A Novel Artificial Hemoglobin Carrier Based on Heulandite-Calcium Mesoporous Aluminosilicate Particles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Mesoporous Structure of the MSPs
2.2. Determination of MSPs Hemoglobin-Loading Capacity
2.3. Enzyme-like Activity of Encapsulated Hb Compared to Free Hb
2.4. Spectroscopic Analysis of Free and Encapsulated Hemoglobin, and Lipid-Bilayer-Coated MSPs
2.4.1. Ultraviolet-Visible Spectroscopy
2.4.2. Fluorescence Spectrometry
2.4.3. Circular Dichroism
2.4.4. Fourier Transform Infrared Spectrometry
2.5. Differential Scanning Calorimetry Analysis of Free and Encapuslated Hemoglobin, and Lipid-Bilayer-Coated MSPs
2.6. Membrane Fluidity Assay
2.7. Colloidal Stability and Release Profiles of Hemoglobin from Heulandite-Ca MSPs and Lipid-Bilayer-Coated MSPs
2.8. Citotoxicity of Heulandite-Ca MSPs and Lipid-Bilayer-Coated MSPs
3. Materials and Methods
3.1. Materials
3.2. Preparation of Heulandite-Ca MSP Suspension
3.3. Loading Hemoglobin into Heulandite-Ca MSPs
3.4. Preparation of the Lipid Film
3.5. Preparation of Lipid-Bilayer-Coated Hb-MSPs
3.6. Structure and Shape of Heulandite-Ca MSPs, and LB-MSPs
3.7. Labeling of Hemoglobin with Fluorescein Isothiocyanate
3.8. Confocal Microscopy Imaging
3.9. Surface Area and Mesoporosity of Heulandite-Ca MSPs, and Hb-MSPs
3.10. Loading Capacity of Hemoglobin into Heulandite-Ca MSPs
3.11. Peroxidase-like Activity of Hemoglobin-Loaded MSPs
3.12. Free Iron Assay
3.13. Spectroscopic Analysis of Free and Encapsulated Hemoglobin, and Lipid-Bilayer-Coated Hb-MSPs
3.13.1. Ultraviolet-Visible Spectrometry
3.13.2. Fluorescence Spectrometry
3.13.3. Circular Dichroism
3.13.4. Fourier Transform Infrared Spectrometry
3.14. Differential Scanning Calorimetry Analysis of Free and Encapsulated Hemoglobin, and Lipid-Bilayer-Coated MSPs
3.15. Membrane Fluidity Assay
3.16. Release Profiles of Hemoglobin from Heulandite-Ca MSPs and Lipid-Bilayer-Coated MSPs
3.17. Cytotoxicity Assay of Heulandite-Ca MSPs and Lipid-Bilayer-Coated MSPs
3.18. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koroleva, M.; Portnaya, I.; Mischenko, E.; Abutbul-Ionita, I.; Kolik-Shmuel, L.; Danino, D. Solid lipid nanoparticles and nanoemulsions with solid shell: Physical and thermal stability. J. Colloid Interface Sci. 2022, 610, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Roger, K.; El Amri, N. Controlling nanoparticle formation from the onset of nucleation through a multi-step continuous flow approach. J. Colloid Interface Sci. 2022, 608, 1750–1757. [Google Scholar] [CrossRef]
- Soloviev, M.; Siligardi, G.; Roccatano, D.; Ferrari, E. Modelling the adsorption of proteins to nanoparticles at the solid-liquid interface. J. Colloid Interface Sci. 2022, 605, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Bussmann, J.; Du, G.; Gao, Y.; Bouwstra, J.A.; Kros, A. Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic. Int. J. Pharm. 2018, 543, 169–178. [Google Scholar] [CrossRef]
- Azimipour, S.; Ghaedi, S.; Mehrabi, Z.; Ghasemzadeh, S.A.; Heshmati, M.; Barikrow, N.; Attar, F.; Falahati, M. Heme degradation and iron release of hemoglobin and oxidative stress of lymphocyte cells in the presence of silica nanoparticles. Int. J. Biol. Macromol. 2018, 118, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Zabukovec Logar, N.; Kaučič, V. Nanoporous materials: From catalysis and hydrogen storage to wastewater treatment. Acta Chim. Slov. 2006, 53, 117–135. [Google Scholar]
- Gladwin, M.T.; Kanias, T.; Kim-Shapiro, D.B. Hemolysis and cell-free hemoglobin drive an intrinsic mechanism for human disease. J. Clin. Investig. 2012, 122, 1205–1208. [Google Scholar] [CrossRef] [Green Version]
- VESTA V for E and StrA. VESTA LICENSE, Version 3. Available online: https://jp-minerals.org/vesta/en/download.html (accessed on 20 November 2021).
- Merkle, A.B.; Slaughter, M. The crystal structure of heulandite (Ca, Na2)[Al2Si7O18]·6H2O. Am. Mineral. 1967, 52, 273–276. [Google Scholar]
- Duan, L.; Yan, X.; Wang, A.; Jia, Y.; Li, J. Highly loaded hemoglobin spheres as promising artificial oxygen carriers. ACS Nano 2012, 6, 6897–6904. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhi, Z.; Jiang, T.; Zhang, J.; Wang, Z.; Wang, S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J. Control. Release 2010, 145, 257–263. [Google Scholar] [CrossRef]
- Urabe, Y.; Shiomi, T.; Itoh, T.; Kawai, A.; Tsunoda, T.; Mizukami, F.; Sakaguchi, K. Encapsulation of hemoglobin in mesoporous silica (FSM)-enhanced thermal stability and resistance to denaturants. ChemBioChem 2007, 8, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Peng, J.; Shen, S.; Jin, Q.; Li, C.; Yang, Q. Enzyme entrapped in polymer-modified nanopores: The effects of macromolecular crowding and surface hydrophobicity. Chemistry 2013, 19, 2711–2719. [Google Scholar] [CrossRef] [PubMed]
- Kao, K.-C.; Lin, T.-S.; Mou, C.-Y. Enhanced activity and stability of lysozyme by immobilization in the matching nanochannels of Mesoporous silica nanoparticles. J. Phys. Chem. C 2014, 118, 6734–6743. [Google Scholar] [CrossRef]
- El-Boubbou, K.; Schofield, D.A.; Landry, C.C. Enhanced enzymatic activity of OPH in ammonium-functionalized Mesoporous silica: Surface modification and pore effects. J. Phys. Chem. C 2012, 116, 17501–17506. [Google Scholar] [CrossRef]
- Xian, Y.; Xian, Y.; Zhou, L.; Wu, F.; Ling, Y.; Jin, L. Encapsulation hemoglobin in ordered mesoporous silicas: Influence factors for immobilization and bioelectrochemistry. Electrochem. Commun. 2007, 9, 142–148. [Google Scholar] [CrossRef]
- Rifkind, J.M.; Nagababu, E.; Ramasamy, S.; Ravi, L.B. Hemoglobin redox reactions and oxidative stress. Redox Rep. 2003, 8, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Mobasherat Jajroud, S.Y.; Falahati, M.; Attar, F.; Khavari-Nejad, R.A. Human hemoglobin adsorption onto colloidal cerium oxide nanoparticles: A new model based on zeta potential and spectroscopy measurements. J. Biomol. Struct. Dyn. 2018, 36, 2908–2916. [Google Scholar] [CrossRef]
- Kelly, S.; Price, N. Circular Dichroism: Studies of Proteins. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2009. [Google Scholar]
- Wallace, B.A. Protein characterisation by synchrotron radiation circular dichroism spectroscopy. Q. Rev. Biophys. 2009, 42, 317–370. [Google Scholar] [CrossRef] [Green Version]
- Krimm, S.; Bandekar, J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv. Protein Chem. 1986, 38, 181–364. [Google Scholar]
- Yang, H.; Yang, S.; Kong, J.; Dong, A.; Yu, S. Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat. Protoc. 2015, 10, 382–396. [Google Scholar] [CrossRef]
- Zendelska, A.; Golomeova, M.; Jakupi, Š.; Lisichkov, K.; Kuvendziev, S.; Marinkovski, M. Characterization and application of clinoptilolite for removal of heavy metal ions from water resources. Geol. Maced. 2018, 32, 21–32. [Google Scholar]
- Larkin, P.J. Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2011; 228p. [Google Scholar]
- Alhazmi, H. FT-IR spectroscopy for the identification of binding sites and measurements of the binding interactions of important metal ions with bovine serum albumin. Sci. Pharm. 2019, 87, 5. [Google Scholar] [CrossRef] [Green Version]
- Mudakavi, R.; Raichur, A.; Chakravortty, D. Lipid coated mesoporous silica nanoparticle as oral delivery system for targeting and treatment of intravacuolar Salmonella infection. RSC Adv. 2014, 4, 61160–61166. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, Y.; Zhang, H.; Qin, Y.; Li, D.; Gan, L.; Wu, F. Using hyaluronic acid-functionalized pH stimuli-responsive mesoporous silica nanoparticles for targeted delivery to CD44-overexpressing cancer cells. Int. J. Nanomed. 2016, 11, 6485–6497. [Google Scholar] [CrossRef] [Green Version]
- Kręcisz, M.; Rybka, J.; Strugała, A.J.; Skalski, B.; Figlerowicz, M.; Kozak, M.; Giersig, M. Interactions between magnetic nanoparticles and model lipid bilayers—Fourier transformed infrared spectroscopy (FTIR) studies of the molecular basis of nanotoxicity. J. Appl. Phys. 2016, 120, 124701. [Google Scholar] [CrossRef] [Green Version]
- Celej, M.; Dassie, S.; Gonzalez, M.; Bianconi, M.; Fidelio, G. Differential scanning calorimetry as a tool to estimate binding parameters in multiligand binding proteins. Anal. Biochem. 2006, 350, 277–284. [Google Scholar] [CrossRef]
- Huynh, K.; Partch, C.L. Analysis of protein stability and ligand interactions by thermal shift assay. Curr. Protoc. Protein Sci. 2015, 79, 28.9.1–28.9.14. [Google Scholar] [CrossRef]
- Drasler, B.; Santhosh, P.B.; Drobne, D.; Kreft, M.E.; Kralj, S.; Makovec, D.; Ulrih, N.P. Effect of superparamagnetic iron oxide nanoparticles on fluidity and phase transition of phosphatidylcholine liposomal membranes. Int. J. Nanomed. 2015, 10, 6089–6104. [Google Scholar] [CrossRef] [Green Version]
- Santhosh, P.B.; Velikonja, A.; Perutkova, Š.; Gongadze, E.; Kulkarni, M.; Genova, J.; Eleršič, K.; Iglič, A.; Kralj-Iglič, V.; Ulrih, N.P. Influence of nanoparticle-membrane electrostatic interactions on membrane fluidity and bending elasticity. Chem. Phys. Lipids 2014, 178, 52–62. [Google Scholar] [CrossRef]
- Zhao, H.; Lappalainen, P. A simple guide to biochemical approaches for analyzing protein-lipid interactions. Mol. Biol. Cell 2012, 23, 2823–2830. [Google Scholar] [CrossRef]
- Park, M.V.D.Z.; Neigh, A.M.; Vermeulen, J.P.; de la Fonteyne, L.J.J.; Verharen, H.W.; Briedé, J.J.; van Loveren, H.; de Jong, W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, 9810–9817. [Google Scholar] [CrossRef] [PubMed]
- Sahu, D.; Kannan, G.M.; Tailang, M.; Vijayaraghavan, R. In vitro cytotoxicity of nanoparticles: A comparison between particle size and cell type. J. Nanosci. 2016, 2016, 4023852. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-W.; Cambre, M.; Lee, H.-J. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int. J. Mol. Sci. 2017, 18, 2702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
Sample | Tm (°C) |
---|---|
Hb | 75.72 ± 0.9 |
Hb-loaded MSPs | 76.73 ± 0.5 |
Empty liposomes | −14.08 ± 0.1 |
Liposome-encapsulated MSPs | −13.07 ± 0.4 |
Sample | Hydrodynamic Diameter (nm) | Polydispersity Index | Zeta Potential (mV) |
---|---|---|---|
MSPs | 276 ± 129 | 0.168 | −26.7 ± 5.38 |
Hb-loaded MSPs | 283 ± 148 | 0.215 | −19.1 ± 4.05 |
Liposome-encapsulated MSPs | 292 ± 224 | 0.368 | −36.8 ± 4.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jordanoski, D.; Drobne, D.; Repar, N.; Dogsa, I.; Mrak, P.; Cerc-Korošec, R.; Škapin, A.S.; Nadrah, P.; Poklar Ulrih, N. A Novel Artificial Hemoglobin Carrier Based on Heulandite-Calcium Mesoporous Aluminosilicate Particles. Int. J. Mol. Sci. 2022, 23, 7460. https://doi.org/10.3390/ijms23137460
Jordanoski D, Drobne D, Repar N, Dogsa I, Mrak P, Cerc-Korošec R, Škapin AS, Nadrah P, Poklar Ulrih N. A Novel Artificial Hemoglobin Carrier Based on Heulandite-Calcium Mesoporous Aluminosilicate Particles. International Journal of Molecular Sciences. 2022; 23(13):7460. https://doi.org/10.3390/ijms23137460
Chicago/Turabian StyleJordanoski, Dino, Damjana Drobne, Neža Repar, Iztok Dogsa, Polona Mrak, Romana Cerc-Korošec, Andrijana Sever Škapin, Peter Nadrah, and Natasa Poklar Ulrih. 2022. "A Novel Artificial Hemoglobin Carrier Based on Heulandite-Calcium Mesoporous Aluminosilicate Particles" International Journal of Molecular Sciences 23, no. 13: 7460. https://doi.org/10.3390/ijms23137460
APA StyleJordanoski, D., Drobne, D., Repar, N., Dogsa, I., Mrak, P., Cerc-Korošec, R., Škapin, A. S., Nadrah, P., & Poklar Ulrih, N. (2022). A Novel Artificial Hemoglobin Carrier Based on Heulandite-Calcium Mesoporous Aluminosilicate Particles. International Journal of Molecular Sciences, 23(13), 7460. https://doi.org/10.3390/ijms23137460