Bagging Strategy and Identification of Coloring Mode of ‘Xinqihong’ Pear
Abstract
:1. Introduction
2. Results
2.1. Effects of Bagging Treatments on the Skin Color of ‘Xinqihong’ Pears
2.2. Histological Observation of Fruit Skin Tissue
2.3. Expression of Genes Associated with Anthocyanin, Chlorophyll Biosynthesis, and Light Response in Fruit Skins of Different Colors
2.4. Expression Patterns of Anthocyanin Synthesis and Red-/Blue-Light Receptor Genes
2.5. Verification of Transient Expression of Light-Response-Related Genes in Fruit Skin
2.6. PbCRY1, PbCRY2, and PbPHY1 Modulate Expression of Target Genes and Anthocyanin Synthesis via PbHY5.2
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Fruit Color Measurement
4.3. Measurement of Anthocyanin, Chlorophyll, and Carotenoid Contents in Fruit Skin
4.4. Observation of Frozen Sections of Pericarp
4.5. RNA Extraction and Transcriptome Sequencing
4.6. qRT-PCR Analysis
4.7. Transient Transformation Analysis in Pear Fruit
4.8. Dual-Luciferase Reporter System Assays
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frank, D.L. Evaluation of fruit bagging as a pest management option for direct pests of apple. Insects 2018, 9, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, R.R.; Reddy, S.V.R.; Jhalegar, M.J. Pre-harvest fruit bagging: A useful approach for plant protection and improved post-harvest fruit quality—A review. J. Hortic. Sci. Biotech. 2014, 89, 101–113. [Google Scholar] [CrossRef]
- Zhang, B.B.; Guo, J.Y.; Ma, R.J.; Cai, Z.X.; Yan, J.; Zhang, C.H. Relationship between the bagging microenvironment and fruit quality in ‘Guibao’ peach [Prunus persica (L.) Batsch]. J. Hortic. Sci. Biotech. 2015, 90, 303–310. [Google Scholar] [CrossRef]
- Sun, S.; Xin, L.; Gao, H.; Wang, J.; Li, P. Response of phenolic compounds in ‘Golden Delicious’ and ‘Red Delicious’ apples peel to fruit bagging and subsequent sunlight re-exposure. Sci. Hortic. 2014, 168, 161–167. [Google Scholar] [CrossRef]
- Farzaneh, V.; Carvalho, I.S. A review of the health benefit potentials of herbal plant infusions and their mechanism of actions. Ind. Crops Prod. 2015, 65, 247–258. [Google Scholar] [CrossRef]
- Farzaneh, V.; Gominho, J.; Pereira, H.; Carvalho, I.S. Screening of the antioxidant and enzyme inhibition potentials of portuguese Pimpinella anisum L. seeds by GC-MS. Food Anal. Methods 2018, 11, 2645–2656. [Google Scholar] [CrossRef]
- Farzaneh, V.; Carvalho, I.S. Modelling of microwave assisted extraction (MAE) of anthocyanins (TMA). J. Appl. Res. Med. Aromat. Plants 2017, 6, 92–100. [Google Scholar] [CrossRef]
- Bai, S.; Tao, R.; Tang, Y.; Yin, L.; Ma, Y.; Ni, J.; Yan, X.; Yang, Q.S.; Wu, Z.; Zeng, Y.; et al. BBX16, a B-box protein, positively regulates light-induced anthocyanin accumulation by activating MYB10 in red pear. Plant Biotechnol. J. 2019, 17, 1985–1997. [Google Scholar] [CrossRef] [Green Version]
- Qian, M.; Yu, B.; Li, X.; Sun, Y.; Zhang, D.; Teng, Y. Isolation and expression analysis of anthocyanin biosynthesis genes from the red Chinese sand pear, Pyrus pyrifolia Nakai cv. Mantianhong, in response to methyl jasmonate treatment and UV-B/VIS conditions. Plant Mol. Biol. Rep. 2014, 32, 428–437. [Google Scholar] [CrossRef]
- Jin, W.; Wang, H.; Li, M.; Wang, J.; Yang, Y.; Zhang, X.; Yan, G.; Zhang, H.; Liu, J.; Zhang, K. The R2R3 MYB transcription factor PavMYB10.1 involves in anthocyanin biosynthesis and determines fruit skin colour in sweet cherry (Prunus avium L.). Plant Biotechnol. J. 2016, 14, 2120–2133. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, Z.; Wu, Y.; Zheng, L.; Zhang, G. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. Int. J. Mol. Sci. 2021, 22, 8441. [Google Scholar] [CrossRef]
- Tao, R.; Yu, W.; Gao, Y.; Ni, J.; Yin, L.; Zhang, X.; Li, H.; Wang, D.; Bai, S.; Teng, Y. Light-induced basic/helix-loop-helix64 enhances anthocyanin biosynthesis and undergoes CONSTITUTIVELY PHOTOMORPHOGENIC1-mediated degradation in pear. Plant Physiol. 2020, 184, 1684–1701. [Google Scholar] [CrossRef]
- Sun, Y.; Qian, M.; Wu, R.; Niu, Q.; Teng, Y.; Zhang, D. Postharvest pigmentation in red Chinese sand pears (Pyrus pyrifolia Nakai) in response to optimum light and temperature. Postharvest Biol. Technol. 2014, 91, 64–71. [Google Scholar] [CrossRef]
- Paik, I.; Huq, E. Plant photoreceptors: Multi-functional sensory proteins and their signaling networks. Semin. Cell Dev. Biol. 2019, 92, 114–121. [Google Scholar] [CrossRef]
- Maier, A.; Schrader, A.; Kokkelink, L.; Falke, C.; Welter, B.; Iniesto, E.; Rubio, V.; Uhrig, J.F.; Hülskamp, M.; Hoecker, U. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis. Plant J. 2013, 74, 638–651. [Google Scholar] [CrossRef]
- Kunkel, T.; Neuhaus, G.; Batschauer, A.; Chua, N.-H.; Schäfer, E. Functional analysis of yeast-derived phytochrome A and B phycocyanobilin adducts. Plant J. 1996, 10, 625–636. [Google Scholar] [CrossRef]
- Kliebenstein, D.J.; Lim, J.E.; Landry, L.G.; Last, R.L. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human Regulator of Chromatin Condensation 1. Plant Physiol. 2002, 130, 234–243. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Lin, C.; Cashmore, A.R. Mutations throughout an Arabidopsis blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. Plant J. 1995, 8, 653–658. [Google Scholar] [CrossRef]
- Allan, A.C.; Hellens, R.P.; Laing, W.A. MYB transcription factors that colour our fruit. Trends Plant Sci. 2008, 13, 99–102. [Google Scholar] [CrossRef]
- Wei, T.; Wang, C.; Qi, T.; An, Z.; Wu, M.; Qu, L.; Li, J.; Wen, Y.; Shi, Q.; Zhai, R.; et al. Effect of natural light on the phenolic compounds contents and coloration in the peel of ‘Xiyanghong’ (Pyrus bretschneideri×Pyrus communis). Sci. Hortic. 2020, 266, 109052. [Google Scholar] [CrossRef]
- Tao, R.; Bai, S.; Ni, J.; Yang, Q.; Zhao, Y.; Teng, Y. The blue light signal transduction pathway is involved in anthocyanin accumulation in ‘Red Zaosu’ pear. Planta 2018, 248, 37–48. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhao, Y.; Yang, J.; He, Y.; Li, G.; Ma, W.; Huang, X.; Su, J. Transcription factor PyHY5 binds to the promoters of PyWD40 and PyMYB10 and regulates its expression in red pear ‘Yunhongli No. 1’. Plant Physiol. Biochem. 2020, 154, 665–674. [Google Scholar] [CrossRef]
- Bai, S.; Tao, R.; Yin, L.; Ni, J.; Yang, Q.; Yan, X.; Yang, F.; Guo, X.; Li, H.; Teng, Y. Two B-box proteins, PpBBX18 and PpBBX21, antagonistically regulate anthocyanin biosynthesis via competitive association with Pyrus pyrifolia ELONGATED HYPOCOTYL 5 in the peel of pear fruit. Plant J. 2019, 100, 1208–1223. [Google Scholar] [CrossRef]
- Kim, Y.K.; Kang, S.S.; Choi, J.J.; Park, K.S.; Won, K.H.; Lee, H.C.; Han, T.H. The effect of several paper bags on fruit skin coloration of red skin European pear ‘Kalle’. Korean J. Hortic. Sci. Technol. 2014, 32, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-N.; Yao, G.-F.; Zheng, D.; Zhang, S.-L.; Wang, C.; Zhang, M.-Y.; Wu, J. Expression differences of anthocyanin biosynthesis genes reveal regulation patterns for red pear coloration. Plant Cell Rep. 2015, 34, 189–198. [Google Scholar] [CrossRef]
- Farzaneh, V.; Ghodsvali, A.; Bakhshabadi, H.; Dolatabadi, Z.; Farzaneh, F.; Carvalho, I.S.; Sarabandi, K. Screening of the alterations in qualitative characteristics of grape under the impacts of storage and harvest times using artificial neural network. Evol. Syst. Ger. 2018, 9, 81–89. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Z.; Sun, H.; Song, J.; Li, D.; Zhang, S.; Wang, R. Differences in anthocyanin accumulation patterns and related gene expression in two varieties of red pear. Plants 2021, 10, 626. [Google Scholar] [CrossRef]
- Wan, Y.; Hou, Q.-R.; Wen, Y.; Wang, L.; Lu, Q. Bagging technology reduces pesticide residues in table grapes. J. Am. Pomol. Soc. 2016, 70, 207–213. [Google Scholar]
- Chen, B.; Mao, J.; Huang, B.; Mi, B.; Liu, Y.; Hu, Z.; Ma, Z. Effect of bagging and time of harvest on fruit quality of ‘Red Fuji’ apple in high altitude area in China. Fruits 2017, 72, 36–46. [Google Scholar] [CrossRef]
- Liu, H.; Su, J.; Zhu, Y.; Yao, G.; Allan, A.C.; Ampomah-Dwamena, C.; Shu, Q.; Lin-Wang, K.; Zhang, S.; Wu, J. The involvement of PybZIPa in light-induced anthocyanin accumulation via the activation of PyUFGT through binding to tandem G-boxes in its promoter. Hortic. Res. 2019, 6, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, S.; Sun, Y.; Qian, M.; Yang, F.; Ni, J.; Tao, R.; Li, L.; Shu, Q.; Zhang, D.; Teng, Y. Transcriptome analysis of bagging-treated red Chinese sand pear peels reveals light-responsive pathway functions in anthocyanin accumulation. Sci. Rep. 2017, 7, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, G.E.; Turpin, S.; Goodwin, I. A review of preharvest anthocyanin development in full red and blush cultivars of European pear. N. Z. J. Crop. Hortic. Sci. 2018, 46, 81–100. [Google Scholar] [CrossRef]
- Zhu, Y.-F.; Su, J.; Yao, G.-F.; Liu, H.-N.; Gu, C.; Qin, M.-F.; Bai, B.; Cai, S.-S.; Wang, G.-M.; Wang, R.-Z.; et al. Different light-response patterns of coloration and related gene expression in red pears (Pyrus L.). Sci. Hortic. 2018, 229, 240–251. [Google Scholar] [CrossRef]
- Sullivan, J.A.; Deng, X.W. From seed to seed: The role of photoreceptors in Arabidopsis development. Dev. Biol. 2003, 260, 289–297. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R.; Batschauer, A. Plant blue-light receptors. Planta 2005, 220, 498–502. [Google Scholar] [CrossRef]
- Kinoshita, T.; Doi, M.; Suetsugu, N.; Kagawa, T.; Wada, M.; Shimazaki, K. Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 2001, 414, 656–660. [Google Scholar] [CrossRef]
- Folta, K.M.; Pontin, M.A.; Karlin-Neumann, G.; Bottini, R.; Spalding, E.P. Genomic and physiological studies of early cryptochrome 1 action demonstrate roles for auxin and gibberellin in the control of hypocotyl growth by blue light. Plant J. 2003, 36, 203–214. [Google Scholar] [CrossRef]
- Wu, S.H. Gene expression regulation in photomorphogenesis from the perspective of the central dogma. Annu. Rev. Plant Biol. 2014, 65, 311–333. [Google Scholar] [CrossRef]
- Possart, A.; Xu, T.; Paik, I.; Hanke, S.; Keim, S.; Hermann, H.-M.; Wolf, L.; Hiss, M.; Becker, C.; Huq, E.; et al. Characterization of phytochrome interacting factors from the moss Physcomitrella patens illustrates conservation of phytochrome signaling modules in land plants. Plant Cell 2017, 29, 310–330. [Google Scholar] [CrossRef] [Green Version]
- Imai, H.; Kawamura, Y.; Nagatani, A.; Uemura, M. Effects of the blue light–cryptochrome system on the early process of cold acclimation of Arabidopsis thaliana. Environ. Exp. Bot. 2021, 183, 104340. [Google Scholar] [CrossRef]
- Bai, S.; Saito, T.; Honda, C.; Hatsuyama, Y.; Ito, A.; Moriguchi, T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. Planta 2014, 240, 1051–1062. [Google Scholar] [CrossRef]
- Chen, H.; Xin, G.; Zhang, B.; Yang, J.Y. Optimization of extraction technique of anthocyanin from red peel of ‘Nanguo’ pear. Food Sci. 2009, 30, 97–100. [Google Scholar]
- Wu, J.; Zhao, G.; Yang, Y.-N.; Le, W.-Q.; Khan, M.A.; Zhang, S.-L.; Gu, C.; Huang, W.-J. Identification of differentially expressed genes related to coloration in red/green mutant pear (Pyrus communis L.). Tree Genet. Genomes 2013, 9, 75–83. [Google Scholar] [CrossRef]
- Huang, C.; Yu, B.; Teng, Y.; Su, J.; Shu, Q.; Cheng, Z.; Zeng, L. Effects of fruit bagging on coloring and related physiology, and qualities of red Chinese sand pears during fruit maturation. Sci. Hortic. 2009, 121, 149–158. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Mao, K.; Zhao, C.; Zhao, X.-Y.; Zhang, H.-L.; Shu, H.-R.; Hao, Y.-J. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple. Plant Physiol. 2012, 160, 1011–1022. [Google Scholar] [CrossRef] [Green Version]
- Niu, Q.; Li, J.; Cai, D.; Qian, M.; Jia, H.; Bai, S.; Hussain, S.; Liu, G.; Teng, Y.; Zheng, X. Dormancy-associated MADS-box genes and microRNAs jointly control dormancy transition in pear (Pyrus pyrifolia white pear group) flower bud. J. Exp. Bot. 2016, 67, 239–257. [Google Scholar] [CrossRef] [Green Version]
Treatment | DABR (d) | Parameters | ||
---|---|---|---|---|
L* | a* | b* | ||
BB-B | 0 | 66.19 ± 2.47 a | −9.55 ± 0.53 a | 28.76 ± 1.16 a |
10 | 50.66 ± 2.37 bc | 1.24 ± 1.07 b | 22.48 ± 1.13 bc | |
20 | 47.41 ± 1.51 c | 4.51 ± 0.47 c | 20.11 ± 1.30 cd | |
30 | 42.77 ± 1.63 d | 9.07 ± 0.19 fg | 16.87 ± 0.73 ef | |
40 | 38.16 ± 3.05 fg | 9.19 ± 0.30 fg | 15.71 ± 0.62 f | |
YW-B | 0 | 52.78 ± 1.88 b | −13.69 ± 1.19 e | 24.31 ± 3.54 b |
10 | 41.38 ± 1.36 def | 6.46 ± 1.16 d | 19.09 ± 0.50 de | |
20 | 42.41 ± 1.40 de | 8.79 ± 0.75 fg | 17.14 ± 1.57 ef | |
30 | 40.16 ± 1.45 def | 8.94 ± 1.09 fg | 17.09 ± 0.61 ef | |
40 | 34.96 ± 1.84 g | 9.44 ± 2.20 fgh | 15.75 ± 0.28 f | |
W-B | 0 | 40.14 ± 2.54 def | 5.33 ± 0.50 cd | 17.13 ± 1.71 ef |
10 | 39.01 ± 3.27 def | 10.69 ± 0.86 ghi | 16.07 ± 1.75 f | |
20 | 41.22 ± 1.92 def | 11.04 ± 0.62 ghi | 16.60 ± 0.98 ef | |
30 | 39.17 ± 0.99 def | 10.58 ± 1.48 ghi | 17.19 ± 1.68 ef | |
40 | 38.76 ± 2.54 ef | 11.51 ± 0.87 i | 16.01 ± 1.64 f | |
CK | - | 38.30 ± 1.19 fg | 8.57 ± 0.79 f | 15.68 ± 0.88 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Sun, H.; Wang, X.; Liu, X.; Xu, H.; Liang, C.; Li, D.; Yang, Y.; Cui, Z.; Song, J.; et al. Bagging Strategy and Identification of Coloring Mode of ‘Xinqihong’ Pear. Int. J. Mol. Sci. 2022, 23, 7310. https://doi.org/10.3390/ijms23137310
Liu J, Sun H, Wang X, Liu X, Xu H, Liang C, Li D, Yang Y, Cui Z, Song J, et al. Bagging Strategy and Identification of Coloring Mode of ‘Xinqihong’ Pear. International Journal of Molecular Sciences. 2022; 23(13):7310. https://doi.org/10.3390/ijms23137310
Chicago/Turabian StyleLiu, Jianlong, Hongwei Sun, Xuening Wang, Xin Liu, Hongpeng Xu, Chenglin Liang, Dingli Li, Yingjie Yang, Zhenhua Cui, Jiankun Song, and et al. 2022. "Bagging Strategy and Identification of Coloring Mode of ‘Xinqihong’ Pear" International Journal of Molecular Sciences 23, no. 13: 7310. https://doi.org/10.3390/ijms23137310
APA StyleLiu, J., Sun, H., Wang, X., Liu, X., Xu, H., Liang, C., Li, D., Yang, Y., Cui, Z., Song, J., & Wang, R. (2022). Bagging Strategy and Identification of Coloring Mode of ‘Xinqihong’ Pear. International Journal of Molecular Sciences, 23(13), 7310. https://doi.org/10.3390/ijms23137310