Pre- and Postnatal Dietary Exposure to a Pesticide Cocktail Disrupts Ovarian Functions in 8-Week-Old Female Mice
Abstract
:1. Introduction
2. Results
2.1. Pre- and Postnatal Exposure to the Pesticide Mixture Did Not Considerably Impact Birth Outcomes and Metabolic Parameters in F0 Female Mice
2.2. Pre- and Postnatal Exposure to Pesticide Mixture Influences 4- and 8-Week-Old Female Offspring (F1) Body and Caecum Weight
2.3. Pre- and Postnatal Exposure to the Pesticide Mixture Alters Reproduction Parameters in 8-Week-Old Female Offspring (F1)
3. Discussion
4. Methods and Materials
4.1. Chemicals
4.2. Pesticide Chow
4.3. Animal Experiment
4.3.1. Hepatic Gene Expression
4.3.2. Oestrous Cycle Staging Identification
4.3.3. Hormone Assays
4.3.4. Morphological Classification of Ovarian Follicles
4.3.5. Immunohistochemistry to Assess Cell Proliferation by PCNA and Ki67
4.3.6. Assessment of Cell Apoptosis Using the TUNEL Technique
4.3.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ombelet, W.; Cooke, I.; Dyer, S.; Serour, G.; Devroey, P. Infertility and the provision of infertility medical services in developing countries. Hum. Reprod. Update 2008, 14, 605–621. [Google Scholar] [CrossRef] [PubMed]
- Louis, J.F.; Thoma, M.E.; Sorensen, D.N.; McLain, A.C.; King, R.B.; Sundaram, R.; Keiding, N.; Buck Louis, G.M. The prevalence of couple infertility in the United States from a male perspective: Evidence from a nationally representative sample. Andrology 2013, 1, 741–748. [Google Scholar] [CrossRef]
- Thoma, M.E.; McLain, A.C.; Louis, J.F.; King, R.B.; Trumble, A.C.; Sundaram, R.; Buck Louis, G.M. Prevalence of infertility in the United States as estimated by the current duration approach and a traditional constructed approach. Fertil. Steril. 2013, 99, 1324–1331.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeste, M.; Jones, C.; Amdani, S.N.; Patel, S.; Coward, K. Oocyte activation deficiency: A role for an oocyte contribution? Hum. Reprod. Update 2016, 22, 23–47. [Google Scholar] [CrossRef] [PubMed]
- Vabre, P.; Gatimel, N.; Moreau, J.; Gayrard, V.; Picard-Hagen, N.; Parinaud, J.; Leandri, R.D. Environmental pollutants, a possible etiology for premature ovarian insufficiency: A narrative review of animal and human data. Environ. Health 2017, 16, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, L.G.; Philippat, C.; Nakayama, S.F.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Implications for human health. Lancet Diabetes Endocrinol. 2020, 8, 703–718. [Google Scholar] [CrossRef]
- Johansson, H.K.; Jacobsen, P.R.; Hass, U.; Svingen, T.; Vinggaard, A.M.; Isling, L.K.; Axelstad, M.; Christiansen, S.; Boberg, J. Perinatal exposure to mixtures of endocrine disrupting chemicals reduces female rat follicle reserves and accelerates reproductive aging. Reprod. Toxicol. 2016, 61, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Tran, D.N.; Jung, E.M.; Yoo, Y.M.; Ahn, C.; Kang, H.Y.; Choi, K.C.; Hyun, S.H.; Dang, V.H.; Pham, T.N.; Jeung, E.B. Depletion of follicles accelerated by combined exposure to phthalates and 4-vinylcyclohexene diepoxide, leading to premature ovarian failure in rats. Reprod. Toxicol. 2018, 80, 60–67. [Google Scholar] [CrossRef]
- Zhou, C.; Flaws, J.A. Effects of an Environmentally Relevant Phthalate Mixture on Cultured Mouse Antral Follicles. Toxicol. Sci. 2017, 156, 217–229. [Google Scholar] [CrossRef]
- Rattan, S.; Brehm, E.; Gao, L.; Niermann, S.; Flaws, J.A. Prenatal exposure to di(2-ethylhexyl) phthalate disrupts ovarian function in a transgenerational manner in female mice. Biol. Reprod. 2018, 98, 130–145. [Google Scholar] [CrossRef] [Green Version]
- Dziewirska, E.; Hanke, W.; Jurewicz, J. Environmental non-persistent endocrine-disrupting chemicals exposure and reproductive hormones levels in adult men. Int. J. Occup. Med. Environ. Health 2018, 31, 551–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fucic, A.; Duca, R.C.; Galea, K.S.; Maric, T.; Garcia, K.; Bloom, M.S.; Andersen, H.R.; Vena, J.E. Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. Int. J. Environ. Res. Public Health 2021, 18, 6576. [Google Scholar] [CrossRef]
- Tiemann, U. In vivo and in vitro effects of the organochlorine pesticides DDT, TCPM, methoxychlor, and lindane on the female reproductive tract of mammals: A review. Reprod. Toxicol. 2008, 25, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Zama, A.M.; Uzumcu, M. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology 2009, 150, 4681–4691. [Google Scholar] [CrossRef]
- Zama, A.M.; Uzumcu, M. Targeted genome-wide methylation and gene expression analyses reveal signaling pathways involved in ovarian dysfunction after developmental EDC exposure in rats. Biol. Reprod. 2013, 88, 52. [Google Scholar] [CrossRef] [Green Version]
- Greenlee, A.R.; Arbuckle, T.E.; Chyou, P.H. Risk factors for female infertility in an agricultural region. Epidemiology 2003, 14, 429–436. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis, K.; Allende, A.; Alvarez-Ordonez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 14: Suitability of taxonomic units notified to EFSA until March 2021. EFSA J. 2021, 19, e06689. [Google Scholar] [PubMed]
- Rizzati, V.; Briand, O.; Guillou, H.; Gamet-Payrastre, L. Effects of pesticide mixtures in human and animal models: An update of the recent literature. Chem. Biol. Interact. 2016, 254, 231–246. [Google Scholar] [CrossRef] [Green Version]
- Lukowicz, C.; Ellero-Simatos, S.; Regnier, M.; Polizzi, A.; Lasserre, F.; Montagner, A.; Lippi, Y.; Jamin, E.L.; Martin, J.F.; Naylies, C.; et al. Metabolic Effects of a Chronic Dietary Exposure to a Low-Dose Pesticide Cocktail in Mice: Sexual Dimorphism and Role of the Constitutive Androstane Receptor. Environ. Health Perspect. 2018, 126, 067007. [Google Scholar] [CrossRef]
- Smith, L.; Klement, W.; Dopavogui, L.; de Bock, F.; Lasserre, F.; Barretto, S.; Lukowicz, C.; Fougerat, A.; Polizzi, A.; Schaal, B.; et al. Perinatal exposure to a dietary pesticide cocktail does not increase susceptibility to high-fat diet-induced metabolic perturbations at adulthood but modifies urinary and fecal metabolic fingerprints in C57Bl6/J mice. Environ. Int. 2020, 144, 106010. [Google Scholar] [CrossRef]
- Liu, Y.; Peterson, K.E. Maternal Exposure to Synthetic Chemicals and Obesity in the Offspring: Recent Findings. Curr. Environ. Health Rep. 2015, 2, 339–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coker, E.; Chevrier, J.; Rauch, S.; Bradman, A.; Obida, M.; Crause, M.; Bornman, R.; Eskenazi, B. Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. Environ. Int. 2018, 113, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Fang, J.; Sun, X.; Zhang, W.; Li, J.; Chen, X.; Yu, L.; Xia, W.; Xu, S.; Cai, Z.; et al. Prenatal exposure to organochlorine pesticides and infant growth: A longitudinal study. Environ. Int. 2021, 148, 106374. [Google Scholar] [CrossRef] [PubMed]
- Pinos, H.; Carrillo, B.; Merchan, A.; Biosca-Brull, J.; Perez-Fernandez, C.; Colomina, M.T.; Sanchez-Santed, F.; Martin-Sanchez, F.; Collado, P.; Arias, J.L.; et al. Relationship between Prenatal or Postnatal Exposure to Pesticides and Obesity: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 7170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, X.; Zhang, Y.; Guo, F.; Yang, S.; Peeters, R.P.; Korevaar, T.I.M.; Fan, J.; Huang, H.F. Association Between Maternal Thyroid Hormones and Birth Weight at Early and Late Pregnancy. J. Clin. Endocrinol. Metab. 2019, 104, 5853–5863. [Google Scholar] [CrossRef]
- Derakhshan, A.; Peeters, R.P.; Taylor, P.N.; Bliddal, S.; Carty, D.M.; Meems, M.; Vaidya, B.; Chen, L.; Knight, B.A.; Ghafoor, F.; et al. Association of maternal thyroid function with birthweight: A systematic review and individual-participant data meta-analysis. Lancet Diabetes Endocrinol. 2020, 8, 501–510. [Google Scholar] [CrossRef]
- Myers, M.; Britt, K.L.; Wreford, N.G.; Ebling, F.J.; Kerr, J.B. Methods for quantifying follicular numbers within the mouse ovary. Reproduction 2004, 127, 569–580. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Williams, P.L.; Gillman, M.W.; Gaskins, A.J.; Minguez-Alarcon, L.; Souter, I.; Toth, T.L.; Ford, J.B.; Hauser, R.; Chavarro, J.E.; et al. Association Between Pesticide Residue Intake from Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment with Assisted Reproductive Technology. JAMA Intern. Med. 2018, 178, 17–26. [Google Scholar] [CrossRef]
- Guo, M.; Lai, L.; Zong, T.; Lin, Y.; Yang, B.; Zhang, L.; Li, M.; Kuang, H. Exposure to di(2-ethylhexyl) phthalate inhibits luteal function via dysregulation of CD31 and prostaglandin F2alpha in pregnant mice. Reprod. Biol. Endocrinol. 2015, 13, 11. [Google Scholar] [CrossRef] [Green Version]
- Kitauchi, S.; Maeda, M.; Hirano, T.; Ikenaka, Y.; Nishi, M.; Shoda, A.; Murata, M.; Mantani, Y.; Yokoyama, T.; Tabuchi, Y.; et al. Effects of in utero and lactational exposure to the no-observed-adverse-effect level (NOAEL) dose of the neonicotinoid clothianidin on the reproductive organs of female mice. J. Vet. Med. Sci. 2021, 83, 746–753. [Google Scholar] [CrossRef]
- Mattheij, J.A.; Swarts, H.J. Induction of luteinized unruptured follicles in the rat after injection of luteinizing hormone early in pro-oestrus. Eur. J. Endocrinol. 1995, 132, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Foradori, C.D.; Hinds, L.R.; Hanneman, W.H.; Legare, M.E.; Clay, C.M.; Handa, R.J. Atrazine inhibits pulsatile luteinizing hormone release without altering pituitary sensitivity to a gonadotropin-releasing hormone receptor agonist in female Wistar rats. Biol. Reprod. 2009, 81, 40–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samardzija, D.; Pogrmic-Majkic, K.; Fa, S.; Glisic, B.; Stanic, B.; Andric, N. Atrazine blocks ovulation via suppression of Lhr and Cyp19a1 mRNA and estradiol secretion in immature gonadotropin-treated rats. Reprod. Toxicol. 2016, 61, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Montoya, G.A.; Strauss, V.; Fabian, E.; Kamp, H.; Mellert, W.; Walk, T.; Looser, R.; Herold, M.; Krennrich, G.; Peter, E.; et al. Mechanistic analysis of metabolomics patterns in rat plasma during administration of direct thyroid hormone synthesis inhibitors or compounds increasing thyroid hormone clearance. Toxicol. Lett. 2014, 225, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Caron-Beaudoin, E.; Viau, R.; Hudon-Thibeault, A.A.; Vaillancourt, C.; Sanderson, J.T. The use of a unique co-culture model of fetoplacental steroidogenesis as a screening tool for endocrine disruptors: The effects of neonicotinoids on aromatase activity and hormone production. Toxicol. Appl. Pharmacol. 2017, 332, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Maranghi, F.; Macri, C.; Ricciardi, C.; Stazi, A.V.; Rescia, M.; Mantovani, A. Histological and histomorphometric alterations in thyroid and adrenals of CD rat pups exposed in utero to methyl thiophanate. Reprod. Toxicol. 2003, 17, 617–623. [Google Scholar] [CrossRef]
- Ventura, C.; Nieto, M.R.; Bourguignon, N.; Lux-Lantos, V.; Rodriguez, H.; Cao, G.; Randi, A.; Cocca, C.; Nunez, M. Pesticide chlorpyrifos acts as an endocrine disruptor in adult rats causing changes in mammary gland and hormonal balance. J. Steroid Biochem. Mol. Biol. 2016, 156, 1–9. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Fang, Y.; Ni, C.; Ma, L.; Zheng, W.; Bao, S.; Li, X.; Lian, Q.; Ge, R.S. Gestational exposure to ziram disrupts rat fetal Leydig cell development. Chemosphere 2018, 203, 393–401. [Google Scholar] [CrossRef]
- Ge, H.; Chen, L.; Su, Y.; Jin, C.; Ge, R.S. Effects of Folpet, Captan, and Captafol on Human Aromatase in JEG-3 Cells. Pharmacology 2018, 102, 81–87. [Google Scholar] [CrossRef]
- Craig, Z.R.; Wang, W.; Flaws, J.A. Endocrine-disrupting chemicals in ovarian function: Effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction 2011, 142, 633–646. [Google Scholar] [CrossRef]
- Kjaerstad, M.B.; Taxvig, C.; Nellemann, C.; Vinggaard, A.M.; Andersen, H.R. Endocrine disrupting effects in vitro of conazole antifungals used as pesticides and pharmaceuticals. Reprod. Toxicol. 2010, 30, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Orton, F.; Rosivatz, E.; Scholze, M.; Kortenkamp, A. Widely used pesticides with previously unknown endocrine activity revealed as in vitro antiandrogens. Environ. Health Perspect. 2011, 119, 794–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Symonds, D.A.; Tomic, D.; Miller, K.P.; Flaws, J.A. Methoxychlor induces proliferation of the mouse ovarian surface epithelium. Toxicol. Sci. 2005, 83, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, F.; Cerquetti, L.; Pezzilli, S.; Bucci, B.; Toscano, V.; Canipari, R.; Stigliano, A. Effect of mitotane on mouse ovarian follicle development and fertility. J. Endocrinol. 2017, 234, 29–39. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, H.; Zhang, P.; Yu, S.; Ma, D.; Li, L.; Feng, Y.; Min, L.; Shen, W.; Zhao, Y. Chlorothalonil inhibits mouse ovarian development through endocrine disruption. Toxicol. Lett. 2019, 303, 38–47. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Gao, B.W.; Wang, J.; Wang, X.W.; Ren, Q.L.; Chen, J.F.; Ma, Q.; Xing, B.S. Chronic Exposure to Diquat Causes Reproductive Toxicity in Female Mice. PLoS ONE 2016, 11, e0147075. [Google Scholar] [CrossRef]
- Miranda-Contreras, L.; Cruz, I.; Osuna, J.A.; Gomez-Perez, R.; Berrueta, L.; Salmen, S.; Colmenares, M.; Barreto, S.; Balza, A.; Morales, Y.; et al. Effects of occupational exposure to pesticides on semen quality of workers in an agricultural community of Merida state, Venezuela. Investig. Clin. 2015, 56, 123–136. [Google Scholar]
- McLean, A.C.; Valenzuela, N.; Fai, S.; Bennett, S.A. Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J. Vis. Exp. 2012, 67, e4389. [Google Scholar] [CrossRef] [Green Version]
- Giton, F.; Trabado, S.; Maione, L.; Sarfati, J.; Le Bouc, Y.; Brailly-Tabard, S.; Fiet, J.; Young, J. Sex steroids, precursors, and metabolite deficiencies in men with isolated hypogonadotropic hypogonadism and panhypopituitarism: A GCMS-based comparative study. J. Clin. Endocrinol. Metab. 2015, 100, E292–E296. [Google Scholar] [CrossRef] [Green Version]
Gene | NCBI Refseq | Forward Primer | Reverse Primer |
---|---|---|---|
Cyp2b9 | NM_010000 | CTTTGCTGGAACTGAGACCACA | GATCTGAAAATCTCTGAATCTCATGG |
Cyp2b10 | NM_009999 | TTTCTGCCCTTCTCAACAGGAA | ATGGACGTGAAGAAAAGGAACAAC |
Cyp3a11 | NM_007818 | TCACACACACAGTTGTAGGCAGAA | GTTTACGAGTCCCATATCGGTAGAG |
Cyp2c29 | NM_007815 | GCTCAAAGCCTACTGTCA | CATGAGTGTAAATCGTCTCA |
Ugt2b1 | NM_152811 | GTTTTCTCTGGGATCAATGGTTAAA | TTTCTTACCATCAAATCTCCACAGAAC |
Ugt2b5 | NM_009467 | CCATTGCAAACCTGCTAAACC | ACTAACCATTGACCCAAGAGAAAAGA |
Gsta2 | NM_008182 | CACACTCCTCTGGAGCTGGAT | TCACTACTTCAATGCCCGGG |
Sult1a1 | NM_133670 | GGATCATTAAGACACATCTGCCC | CACATCCTTTGCATTTCGGG |
Abcc2 | NM_013806 | CCTGAATCTCACGCGCCTA | CAGATGGAGTCCAGACATGCTG |
Abcc3 | NM_029600 | TCTTGCTGATACCACTCAATGGA | GCGGGAGTCCTTGAACTTCAT |
Abcb1a | NM_011076 | CATGACAGATAGCTTTGCAAGTGTAG | GGCAAACATGGCTCTTTTATCG |
Slco1a4 | NM_030687 | CACGTCTGTAGTTGGGCTTATCAAT | CCGAAGTAACTCACGAATATAATCAACA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dopavogui, L.; Cadoret, F.; Loison, G.; El Fouikar, S.; Frenois, F.-X.; Giton, F.; Ellero-Simatos, S.; Lasserre, F.; Polizzi, A.; Rives, C.; et al. Pre- and Postnatal Dietary Exposure to a Pesticide Cocktail Disrupts Ovarian Functions in 8-Week-Old Female Mice. Int. J. Mol. Sci. 2022, 23, 7525. https://doi.org/10.3390/ijms23147525
Dopavogui L, Cadoret F, Loison G, El Fouikar S, Frenois F-X, Giton F, Ellero-Simatos S, Lasserre F, Polizzi A, Rives C, et al. Pre- and Postnatal Dietary Exposure to a Pesticide Cocktail Disrupts Ovarian Functions in 8-Week-Old Female Mice. International Journal of Molecular Sciences. 2022; 23(14):7525. https://doi.org/10.3390/ijms23147525
Chicago/Turabian StyleDopavogui, Léonie, Florence Cadoret, Gaspard Loison, Sara El Fouikar, François-Xavier Frenois, Frank Giton, Sandrine Ellero-Simatos, Frédéric Lasserre, Arnaud Polizzi, Clémence Rives, and et al. 2022. "Pre- and Postnatal Dietary Exposure to a Pesticide Cocktail Disrupts Ovarian Functions in 8-Week-Old Female Mice" International Journal of Molecular Sciences 23, no. 14: 7525. https://doi.org/10.3390/ijms23147525
APA StyleDopavogui, L., Cadoret, F., Loison, G., El Fouikar, S., Frenois, F. -X., Giton, F., Ellero-Simatos, S., Lasserre, F., Polizzi, A., Rives, C., Loiseau, N., Léandri, R. D., Gatimel, N., & Gamet-Payrastre, L. (2022). Pre- and Postnatal Dietary Exposure to a Pesticide Cocktail Disrupts Ovarian Functions in 8-Week-Old Female Mice. International Journal of Molecular Sciences, 23(14), 7525. https://doi.org/10.3390/ijms23147525