Neuropathic Pain Induces Interleukin-1β Sensitive Bimodal Glycinergic Activity in the Central Amygdala
Abstract
:1. Introduction
2. Results
2.1. Von Frey Mechanical Thresholds in the CCI Neuropathic Pain Model
2.2. Effects of CCI in Spontaneous Glycinergic Currents at the CeA
2.3. IL-1β Modulates Spontaneous Glycinergic Currents in CCI Animals
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Chronic Constriction Injury (CCI)
4.3. Von Frey Mechanical Threshold
4.4. Electrophysiological Recordings
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Berryman, C.; Stanton, T.R.; Jane Bowering, K.; Tabor, A.; McFarlane, A.; Lorimer Moseley, G. Evidence for Working Memory Deficits in Chronic Pain: A Systematic Review and Meta-Analysis. Pain 2013, 154, 1181–1196. [Google Scholar] [CrossRef] [PubMed]
- Colloca, L.; Ludman, T.; Bouhassira, D.; Baron, R.; Dickenson, A.H.; Yarnitsky, D.; Freeman, R.; Truini, A.; Attal, N.; Finnerup, N.B.; et al. Neuropathic Pain. Nat. Rev. Dis. Prim. 2017, 3, 17002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.-Q.; Wang, W.; Paulucci-Holthauzen, A.; Pan, Z.Z. Brain Circuits Mediating Opposing Effects on Emotion and Pain. J. Neurosci. 2018, 38, 6340–6349. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, V. Amygdala Pain Mechanisms. Handb. Exp. Pharmacol. 2015, 227, 261–284. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, R.; Takahashi, Y.; Inoue, K.; Kato, F. NMDA Receptor-Independent Synaptic Plasticity in the Central Amygdala in the Rat Model of Neuropathic Pain. Pain 2007, 127, 161–172. [Google Scholar] [CrossRef]
- Jiang, H.; Fang, D.; Kong, L.-Y.; Jin, Z.-R.; Cai, J.; Kang, X.-J.; Wan, Y.; Xing, G.-G. Sensitization of Neurons in the Central Nucleus of the Amygdala via the Decreased GABAergic Inhibition Contributes to the Development of Neuropathic Pain-Related Anxiety-like Behaviors in Rats. Mol. Brain 2014, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, L.; Dickenson, A.H. Asymmetric Time-Dependent Activation of Right Central Amygdala Neurones in Rats with Peripheral Neuropathy and Pregabalin Modulation. Eur. J. Neurosci. 2012, 36, 3204–3213. [Google Scholar] [CrossRef]
- Seno, M.D.J.; Assis, D.V.; Gouveia, F.; Antunes, G.F.; Kuroki, M.; Oliveira, C.C.; Santos, L.C.T.; Pagano, R.L.; Martinez, R.C.R. The Critical Role of Amygdala Subnuclei in Nociceptive and Depressive-like Behaviors in Peripheral Neuropathy. Sci. Rep. 2018, 8, 13608. [Google Scholar] [CrossRef]
- Lynch, J.W. Molecular Structure and Function of the Glycine Receptor Chloride Channel. Physiol. Rev. 2004, 84, 1051–1095. [Google Scholar] [CrossRef]
- Baer, K. Localisation of Glycine Receptors in the Human Forebrain, Brainstem, and Cervical Spinal Cord: An Immunohistochemical Review. Front. Mol. Neurosci. 2009, 2, 25. [Google Scholar] [CrossRef] [Green Version]
- Gradwell, M.A.; Boyle, K.A.; Callister, R.J.; Hughes, D.I.; Graham, B.A. Heteromeric α/β Glycine Receptors Regulate Excitability in Parvalbumin-Expressing Dorsal Horn Neurons through Phasic and Tonic Glycinergic Inhibition. J. Physiol. 2017, 595, 7185–7202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molchanova, S.M.; Comhair, J.; Karadurmus, D.; Piccart, E.; Harvey, R.J.; Rigo, J.-M.; Schiffmann, S.N.; Brône, B.; Gall, D. Tonically Active A2 Subunit-Containing Glycine Receptors Regulate the Excitability of Striatal Medium Spiny Neurons. Front. Mol. Neurosci. 2018, 10, 442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kummer, K.K.; Mitrić, M.; Kalpachidou, T.; Kress, M. The Medial Prefrontal Cortex as a Central Hub for Mental Comorbidities Associated with Chronic Pain. Int. J. Mol. Sci. 2020, 21, 3440. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, B.; Yevenes, G.E.; Förstera, B.; Lovinger, D.M.; Aguayo, L.G. Presence of Inhibitory Glycinergic Transmission in Medium Spiny Neurons in the Nucleus Accumbens. Front. Mol. Neurosci. 2018, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Aroeira, R.I.; Ribeiro, J.A.; Sebastião, A.M.; Valente, C.A. Age-Related Changes of Glycine Receptor at the Rat Hippocampus: From the Embryo to the Adult. J. Neurochem. 2011, 118, 339–353. [Google Scholar] [CrossRef]
- Choi, K.-H.; Nakamura, M.; Jang, I.-S. Presynaptic Glycine Receptors Increase GABAergic Neurotransmission in Rat Periaqueductal Gray Neurons. Neural Plast. 2013, 2013, 954302. [Google Scholar] [CrossRef] [Green Version]
- Delaney, A.J.; Esmaeili, A.; Sedlak, P.L.; Lynch, J.W.; Sah, P. Differential Expression of Glycine Receptor Subunits in the Rat Basolateral and Central Amygdala. Neurosci. Lett. 2010, 469, 237–242. [Google Scholar] [CrossRef]
- Maric, H.-M.; Mukherjee, J.; Tretter, V.; Moss, S.J.; Schindelin, H. Gephyrin-Mediated γ-Aminobutyric Acid Type A and Glycine Receptor Clustering Relies on a Common Binding Site. J. Biol. Chem. 2011, 286, 42105–42114. [Google Scholar] [CrossRef] [Green Version]
- Moss, S.J.; Smart, T.G. Constructing Inhibitory Synapses. Nat. Rev. Neurosci. 2001, 2, 240–250. [Google Scholar] [CrossRef]
- Kawasaki, Y.; Zhang, L.; Cheng, J.-K.; Ji, R.-R. Cytokine Mechanisms of Central Sensitization: Distinct and Overlapping Role of Interleukin-1, Interleukin-6, and Tumor Necrosis Factor- in Regulating Synaptic and Neuronal Activity in the Superficial Spinal Cord. J. Neurosci. 2008, 28, 5189–5194. [Google Scholar] [CrossRef] [Green Version]
- Patrizio, A.; Renner, M.; Pizzarelli, R.; Triller, A.; Specht, C.G. Alpha Subunit-Dependent Glycine Receptor Clustering and Regulation of Synaptic Receptor Numbers. Sci. Rep. 2017, 7, 10899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solorza, J.; Oliva, C.A.; Castillo, K.; Amestica, G.; Maldifassi, M.C.; López-Cortés, X.A.; Barra, R.; Stehberg, J.; Piesche, M.; Sáez-Briones, P.; et al. Effects of Interleukin-1β in Glycinergic Transmission at the Central Amygdala. Front. Pharmacol. 2021, 12, 613105. [Google Scholar] [CrossRef]
- Bennett, G.J.; Xie, Y.-K. A Peripheral Mononeuropathy in Rat That Produces Disorders of Pain Sensation like Those Seen in Man. Pain 1988, 33, 87–107. [Google Scholar] [CrossRef]
- Attal, N.; Jazat, F.; Kayser, V.; Guilbaud, G. Further Evidence for ‘Pain-Related’ Behaviours in a Model of Unilateral Peripheral Mononeuropathy. Pain 1990, 41, 235–251. [Google Scholar] [CrossRef]
- Sommer, C.; Kress, M. Recent Findings on How Proinflammatory Cytokines Cause Pain: Peripheral Mechanisms in Inflammatory and Neuropathic Hyperalgesia. Neurosci. Lett. 2004, 361, 184–187. [Google Scholar] [CrossRef] [PubMed]
- Chirila, A.M.; Brown, T.E.; Bishop, R.A.; Bellono, N.W.; Pucci, F.G.; Kauer, J.A. Long-Term Potentiation of Glycinergic Synapses Triggered by Interleukin 1β. Proc. Natl. Acad. Sci. USA 2014, 111, 8263–8268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, L.; Silva, R.; Pinto-Ribeiro, F.; Pêgo, J.M.; Bessa, J.M.; Pertovaara, A.; Sousa, N.; Almeida, A. Neuropathic Pain Is Associated with Depressive Behaviour and Induces Neuroplasticity in the Amygdala of the Rat. Exp. Neurol. 2008, 213, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Zeilhofer, H.U.; Werynska, K.; Gingras, J.; Yévenes, G.E. Glycine Receptors in Spinal Nociceptive Control—An Update. Biomolecules 2021, 11, 846. [Google Scholar] [CrossRef]
- Latremoliere, A.; Woolf, C.J. Central Sensitization: A Generator of Pain Hypersensitivity by Central Neural Plasticity. J. Pain 2009, 10, 895–926. [Google Scholar] [CrossRef] [Green Version]
- Morton, D.; Griffiths, P. Guidelines on the Recognition of Pain, Distress and Discomfort in Experimental Animals and an Hypothesis for Assessment. Vet. Rec. 1985, 116, 431–436. [Google Scholar] [CrossRef]
- Chaplan, S.R.; Bach, F.W.; Pogrel, J.W.; Chung, J.M.; Yaksh, T.L. Quantitative Assessment of Tactile Allodynia in the Rat Paw. J. Neurosci. Methods 1994, 53, 55–63. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliva, C.A.; Stehberg, J.; Barra, R.; Mariqueo, T. Neuropathic Pain Induces Interleukin-1β Sensitive Bimodal Glycinergic Activity in the Central Amygdala. Int. J. Mol. Sci. 2022, 23, 7356. https://doi.org/10.3390/ijms23137356
Oliva CA, Stehberg J, Barra R, Mariqueo T. Neuropathic Pain Induces Interleukin-1β Sensitive Bimodal Glycinergic Activity in the Central Amygdala. International Journal of Molecular Sciences. 2022; 23(13):7356. https://doi.org/10.3390/ijms23137356
Chicago/Turabian StyleOliva, Carolina A., Jimmy Stehberg, Rafael Barra, and Trinidad Mariqueo. 2022. "Neuropathic Pain Induces Interleukin-1β Sensitive Bimodal Glycinergic Activity in the Central Amygdala" International Journal of Molecular Sciences 23, no. 13: 7356. https://doi.org/10.3390/ijms23137356
APA StyleOliva, C. A., Stehberg, J., Barra, R., & Mariqueo, T. (2022). Neuropathic Pain Induces Interleukin-1β Sensitive Bimodal Glycinergic Activity in the Central Amygdala. International Journal of Molecular Sciences, 23(13), 7356. https://doi.org/10.3390/ijms23137356