Deposition during Plant Growth and Development. New Phytol. 2004, 164, 17–30. [Google Scholar] [CrossRef] [PubMed]
- Bonawitz, N.D.; Chapple, C. The Genetics of Lignin Biosynthesis: Connecting Genotype to Phenotype. Annu. Rev. Genet. 2010, 44, 337–363. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.M.; Sederoff, R.R. Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants). Plant Physiol. 1996, 110, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Haga, K.; Takano, M.; Neumann, R.; Iino, M. The Rice COLEOPTILE PHOTOTROPISM1 Gene Encoding an Ortholog of Arabidopsis NPH3 Is Required for Phototropism of Coleoptiles and Lateral Translocation of Auxin. Plant Cell 2005, 17, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Czarnocka, W.; Karpiński, S. Friend or Foe? Reactive Oxygen Species Production, Scavenging and Signaling in Plant Response to Environmental Stresses. Free Radic. Biol. Med. 2018, 122, 4–20. [Google Scholar] [CrossRef]
- Miyamoto, K.; Fujita, M.; Shenton, M.R.; Akashi, S.; Sugawara, C.; Sakai, A.; Horie, K.; Hasegawa, M.; Kawaide, H.; Mitsuhashi, W.; et al. Evolutionary Trajectory of Phytoalexin Biosynthetic Gene Clusters in Rice. Plant J. 2016, 87, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Hillwig, M.L.; Okada, K.; Yamazaki, K.; Wu, Y.; Swaminathan, S.; Yamane, H.; Peters, R.J. Characterization of CYP76M5-8 Indicates Metabolic Plasticity within a Plant Biosynthetic Gene Cluster. J. Biol. Chem. 2012, 287, 6159–6168. [Google Scholar] [CrossRef] [Green Version]
- Stintzi, A.; Heitz, T.; Prasad, V.; Wiedemann-Merdinoglu, S.; Kauffmann, S.; Geoffroy, P.; Legrand, M.; Fritig, B. Plant ‘Pathogenesis-Related’ Proteins and Their Role in Defense against Pathogens. Biochimie 1993, 75, 687–706. [Google Scholar] [CrossRef]
- Van Loon, L.C.; Van Strien, E.A. The Families of Pathogenesis-Related Proteins, Their Activities, and Comparative Analysis of PR-1 Type Proteins. Physiol. Mol. Plant Pathol. 1999, 55, 85–97. [Google Scholar] [CrossRef]
- Van Loon, L.C.; Rep, M.; Pieterse, C.M.J. Significance of Inducible Defense-Related Proteins in Infected Plants. Annu. Rev. Phytopathol. 2006, 44, 135–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, K.; Tu, J.; Oliva, N.; Ona, I.; Velazhahan, R.; Mew, T.W.; Muthukrishnan, S.; Datta, S.K. Enhanced Resistance to Sheath Blight by Constitutive Expression of Infection-Related Rice Chitinase in Transgenic Elite Indica Rice Cultivars. Plant Sci. 2001, 160, 405–414. [Google Scholar] [CrossRef]
- Hashimoto, M.; Kisseleva, L.; Sawa, S.; Furukawa, T.; Komatsu, S.; Koshiba, T. A Novel Rice PR10 Protein, RSOsPR10, Specifically Induced in Roots by Biotic and Abiotic Stresses, Possibly via the Jasmonic Acid Signaling Pathway. Plant Cell Physiol. 2004, 45, 550–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, M.; Xu, W.; Bai, H.; Liu, Y.; Li, L.; Liu, L.; Liu, B.; Liu, G. Characteristic Expression of Rice Pathogenesis-Related Proteins in Rice Leaves during Interactions with Xanthomonas Oryzae Pv. Oryzae. Plant Cell Rep. 2012, 31, 895–904. [Google Scholar] [CrossRef]
- Wang, N.; Xiao, B.; Xiong, L. Identification of a Cluster of PR4-like Genes Involved in Stress Responses in Rice. J. Plant Physiol. 2011, 168, 2212–2224. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L. The WRKY Transcription Factor Superfamily: Its Origin in Eukaryotes and Expansion in Plants. BMC Evol. Biol. 2005, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Chujo, T.; Miyamoto, K.; Shimogawa, T.; Shimizu, T.; Otake, Y.; Yokotani, N.; Nishizawa, Y.; Shibuya, N.; Nojiri, H.; Yamane, H.; et al. OsWRKY28, a PAMP-Responsive Transrepressor, Negatively Regulates Innate Immune Responses in Rice against Rice Blast Fungus. Plant Mol. Biol. 2013, 82, 23–37. [Google Scholar] [CrossRef]
- Kim, S.H.; Oikawa, T.; Kyozuka, J.; Wong, H.L.; Umemura, K.; Kishi-Kaboshi, M.; Takahashi, A.; Kawano, Y.; Kawasaki, T.; Shimamoto, K. The BHLH Rac Immunity1 (RAI1) Is Activated by OsRac1 via OsMAPK3 and OsMAPK6 in Rice Immunity. Plant Cell Physiol. 2012, 53, 740–754. [Google Scholar] [CrossRef] [Green Version]
- Reimers, P.J.; Leach, J.E. Race-Specific Resistance to Xanthomonas Oryzae Pv. Oryzae Conferred by Bacterial Blight Resistance Gene Xa-10 in Rice (Orzya Sativa) Involves Accumulation of a Lignin-like Substance in Host Tissues. Physiol. Mol. Plant Pathol. 1991, 38, 39–55. [Google Scholar] [CrossRef]
- Passardi, F.; Longet, D.; Penel, C.; Dunand, C. The Class III Peroxidase Multigenic Family in Rice and Its Evolution in Land Plants. Phytochemistry 2004, 65, 1879–1893. [Google Scholar] [CrossRef] [PubMed]
- Maher, E.A.; Bate, N.J.; Ni, W.; Elkind, Y.; Dixon, R.A.; Lamb, C.J. Increased Disease Susceptibility of Transgenic Tobacco Plants with Suppressed Levels of Preformed Phenylpropanoid Products. Proc. Natl. Acad. Sci. USA 1994, 91, 7802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonnessen, B.W.; Manosalva, P.; Lang, J.M.; Baraoidan, M.; Bordeos, A.; Mauleon, R.; Oard, J.; Hulbert, S.; Leung, H.; Leach, J.E. Rice Phenylalanine Ammonia-Lyase Gene OsPAL4 Is Associated with Broad Spectrum Disease Resistance. Plant Mol. Biol. 2015, 87, 273–286. [Google Scholar] [CrossRef]
- Pallas, J.A.; Paiva, N.L.; Lamb, C.; Dixon, R.A. Tobacco Plants Epigenetically Suppressed in Phenylalanine Ammonia-Lyase Expression Do Not Develop Systemic Acquired Resistance in Response to Infection by Tobacco Mosaic Virus. Plant J. 1996, 10, 281–293. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper Enzymes in Isolated Chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 1949, 24, 1. [Google Scholar] [CrossRef] [Green Version]
- Thordal-Christensen, H.; Zhang, Z.; Wei, Y.; Collinge, D.B. Subcellular Localization of H2O2 in Plants. H2O2 Accumulation in Papillae and Hypersensitive Response during the Barley—Powdery Mildew Interaction. Plant J. 1997, 11, 1187–1194. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. AgriGO v2.0: A GO Analysis Toolkit for the Agricultural Community, 2017 Update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. ClusterProfiler: An R Package for Comparing Biological Themes among Gene Clusters. Omi. A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luoa, J. A Novel Integrated Method for Large-Scale Detection, Identification, and Quantification of Widely Targeted Metabolites: Application in the Study of Rice Metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Yu, N.; Zhang, Y.; Liu, L.; Li, Z.; Wang, C.; Cheng, S.; Cao, L.; Liu, Q. Deletion of Diterpenoid Biosynthetic Genes CYP76M7 and CYP76M8 Induces Cell Death and Enhances Bacterial Blight Resistance in Indica Rice ‘9311’. Int. J. Mol. Sci. 2022, 23, 7234. https://doi.org/10.3390/ijms23137234
Jiang M, Yu N, Zhang Y, Liu L, Li Z, Wang C, Cheng S, Cao L, Liu Q. Deletion of Diterpenoid Biosynthetic Genes CYP76M7 and CYP76M8 Induces Cell Death and Enhances Bacterial Blight Resistance in Indica Rice ‘9311’. International Journal of Molecular Sciences. 2022; 23(13):7234. https://doi.org/10.3390/ijms23137234
Chicago/Turabian StyleJiang, Min, Ning Yu, Yingxin Zhang, Lin Liu, Zhi Li, Chen Wang, Shihua Cheng, Liyong Cao, and Qunen Liu. 2022. "Deletion of Diterpenoid Biosynthetic Genes CYP76M7 and CYP76M8 Induces Cell Death and Enhances Bacterial Blight Resistance in Indica Rice ‘9311’" International Journal of Molecular Sciences 23, no. 13: 7234. https://doi.org/10.3390/ijms23137234
APA StyleJiang, M., Yu, N., Zhang, Y., Liu, L., Li, Z., Wang, C., Cheng, S., Cao, L., & Liu, Q. (2022). Deletion of Diterpenoid Biosynthetic Genes CYP76M7 and CYP76M8 Induces Cell Death and Enhances Bacterial Blight Resistance in Indica Rice ‘9311’. International Journal of Molecular Sciences, 23(13), 7234. https://doi.org/10.3390/ijms23137234