Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys
Abstract
:1. Introduction
2. Results
2.1. Semi-Thin Sections and Electron Microscopy of Developing, Postnatal, and CNF Human Kidneys
2.2. Proliferation of Glomerular Cells (Ki-67 Staining) in Developing, Postnatal, and Human Kidneys Affected by CNF and FSGS
2.3. Expression of Nestin in Human Podocytes and PECs of Developing, Postnatal, and CNF and FSGS Kidneys
2.4. Expression of Notch2 in the Developing and Postnatal Podocytes and Kidneys Affected by CNF and FSGS
2.5. WNT4 Expression in the Podocytes and PECs of Developing and Healthy Postnatal Kidneys and in Kidneys Affected by CNF and FSGS
2.6. Snail Expression in the Developing and Healthy Postnatal Human Kidneys and Kidneys Affected by CNF and FSGS
2.7. Expression of Nephrin and Synaptopodin Markers and Their Co-Expression with WNT4, Notch2, and Snail in Developing, Healthy Postnatal, and Human Kidneys Affected by CNF and FSGS
3. Discussion
4. Materials and Methods
4.1. Human Tissue Processing
4.2. Immunofluorescence Staining
4.3. Preparation of the Tissue for Electron Microscopy (TEM)
4.4. Data Acquisition and Quantitative Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuure, S.; Vuolteenaho, R.; Vainio, S. Kidney morphogenesis: Cellular and molecular regulation. Mech. Dev. 2000, 92, 31–45. [Google Scholar] [CrossRef]
- Solic, I.; Racetin, A.; Filipovic, N.; Mardesic, S.; Bocina, I.; Galesic-Ljubanovic, D.; Glavina Durdov, M.; Saraga-Babic, M.; Vukojevic, K. Expression Pattern of alpha-Tubulin, Inversin and Its Target Dishevelled-1 and Morphology of Primary Cilia in Normal Human Kidney Development and Diseases. Int. J. Mol. Sci. 2021, 22, 3500. [Google Scholar] [CrossRef] [PubMed]
- Arakawa, M.; Tokunaga, J. A scanning electron microscope study of the human Bowman’s epithelium. Contrib. Nephrol. 1977, 6, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, L.; Ekblom, P. Development of tubular and glomerular cells of the kidney. Kidney Int. 1992, 41, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Nagata, M.; Shibata, S.; Shigeta, M.; Yu-Ming, S.; Watanabe, T. Cyclin-dependent kinase inhibitors: p27kip1 and p57kip2 expression during human podocyte differentiation. Nephrol. Dial. Transplant. 1999, 14 (Suppl. S1), 48–51. [Google Scholar] [CrossRef] [Green Version]
- May, C.J.; Saleem, M.; Welsh, G.I. Podocyte dedifferentiation: A specialized process for a specialized cell. Front. Endocrinol. 2014, 5, 148. [Google Scholar] [CrossRef] [Green Version]
- Lasagni, L.; Lazzeri, E.; Shankland, S.J.; Anders, H.J.; Romagnani, P. Podocyte mitosis—A catastrophe. Curr. Mol. Med. 2013, 13, 13–23. [Google Scholar] [CrossRef]
- Sato, Y.; Wharram, B.L.; Lee, S.K.; Wickman, L.; Goyal, M.; Venkatareddy, M.; Chang, J.W.; Wiggins, J.E.; Lienczewski, C.; Kretzler, M.; et al. Urine podocyte mRNAs mark progression of renal disease. J. Am. Soc. Nephrol. JASN 2009, 20, 1041–1052. [Google Scholar] [CrossRef]
- Ronconi, E.; Sagrinati, C.; Angelotti, M.L.; Lazzeri, E.; Mazzinghi, B.; Ballerini, L.; Parente, E.; Becherucci, F.; Gacci, M.; Carini, M.; et al. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. JASN 2009, 20, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Smeets, B.; Dijkman, H.B.; Wetzels, J.F.; Steenbergen, E.J. Lessons from studies on focal segmental glomerulosclerosis: An important role for parietal epithelial cells? J. Pathol. 2006, 210, 263–272. [Google Scholar] [CrossRef]
- Ohse, T.; Pippin, J.W.; Chang, A.M.; Krofft, R.D.; Miner, J.H.; Vaughan, M.R.; Shankland, S.J. The enigmatic parietal epithelial cell is finally getting noticed: A review. Kidney Int. 2009, 76, 1225–1238. [Google Scholar] [CrossRef] [Green Version]
- Bariety, J.; Mandet, C.; Hill, G.S.; Bruneval, P. Parietal podocytes in normal human glomeruli. J. Am. Soc. Nephrol. JASN 2006, 17, 2770–2780. [Google Scholar] [CrossRef] [Green Version]
- Achenbach, J.; Mengel, M.; Tossidou, I.; Peters, I.; Park, J.K.; Haubitz, M.; Ehrich, J.H.; Haller, H.; Schiffer, M. Parietal epithelia cells in the urine as a marker of disease activity in glomerular diseases. Nephrol. Dial. Transplant. 2008, 23, 3138–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kihara, I.; Tsuchida, S.; Yaoita, E.; Yamamoto, T.; Hara, M.; Yanagihara, T.; Takada, T. Podocyte detachment and epithelial cell reaction in focal segmental glomerulosclerosis with cellular variants. Kidney Int. Suppl. 1997, 63, S171–S176. [Google Scholar] [PubMed]
- Moeller, M.J.; Soofi, A.; Hartmann, I.; Le Hir, M.; Wiggins, R.; Kriz, W.; Holzman, L.B. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J. Am. Soc. Nephrol. JASN 2004, 15, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagrinati, C.; Netti, G.S.; Mazzinghi, B.; Lazzeri, E.; Liotta, F.; Frosali, F.; Ronconi, E.; Meini, C.; Gacci, M.; Squecco, R.; et al. Isolation and characterization of multipotent progenitor cells from the Bowman’s capsule of adult human kidneys. J. Am. Soc. Nephrol. JASN 2006, 17, 2443–2456. [Google Scholar] [CrossRef] [Green Version]
- Appel, D.; Kershaw, D.B.; Smeets, B.; Yuan, G.; Fuss, A.; Frye, B.; Elger, M.; Kriz, W.; Floege, J.; Moeller, M.J. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. JASN 2009, 20, 333–343. [Google Scholar] [CrossRef] [Green Version]
- Lasagni, L.; Romagnani, P. Glomerular epithelial stem cells: The good, the bad, and the ugly. J. Am. Soc. Nephrol. JASN 2010, 21, 1612–1619. [Google Scholar] [CrossRef] [Green Version]
- Gibson, I.W.; Downie, I.; Downie, T.T.; Han, S.W.; More, I.A.; Lindop, G.B. The parietal podocyte: A study of the vascular pole of the human glomerulus. Kidney Int. 1992, 41, 211–214. [Google Scholar] [CrossRef] [Green Version]
- Hir, M.L.; Keller, C.; Eschmann, V.; Hahnel, B.; Hosser, H.; Kriz, W. Podocyte bridges between the tuft and Bowman’s capsule: An early event in experimental crescentic glomerulonephritis. J. Am. Soc. Nephrol. JASN 2001, 12, 2060–2071. [Google Scholar] [CrossRef]
- Smeets, B.; Uhlig, S.; Fuss, A.; Mooren, F.; Wetzels, J.F.; Floege, J.; Moeller, M.J. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J. Am. Soc. Nephrol. JASN 2009, 20, 2604–2615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohse, T.; Vaughan, M.R.; Kopp, J.B.; Krofft, R.D.; Marshall, C.B.; Chang, A.M.; Hudkins, K.L.; Alpers, C.E.; Pippin, J.W.; Shankland, S.J. De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. Am. J. Physiol. Renal Physiol. 2010, 298, F702–F711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peti-Peterdi, J.; Sipos, A. A high-powered view of the filtration barrier. J. Am. Soc. Nephrol. JASN 2010, 21, 1835–1841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lendahl, U.; Zimmerman, L.B.; McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell 1990, 60, 585–595. [Google Scholar] [CrossRef]
- Vukojevic, K.; Raguz, F.; Saraga, M.; Filipovic, N.; Bocina, I.; Kero, D.; Glavina Durdov, M.; Martinovic, V.; Saraga-Babic, M. Glomeruli from patients with nephrin mutations show increased number of ciliated and poorly differentiated podocytes. Acta Histochem. 2018, 120, 748–756. [Google Scholar] [CrossRef]
- Filipovic, N.; Vukojevic, K.; Bocina, I.; Saraga, M.; Durdov, M.G.; Kablar, B.; Saraga-Babic, M. Immunohistochemical and electronmicroscopic features of mesenchymal-to-epithelial transition in human developing, postnatal and nephrotic podocytes. Histochem. Cell Biol. 2017, 147, 481–495. [Google Scholar] [CrossRef]
- Penton, A.L.; Leonard, L.D.; Spinner, N.B. Notch signaling in human development and disease. Semin. Cell Dev. Biol. 2012, 23, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, S.; Schulze, K.L.; Bellen, H.J. Introduction to Notch signaling. Methods Mol. Biol. 2014, 1187, 1–14. [Google Scholar] [CrossRef]
- Sirin, Y.; Susztak, K. Notch in the kidney: Development and disease. J. Pathol. 2012, 226, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Asanuma, K.; Oliva Trejo, J.A.; Tanaka, E. The role of Notch signaling in kidney podocytes. Clin. Exp. Nephrol. 2017, 21, 1–6. [Google Scholar] [CrossRef]
- Kato, H.; Susztak, K. Repair problems in podocytes: Wnt, Notch, and glomerulosclerosis. Semin. Nephrol. 2012, 32, 350–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lasagni, L.; Ballerini, L.; Angelotti, M.L.; Parente, E.; Sagrinati, C.; Mazzinghi, B.; Peired, A.; Ronconi, E.; Becherucci, F.; Bani, D.; et al. Notch activation differentially regulates renal progenitors proliferation and differentiation toward the podocyte lineage in glomerular disorders. Stem Cells 2010, 28, 1674–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, A.M.; Wu, M.Y.; Onay, T.; Scutaru, J.; Liu, J.; Lobe, C.G.; Quaggin, S.E.; Piscione, T.D. Ectopic notch activation in developing podocytes causes glomerulosclerosis. J. Am. Soc. Nephrol. JASN 2008, 19, 1139–1157. [Google Scholar] [CrossRef] [Green Version]
- Niehrs, C. On growth and form: A Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 2010, 137, 845–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Sinha, T.; Wynshaw-Boris, A. Wnt signaling in mammalian development: Lessons from mouse genetics. Cold Spring Harb. Perspect. Biol. 2012, 4, a007963. [Google Scholar] [CrossRef] [PubMed]
- Wray, J.; Hartmann, C. WNTing embryonic stem cells. Trends Cell Biol. 2012, 22, 159–168. [Google Scholar] [CrossRef]
- Halt, K.; Vainio, S. Coordination of kidney organogenesis by Wnt signaling. Pediatr. Nephrol. 2014, 29, 737–744. [Google Scholar] [CrossRef] [Green Version]
- Torban, E.; Dziarmaga, A.; Iglesias, D.; Chu, L.L.; Vassilieva, T.; Little, M.; Eccles, M.; Discenza, M.; Pelletier, J.; Goodyer, P. PAX2 activates WNT4 expression during mammalian kidney development. J. Biol. Chem. 2006, 281, 12705–12712. [Google Scholar] [CrossRef] [Green Version]
- Kato, H.; Gruenwald, A.; Suh, J.H.; Miner, J.H.; Barisoni-Thomas, L.; Taketo, M.M.; Faul, C.; Millar, S.E.; Holzman, L.B.; Susztak, K. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J. Biol. Chem. 2011, 286, 26003–26015. [Google Scholar] [CrossRef] [Green Version]
- Kiewisz, J.; Skowronska, A.; Winiarska, A.; Pawlowska, A.; Kiezun, J.; Rozicka, A.; Perkowska-Ptasinska, A.; Kmiec, Z.; Stompor, T. WNT4 Expression in Primary and Secondary Kidney Diseases: Dependence on Staging. Kidney Blood Press. Res. 2019, 44, 200–210. [Google Scholar] [CrossRef]
- Nieto, M.A.; Sargent, M.G.; Wilkinson, D.G.; Cooke, J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994, 264, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Perez-Moreno, M.A.; Rodrigo, I.; Locascio, A.; Blanco, M.J.; del Barrio, M.G.; Portillo, F.; Nieto, M.A. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2000, 2, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Isaac, A.; Sargent, M.G.; Cooke, J. Control of vertebrate left-right asymmetry by a snail-related zinc finger gene. Science 1997, 275, 1301–1304. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Chia, W.; Yang, X. A family of snail-related zinc finger proteins regulates two distinct and parallel mechanisms that mediate Drosophila neuroblast asymmetric divisions. EMBO J. 2001, 20, 1704–1714. [Google Scholar] [CrossRef] [Green Version]
- Boutet, A.; De Frutos, C.A.; Maxwell, P.H.; Mayol, M.J.; Romero, J.; Nieto, M.A. Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J. 2006, 25, 5603–5613. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Kang, Y.S.; Dai, C.; Kiss, L.P.; Wen, X.; Liu, Y. Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am. J. Pathol. 2008, 172, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Matsui, I.; Ito, T.; Kurihara, H.; Imai, E.; Ogihara, T.; Hori, M. Snail, a transcriptional regulator, represses nephrin expression in glomerular epithelial cells of nephrotic rats. Lab. Investig. J. Tech. Methods Pathol. 2007, 87, 273–283. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Kaku, H.; Onodera, T.; Kurokawa, R.; Morisada, M. Peripolar cells in guinea pigs under experimental hyperplasia of juxtaglomerular cells induced by long-term, low-dose calcium condition. Exp. Toxicol. Pathol. 1994, 46, 283–286. [Google Scholar] [CrossRef]
- Pyrgaki, C.; Trainor, P.; Hadjantonakis, A.K.; Niswander, L. Dynamic imaging of mammalian neural tube closure. Dev. Biol. 2010, 344, 941–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eladl, M.A.; Elsaed, W.M.; Atef, H.; El-Sherbiny, M. Ultrastructural changes and nestin expression accompanying compensatory renal growth after unilateral nephrectomy in adult rats. Int. J. Nephrol. Renov. Dis. 2017, 10, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Stark, K.; Vainio, S.; Vassileva, G.; McMahon, A.P. Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 1994, 372, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, D.M.; Hueber, P.A.; Chu, L.; Campbell, R.; Patenaude, A.M.; Dziarmaga, A.J.; Quinlan, J.; Mohamed, O.; Dufort, D.; Goodyer, P.R. Canonical WNT signaling during kidney development. Am. J. Physiol. Renal Physiol. 2007, 293, F494–F500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grouls, S.; Iglesias, D.M.; Wentzensen, N.; Moeller, M.J.; Bouchard, M.; Kemler, R.; Goodyer, P.; Niggli, F.; Grone, H.J.; Kriz, W.; et al. Lineage specification of parietal epithelial cells requires β-catenin/Wnt signaling. J. Am. Soc. Nephrol. JASN 2012, 23, 63–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swetha, G.; Chandra, V.; Phadnis, S.; Bhonde, R. Glomerular parietal epithelial cells of adult murine kidney undergo EMT to generate cells with traits of renal progenitors. J. Cell. Mol. Med. 2011, 15, 396–413. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Stolz, D.B.; Kiss, L.P.; Monga, S.P.; Holzman, L.B.; Liu, Y. Wnt/β-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol. JASN 2009, 20, 1997–2008. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.L.; Wang, J.Y.; Huang, Y.T.; Kuo, Y.H.; Surendran, K.; Wang, F.S. Wnt/β-catenin signaling modulates survival of high glucose-stressed mesangial cells. J. Am. Soc. Nephrol. JASN 2006, 17, 2812–2820. [Google Scholar] [CrossRef]
- Boyle, S.C.; Kim, M.; Valerius, M.T.; McMahon, A.P.; Kopan, R. Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells. Development 2011, 138, 4245–4254. [Google Scholar] [CrossRef] [Green Version]
- Walsh, D.W.; Roxburgh, S.A.; McGettigan, P.; Berthier, C.C.; Higgins, D.G.; Kretzler, M.; Cohen, C.D.; Mezzano, S.; Brazil, D.P.; Martin, F. Co-regulation of Gremlin and Notch signalling in diabetic nephropathy. Biochim. Biophys. Acta 2008, 1782, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Murea, M.; Park, J.K.; Sharma, S.; Kato, H.; Gruenwald, A.; Niranjan, T.; Si, H.; Thomas, D.B.; Pullman, J.M.; Melamed, M.L.; et al. Expression of Notch pathway proteins correlates with albuminuria, glomerulosclerosis, and renal function. Kidney Int. 2010, 78, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Callen, S.; Zhang, D.; Singhal, P.C.; Vanden Heuvel, G.B.; Buch, S. Activation of Notch signaling pathway in HIV-associated nephropathy. AIDS 2010, 24, 2161–2170. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, E.; Asanuma, K.; Kim, E.; Sasaki, Y.; Oliva Trejo, J.A.; Seki, T.; Nonaka, K.; Asao, R.; Nagai-Hosoe, Y.; Akiba-Takagi, M.; et al. Notch2 activation ameliorates nephrosis. Nat. Commun. 2014, 5, 3296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niranjan, T.; Bielesz, B.; Gruenwald, A.; Ponda, M.P.; Kopp, J.B.; Thomas, D.B.; Susztak, K. The Notch pathway in podocytes plays a role in the development of glomerular disease. Nat. Med. 2008, 14, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Davidson, G.; Dono, R.; Zeller, R. FGF signalling is required for differentiation-induced cytoskeletal reorganisation and formation of actin-based processes by podocytes. J. Cell Sci. 2001, 114, 3359–3366. [Google Scholar] [CrossRef] [PubMed]
- Kero, D.; Vukojevic, K.; Stazic, P.; Sundov, D.; Mardesic Brakus, S.; Saraga-Babic, M. Regulation of proliferation in developing human tooth germs by MSX homeodomain proteins and cyclin-dependent kinase inhibitor p19INK4d. Organogenesis 2017, 13, 141–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lundgren, K.; Nordenskjöld, B.; Landberg, G. Hypoxia, Snail and incomplete epithelial-mesenchymal transition in breast cancer. Br. J. Cancer 2009, 101, 1769–1781. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, B.P. Snail: More than EMT. Cell Adhes. Migr. 2010, 4, 199–203. [Google Scholar] [CrossRef]
- Yastrebova, M.A.; Khamidullina, A.I.; Tatarskiy, V.V.; Scherbakov, A.M. Snail-Family Proteins: Role in Carcinogenesis and Prospects for Antitumor Therapy. Acta Nat. 2021, 13, 76–90. [Google Scholar] [CrossRef]
- Kosovic, I.; Filipovic, N.; Benzon, B.; Bocina, I.; Glavina Durdov, M.; Vukojevic, K.; Saraga, M.; Saraga-Babic, M. Connexin Signaling in the Juxtaglomerular Apparatus (JGA) of Developing, Postnatal Healthy and Nephrotic Human Kidneys. Int. J. Mol. Sci. 2020, 21, 8349. [Google Scholar] [CrossRef]
- Punda, H.; Mardesic, S.; Filipovic, N.; Kosovic, I.; Benzon, B.; Ogorevc, M.; Bocina, I.; Kolic, K.; Vukojevic, K.; Saraga-Babic, M. Expression Pattern of 5-HT (Serotonin) Receptors during Normal Development of the Human Spinal Cord and Ganglia and in Fetus with Cervical Spina Bifida. Int. J. Mol. Sci. 2021, 22, 7320. [Google Scholar] [CrossRef]
Protein | Type of Protein | Functions | Expression in Developing Kidneys (Animal Models) | Expression in Nephrotic Kidneys (Human Samples and Animal Models) |
---|---|---|---|---|
nestin | intermediate filament | expressed in stem and precursor cells as a placeholder for more mature intermediated filaments | at early stages expressed both in podocytes and PECs; at later stages only in podocytes | increased expression in podocytes |
Notch2 | transmembrane receptor | mediates proliferation, apoptosis, EMT, and differentiation | highly expressed in nephrons at earlier stages, decreases as nephrons mature | increased expression in both podocytes and PECs |
WNT4 | paracrine signaling molecule | mediates axis prolongation, organogenesis, MET, proliferation | highly expressed in nephrons at earlier stages, decreases as nephrons mature | both increases and decreases have been described, depending on the specific disease |
Snail | transcription factor | mediates formation of mesoderm and neural crest, EMT, cell survival and division | present in metanephric mesenchyme before induction of MET, downregulated as nephrons mature | increased expression in podocytes |
Weeks/Months/Years | Number of Kidney Samples | Status |
---|---|---|
8 weeks | 4 | Human conceptuses |
10 weeks | 3 | |
16 weeks | 1 | |
22 weeks | 2 | |
38 weeks | 2 | |
1 year | 3 | Healthy postnatal kidneys |
1 year 6 months | ||
7 years | ||
3 years | 3 | CNF kidneys |
5 years | ||
1 year | 4 | FSGS kidneys |
1 year 4 months | ||
6 years | ||
10 years |
Antibodies | Host | Code no. | Dilution | Source | |
---|---|---|---|---|---|
Primary | Anti-NOTCH2 | Rabbit | ab8926 | 1:100 | Abcam, Cambridge, UK |
Anti-WNT4 | Rabbit | ab91226 | 1:25 | Abcam, Cambridge, UK | |
Anti-SNAIL | Goat | ab53519 | 1:400 | Abcam, Cambridge, UK | |
Anti-nestin | Rabbit | ab93157 | 1:200 | Abcam, Cambridge, UK | |
Anti-Ki-67 | Mouse | M7240 | 1:100 | DAKO, Santa Clara, CA, USA | |
Anti-nephrin | Goat | sc-32530 | 1:200 | Santa Cruz Biotechnology, Inc., Dallas, TX, USA | |
Anti-synaptopodin | Rabbit | ab117702 | 1:300 | Abcam, Cambridge, UK | |
Secondary | Alexa Fluor®488 AffiniPure Anti- Mouse lgG (H + L) | Donkey | 715-545-150 | 1:400 | Jackson Immuno Research Laboratories, Ely, UK |
Alexa Fluor®488 AffiniPure Anti- Goat lgG (H + L) | Donkey | 705-545-003 | 1:400 | Jackson Immuno Research Laboratories, Ely, UK | |
Alexa Fluor®488 AffiniPure Anti- Rabbit lgG (H + L) | Donkey | 711-545-152 | 1:400 | Jackson Immuno Research Laboratories, Ely, UK | |
Rhodamine Red™-X (RRX) AffiniPure Anti-Goat IgG (H + L) | Donkey | 705-295-003 | 1:400 | Jackson Immuno Research Laboratories, Ely, UK | |
Rhodamine Red™-X (RRX) AffiniPure Anti-Mouse IgG (H + L) | Donkey | 715-295-151 | 1:400 | Jackson Immuno Research Laboratories, Ely, UK |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogorevc, M.; Kosovic, I.; Filipovic, N.; Bocina, I.; Juric, M.; Benzon, B.; Mardesic, S.; Vukojevic, K.; Saraga, M.; Kablar, B.; et al. Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys. Int. J. Mol. Sci. 2022, 23, 7501. https://doi.org/10.3390/ijms23147501
Ogorevc M, Kosovic I, Filipovic N, Bocina I, Juric M, Benzon B, Mardesic S, Vukojevic K, Saraga M, Kablar B, et al. Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys. International Journal of Molecular Sciences. 2022; 23(14):7501. https://doi.org/10.3390/ijms23147501
Chicago/Turabian StyleOgorevc, Marin, Ivona Kosovic, Natalija Filipovic, Ivana Bocina, Marija Juric, Benjamin Benzon, Snjezana Mardesic, Katarina Vukojevic, Marijan Saraga, Boris Kablar, and et al. 2022. "Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys" International Journal of Molecular Sciences 23, no. 14: 7501. https://doi.org/10.3390/ijms23147501
APA StyleOgorevc, M., Kosovic, I., Filipovic, N., Bocina, I., Juric, M., Benzon, B., Mardesic, S., Vukojevic, K., Saraga, M., Kablar, B., & Saraga-Babic, M. (2022). Differences in Immunohistochemical and Ultrastructural Features between Podocytes and Parietal Epithelial Cells (PECs) Are Observed in Developing, Healthy Postnatal, and Pathologically Changed Human Kidneys. International Journal of Molecular Sciences, 23(14), 7501. https://doi.org/10.3390/ijms23147501