Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability
Abstract
:1. Introduction
2. Infection by Parasites Belonging to the Trypanosomatidae Family, Challenges for the Detection in Field Conditions
3. Isothermal Amplification Methodologies: Application to Pathogenic Trypanosomatids
4. Field Detection of Infections Due to Trypanosomatidae: Challenges Overcome by Isothermal DNA Amplification
- -
- The first criteria correspond to the biological sample origin: highly invasive (blood, CSF, bone marrow, etc.) (3), moderately invasive (drop blood, punch, etc.) (2), minimally invasive (urine, saliva, swab, etc.) (1).
- -
- The second to the processing of samples before isothermal amplification: DNA extraction by commercial kit, phenol-chloroform, etc. (3), simple extraction protocol (chelex and simplified published protocols) (2), no extraction (crude), and minimal lysis procedure (boiling, detergent, etc.) (1).
- -
- The third is the Isothermal amplification methodology: three enzymes (3), two enzymes (2), one enzyme (1). An additional handicap (one point is given to methodologies needing more than two primers).
- -
- The mode of detection: complex (fluorimetry, oligo chromatography, Agarose gel, microfluidic, etc.) (3), low complexity (UV light, turbidimetry, etc.) (2), simple (naked eyes, with dye or not, other) (1).
4.1. Supply Chain and Storage
4.2. Sampling and Samples Processing
4.3. Isothermal Amplification
4.4. Result Acquisition and Interpretation
4.5. Specificity and Sensitivity
4.6. Amplimer Cross-Contamination
4.7. Detection of Trypanosomatids Parasites in their Arthropod Vector
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stuart, K.; Brun, R.; Croft, S.; Fairlamb, A.; Gürtler, R.E.; McKerrow, J.; Reed, S.; Tarleton, R. Kinetoplastids: Related protozoan pathogens, different diseases. J. Clin. Investig. 2008, 118, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Utzinger, J.; Saric, J.; Li, J.V.; Burckhardt, J.; Dirnhofer, S.; Nicholson, J.K.; Singer, B.H.; Brun, R.; Holmes, E. Global metabolic responses of mice to Trypanosoma brucei brucei infection. Proc. Natl. Acad. Sci. USA 2008, 105, 6127–6132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, R.; Blum, J.; Chappuis, F.; Burri, C. Human African trypanosomiasis. Lancet 2010, 375, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl. Trop. Dis. 2016, 10, e0004349. [Google Scholar] [CrossRef] [PubMed]
- Sereno, D. Leishmania (Mundinia) spp.: From description to emergence as new human and animal Leishmania pathogens. New Microbes New Infect. 2019, 30, 100540. [Google Scholar] [CrossRef]
- Truc, P.; Büscher, P.; Cuny, G.; Gonzatti, M.I.; Jannin, J.; Joshi, P.; Juyal, P.; Lun, Z.-R.; Mattioli, R.; Pays, E.; et al. Atypical human infections by animal trypanosomes. PLoS Negl. Trop. Dis. 2013, 7, e2256. [Google Scholar] [CrossRef] [Green Version]
- Ebhodaghe, F.; Ohiolei, J.A.; Isaac, C. A systematic review and meta-analysis of small ruminant and porcine trypanosomiasis prevalence in sub-Saharan Africa (1986 to 2018). Acta Trop. 2018, 188, 118–131. [Google Scholar] [CrossRef]
- Ebhodaghe, F.; Isaac, C.; Ohiolei, J.A. A meta-analysis of the prevalence of bovine trypanosomiasis in some African countries from 2000 to 2018. Prev. Vet. Med. 2018, 160, 35–46. [Google Scholar] [CrossRef]
- Desquesnes, M.; Gonzatti, M.; Sazmand, A.; Thévenon, S.; Bossard, G.; Boulangé, A.; Gimonneau, G.; Truc, P.; Herder, S.; Ravel, S.; et al. A review on the diagnosis of animal trypanosomoses. Parasit Vectors 2022, 15, 64. [Google Scholar] [CrossRef]
- Swallow, B.M. Impacts of Trypanosomiasis on African Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2000; p. 52. [Google Scholar]
- Aronson, N.; Herwaldt, B.L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E.M.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin. Infect. Dis. 2016, 63, e202–e264. [Google Scholar] [CrossRef]
- Pereiro, A.C. Guidelines for the diagnosis and treatment of Chagas disease. Lancet 2019, 393, 1486–1487. [Google Scholar] [CrossRef]
- Magnus, E.; Vervoort, T.; Van Meirvenne, N. A card-agglutination test with stained trypanosomes (C.A.T.T.) for the serological diagnosis of T. B. gambiense trypanosomiasis. Ann. Soc. Belg. Med. Trop. 1978, 58, 169–176. [Google Scholar] [PubMed]
- Lumsden, W.H.; Kimber, C.D.; Strange, M. Trypanosoma brucei: Detection of low parasitaemias in mice by a miniature anion-exchanger/centrifugation technique. Trans. R Soc. Trop. Med. Hyg. 1977, 71, 421–424. [Google Scholar] [CrossRef]
- WHO. Target Product Profile for a Gambiense Human African trypanosomiasis Test to Identify Individuals to Receive Widened Treatment; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Alonso-Padilla, J.; Abril, M.; Alarcón de Noya, B.; Almeida, I.C.; Angheben, A.; Araujo Jorge, T.; Chatelain, E.; Esteva, M.; Gascón, J.; Grijalva, M.J.; et al. Target product profile for a test for the early assessment of treatment efficacy in Chagas disease patients: An expert consensus. PLoS Negl. Trop. Dis. 2020, 14, e0008035. [Google Scholar] [CrossRef]
- Cruz, I.; Albertini, A.; Barbeitas, M.; Arana, B.; Picado, A.; Ruiz-Postigo, J.A.; Ndung’u, J.M. Target Product Profile for a point-of-care diagnostic test for dermal leishmaniases. Parasite Epidemiol. Control 2019, 5, e00103. [Google Scholar] [CrossRef]
- Kwoh, D.Y.; Davis, G.R.; Whitfield, K.M.; Chappelle, H.L.; DiMichele, L.J.; Gingeras, T.R. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc. Natl. Acad. Sci. USA 1989, 86, 1173–1177. [Google Scholar] [CrossRef] [Green Version]
- Guatelli, J.C.; Whitfield, K.M.; Kwoh, D.Y.; Barringer, K.J.; Richman, D.D.; Gingeras, T.R. Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc. Natl. Acad. Sci. USA 1990, 87, 1874–1878. [Google Scholar] [CrossRef] [Green Version]
- Compton, J. Nucleic acid sequence-based amplification. Nature 1991, 350, 91–92. [Google Scholar] [CrossRef]
- Walker, G.T.; Fraiser, M.S.; Schram, J.L.; Little, M.C.; Nadeau, J.G.; Malinowski, D.P. Strand displacement amplification—An isothermal, in vitro DNA amplification technique. Nucleic. Acids. Res. 1992, 20, 1691–1696. [Google Scholar] [CrossRef] [Green Version]
- Lizardi, P.M.; Huang, X.; Zhu, Z.; Bray-Ward, P.; Thomas, D.C.; Ward, D.C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet. 1998, 19, 225–232. [Google Scholar] [CrossRef]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, F.B.; Hosono, S.; Fang, L.; Wu, X.; Faruqi, A.F.; Bray-Ward, P.; Sun, Z.; Zong, Q.; Du, Y.; Du, J.; et al. Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA 2002, 99, 5261–5266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Ness, J.; Van Ness, L.K.; Galas, D.J. Isothermal reactions for the amplification of oligonucleotides. Proc. Natl. Acad. Sci. USA 2003, 100, 4504–4509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, M.; Xu, Y.; Kong, H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004, 5, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Kurn, N.; Chen, P.; Heath, J.D.; Kopf-Sill, A.; Stephens, K.M.; Wang, S. Novel isothermal, linear nucleic acid amplification systems for highly multiplexed applications. Clin. Chem. 2005, 51, 1973–1981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. Trends Analyt. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Li, X.; Hu, L.; You, Q.; Li, J.; Wu, J.; Xu, P.; Zhong, H.; Luo, Y.; Mei, J.; et al. Cross-priming amplification for rapid detection of Mycobacterium tuberculosis in sputum specimens. J. Clin. Microbiol. 2009, 47, 845–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaerli, Y.; Stein, V.; Spiering, M.M.; Benkovic, S.J.; Abell, C.; Hollfelder, F. Isothermal DNA amplification using the T4 replisome: Circular nicking endonuclease-dependent amplification and primase-based whole-genome amplification. Nucleic. Acids. Res. 2010, 38, e201. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Dong, D.; Yang, Z.; Zou, D.; Chen, Z.; Yuan, J.; Huang, L. Polymerase Spiral Reaction (PSR): A novel isothermal nucleic acid amplification method. Sci. Rep. 2015, 5, 12723. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometric 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sereno, D.; Akhoundi, M.; Sayehmri, K.; Mirzaei, A.; Holzmuller, P.; Lejon, V.; Waleckx, E. Noninvasive Biological Samples to Detect and Diagnose Infections due to Trypanosomatidae Parasites: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2020, 21, 1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva Nunes Bezerra, G.; Barbosa Júnior, W.L.; Virgínia Batista Vieira, A.; Xavier, A.T.; Sebastião Da Costa Lima Júnior, M.; Maria Xavier, E.; Silva, E.D.D.; Cintra Leal, N.; Medeiros, Z.M. Loop-mediated isothermal amplification methods for diagnosis of visceral leishmaniasis (kala-azar)—A systematic review. Expert Rev. Mol. Diagn. 2020, 20, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Mesa, L.E.; Manrique, R.; Muskus, C.; Robledo, S.M. Test accuracy of polymerase chain reaction methods against conventional diagnostic techniques for Cutaneous Leishmaniasis (CL) in patients with clinical or epidemiological suspicion of CL: Systematic review and meta-analysis. PLoS Negl. Trop. Dis. 2020, 14, e0007981. [Google Scholar] [CrossRef] [Green Version]
- Mugasa, C.M.; Laurent, T.; Schoone, G.J.; Basiye, F.L.; Saad, A.A.; El Safi, S.; Kager, P.A.; Schallig, H.D. Simplified molecular detection of Leishmania parasites in various clinical samples from patients with leishmaniasis. Parasites Vectors 2010, 3, 13. [Google Scholar] [CrossRef] [Green Version]
- Basiye, F.L.; Mbuchi, M.; Magiri, C.; Kirigi, G.; Deborggraeve, S.; Schoone, G.J.; Saad, A.A.; El-Safi, S.; Matovu, E.; Wasunna, M.K. Sensitivity and specificity of the Leishmania OligoC-TesT and NASBA-oligochromatography for diagnosis of visceral leishmaniasis in Kenya. Trop. Med. Int. Health 2010, 15, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, I.; Kirstein, O.D.; Hailu, A.; Warburg, A. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples. Acta Trop. 2016, 162, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Hagos, D.G.; Kiros, Y.K.; Abdulkader, M.; Arefaine, Z.G.; Nigus, E.; Schallig, H.; Wolday, D. Utility of the Loop-Mediated Isothermal Amplification Assay for the Diagnosis of Visceral Leishmaniasis from Blood Samples in Ethiopia. Am. J. Trop. Med. Hyg. 2021, 105, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Hossain, F.; Picado, A.; Owen, S.I.; Ghosh, P.; Chowdhury, R.; Maruf, S.; Khan, M.A.A.; Rashid, M.U.; Nath, R.; Baker, J.; et al. Evaluation of Loopamp™ Leishmania Detection Kit and Leishmania Antigen ELISA for Post-Elimination Detection and Management of Visceral Leishmaniasis in Bangladesh. Front. Cell Infect. Microbiol. 2021, 11, 670759. [Google Scholar] [CrossRef] [PubMed]
- Ghasemian, M.; Gharavi, M.J.; Akhlaghi, L.; Mohebali, M.; Meamar, A.R.; Aryan, E.; Oormazdi, H. Development and Assessment of Loop-Mediated Isothermal Amplification (LAMP) Assay for the Diagnosis of Human Visceral Leishmaniasis in Iran. Iran J. Parasitol. 2014, 9, 50–59. [Google Scholar]
- Sukphattanaudomchoke, C.; Siripattanapipong, S.; Thita, T.; Leelayoova, S.; Piyaraj, P.; Mungthin, M.; Ruang-Areerate, T. Simplified closed tube loop mediated isothermal amplification (LAMP) assay for visual diagnosis of Leishmania infection. Acta Trop. 2020, 212, 105651. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Meneses, A.V.; Cruz, I.; Chicharro, C.; Sánchez, C.; Biéler, S.; Broger, T.; Moreno, J.; Carrillo, E. Evaluation of fluorimetry and direct visualization to interpret results of a loop-mediated isothermal amplification kit to detect Leishmania DNA. Parasites Vectors 2018, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- de Avelar, D.M.; Carvalho, D.M.; Rabello, A. Development and Clinical Evaluation of Loop-Mediated Isothermal Amplification (LAMP) Assay for the Diagnosis of Human Visceral Leishmaniasis in Brazil. Biomed. Res. Int. 2019, 2019, 8240784. [Google Scholar] [CrossRef]
- Mukhtar, M.; Ali, S.S.; Boshara, S.A.; Albertini, A.; Monnerat, S.; Bessell, P.; Mori, Y.; Kubota, Y.; Ndung’u, J.M.; Cruz, I. Sensitive and less invasive confirmatory diagnosis of visceral leishmaniasis in Sudan using loop-mediated isothermal amplification (LAMP). PLoS Negl. Trop. Dis. 2018, 12, e0006264. [Google Scholar] [CrossRef] [Green Version]
- Dixit, K.K.; Verma, S.; Singh, O.P.; Singh, D.; Singh, A.P.; Gupta, R.; Negi, N.S.; Das, P.; Sundar, S.; Singh, R.; et al. Validation of SYBR green I based closed tube loop mediated isothermal amplification (LAMP) assay and simplified direct-blood-lysis (DBL)-LAMP assay for diagnosis of visceral leishmaniasis (VL). PLoS Negl. Trop. Dis. 2018, 12, e0006922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, H.; Itoh, M.; Islam, M.Z.; Razzaque, A.; Ekram, A.R.; Hashighuchi, Y.; Noiri, E.; Kimura, E. Sensitive, specific, and rapid detection of Leishmania donovani DNA by loop-mediated isothermal amplification. Am. J. Trop. Med. Hyg. 2009, 81, 578–582. [Google Scholar] [CrossRef]
- Khan, M.A.A.; Faisal, K.; Chowdhury, R.; Ghosh, P.; Hossain, F.; Weidmann, M.; Mondal, D.; Abd El Wahed, A. Development of Quantitative Rapid Isothermal Amplification Assay for Leishmania donovani. Diagnostics 2021, 11, 1963. [Google Scholar] [CrossRef]
- Mondal, D.; Ghosh, P.; Khan, M.A.; Hossain, F.; Böhlken-Fascher, S.; Matlashewski, G.; Kroeger, A.; Olliaro, P.; Abd El Wahed, A. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasit Vectors 2016, 9, 281. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.G.M.; Bhaskar, K.R.H.; Salam, M.A.; Akther, T.; Pluschke, G.; Mondal, D. Diagnostic accuracy of loop-mediated isothermal amplification (LAMP) for detection of Leishmania DNA in buffy coat from visceral leishmaniasis patients. Parasites Vectors 2012, 5, 280. [Google Scholar] [CrossRef] [Green Version]
- Saad, A.A.; Ahmed, N.G.; Osman, O.S.; Al-Basheer, A.A.; Hamad, A.; Deborggraeve, S.; Büscher, P.; Schoone, G.J.; Schallig, H.D.; Laurent, T.; et al. Diagnostic accuracy of the Leishmania OligoC-TesT and NASBA-Oligochromatography for diagnosis of leishmaniasis in Sudan. PLoS Negl. Trop. Dis. 2010, 4, e776. [Google Scholar] [CrossRef]
- Verma, S.; Singh, R.; Sharma, V.; Bumb, R.A.; Negi, N.S.; Ramesh, V.; Salotra, P. Development of a rapid loop-mediated isothermal amplification assay for diagnosis and assessment of cure of Leishmania infection. BMC Infect. Dis. 2017, 17, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, R.; Ghosh, P.; Khan, M.A.A.; Hossain, F.; Faisal, K.; Nath, R.; Baker, J.; Wahed, A.A.E.; Maruf, S.; Nath, P.; et al. Evaluation of Rapid Extraction Methods Coupled with a Recombinase Polymerase Amplification Assay for Point-of-Need Diagnosis of Post-Kala-Azar Dermal Leishmaniasis. Trop. Med. Infect. Dis. 2020, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Dixit, K.K.; Sharma, V.; Ramesh, V.; Singh, R.; Salotra, P. Rapid Multiplex Loop-Mediated Isothermal Amplification (m-LAMP) Assay for Differential Diagnosis of Leprosy and Post-Kala-Azar Dermal Leishmaniasis. Am. J. Trop. Med. Hyg. 2021, 104, 2085–2090. [Google Scholar] [CrossRef] [PubMed]
- Puri, M.; Brar, H.K.; Mittal, N.; Madan, E.; Srinivasan, R.; Rawat, K.; Moulik, S.; Chatterjee, M.; Gorthi, S.S.; Muthuswami, R.; et al. Rapid diagnosis of Leishmania infection with a portable loopmediated isothermal amplification device. J. Biosci. 2021, 46, 92. [Google Scholar] [CrossRef]
- Ruang-Areerate, T.; Sukphattanaudomchoke, C.; Thita, T.; Leelayoova, S.; Piyaraj, P.; Mungthin, M.; Suwannin, P.; Polpanich, D.; Tangchaikeeree, T.; Jangpatarapongsa, K.; et al. Development of loop-mediated isothermal amplification (LAMP) assay using SYBR safe and gold-nanoparticle probe for detection of Leishmania in HIV patients. Sci. Rep. 2021, 11, 12152. [Google Scholar] [CrossRef] [PubMed]
- Adams, E.R.; Schoone, G.J.; Ageed, A.F.; Safi, S.E.; Schallig, H.D. Development of a reverse transcriptase loop-mediated isothermal amplification (LAMP) assay for the sensitive detection of Leishmania parasites in clinical samples. Am. J. Trop. Med. Hyg. 2010, 82, 591–596. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Meneses, A.V.; Chicharro, C.; Sánchez, C.; García, E.; Ortega, S.; Ndung’u, J.M.; Moreno, J.; Cruz, I.; Carrillo, E. Loop-Mediated Isothermal Amplification Allows Rapid, Simple and Accurate Molecular Diagnosis of Human Cutaneous and Visceral Leishmaniasis Caused by Leishmania infantum When Compared to PCR. Microorganisms 2021, 9, 610. [Google Scholar] [CrossRef]
- Nzelu, C.O.; Cáceres, A.G.; Guerrero-Quincho, S.; Tineo-Villafuerte, E.; Rodriquez-Delfin, L.; Mimori, T.; Uezato, H.; Katakura, K.; Gomez, E.A.; Guevara, A.G.; et al. A rapid molecular diagnosis of cutaneous leishmaniasis by colorimetric malachite green-loop-mediated isothermal amplification (LAMP) combined with an FTA card as a direct sampling tool. Acta Trop. 2016, 153, 116–119. [Google Scholar] [CrossRef]
- van der Meide, W.F.; Schoone, G.J.; Faber, W.R.; Zeegelaar, J.E.; de Vries, H.J.; Ozbel, Y.; Lai, A.F.R.F.; Coelho, L.I.; Kassi, M.; Schallig, H.D. Quantitative nucleic acid sequence-based assay as a new molecular tool for detection and quantification of Leishmania parasites in skin biopsy samples. J. Clin. Microbiol. 2005, 43, 5560–5566. [Google Scholar] [CrossRef] [Green Version]
- van der Meide, W.F.; Peekel, I.; van Thiel, P.P.; Schallig, H.D.; de Vries, H.J.; Zeegelaar, J.E.; Faber, W.R. Treatment assessment by monitoring parasite load in skin biopsies from patients with cutaneous leishmaniasis, using quantitative nucleic acid sequence-based amplification. Clin. Exp. Dermatol. 2008, 33, 394–399. [Google Scholar] [CrossRef]
- Chaouch, M.; Aoun, K.; Ben Othman, S.; Ben Abid, M.; Ben Sghaier, I.; Bouratbine, A.; Ben Abderrazak, S. Development and Assessment of Leishmania major and Leishmania tropica Specific Loop-Mediated Isothermal Amplification Assays for the Diagnosis of Cutaneous Leishmaniasis in Tunisia. Am. J. Trop. Med. Hyg. 2019, 101, 101–107. [Google Scholar] [CrossRef]
- Mesa, L.E.; Manrique, R.; Robledo, S.M.; Tabares, J.; Pineda, T.; Muskus, C. The performance of the recombinase polymerase amplification test for detecting Leishmania deoxyribonucleic acid from skin lesions of patients with clinical or epidemiological suspicion of cutaneous leishmaniasis. Trans. R Soc. Trop. Med. Hyg. 2021, 115, 1427–1433. [Google Scholar] [CrossRef]
- Travi, B.L.; Delos Santos, M.B.; Shelite, T.R.; Santos, R.P.; Rosales, L.A.; Castellanos-Gonzalez, A.; Saldarriaga, O.; Melby, P.C. Diagnostic Efficacy of Recombinase-Polymerase-Amplification Coupled with Lateral Flow Strip Reading in Patients with Cutaneous Leishmaniasis from the Amazonas Rainforest of Perú. Vector. Borne Zoonotic Dis. 2021, 21, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Gunaratna, G.; Manamperi, A.; Böhlken-Fascher, S.; Wickremasinge, R.; Gunawardena, K.; Yapa, B.; Pathirana, N.; Pathirana, H.; de Silva, N.; Sooriyaarachchi, M.; et al. Evaluation of rapid extraction and isothermal amplification techniques for the detection of Leishmania donovani DNA from skin lesions of suspected cases at the point of need in Sri Lanka. Parasites Vectors 2018, 11, 665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cossio, A.; Jojoa, J.; Castro, M.D.M.; Castillo, R.M.; Osorio, L.; Shelite, T.R.; Gore Saravia, N.; Melby, P.C.; Travi, B.L. Diagnostic performance of a Recombinant Polymerase Amplification Test-Lateral Flow (RPA-LF) for cutaneous leishmaniasis in an endemic setting of Colombia. PLoS Negl. Trop. Dis. 2021, 15, e0009291. [Google Scholar] [CrossRef] [PubMed]
- León, C.M.; Muñoz, M.; Tabares, J.H.; Hernandez, C.; Florez, C.; Ayala, M.S.; Ramírez, J.D. Analytical Performance of a Loop-Mediated Isothermal Amplification Assay for Leishmania DNA Detection in Sandflies and Direct Smears of Patients with Cutaneous Leishmaniasis. Am. J. Trop. Med. Hyg. 2018, 98, 1325–1331. [Google Scholar] [CrossRef] [Green Version]
- Nzelu, C.O.; Gomez, E.A.; Cáceres, A.G.; Sakurai, T.; Martini-Robles, L.; Uezato, H.; Mimori, T.; Katakura, K.; Hashiguchi, Y.; Kato, H. Development of a loop-mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection. Acta Trop. 2014, 132, 1–6. [Google Scholar] [CrossRef]
- Ghodrati, M.; Spotin, A.; Hazratian, T.; Mahami-Oskouei, M.; Bordbar, A.; Ebrahimi, S.; Fallahi, S.; Parvizi, P. Diagnostic Accuracy of Loop-mediated Isothermal Amplification Assay as a Field Molecular Tool for Rapid Mass Screening of Old World Leishmania Infections in Sand Flies and In Vitro Culture. Iran J. Parasitol. 2017, 12, 506–515. [Google Scholar]
- Tiwananthagorn, S.; Kato, H.; Yeewa, R.; Muengpan, A.; Polseela, R.; Leelayoova, S. Comparison of LAMP and PCR for molecular mass screening of sand flies for Leishmania martiniquensis infection. Mem. Inst. Oswaldo Cruz 2017, 112, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.A.; Faisal, K.; Chowdhury, R.; Nath, R.; Ghosh, P.; Ghosh, D.; Hossain, F.; Abd El Wahed, A.; Mondal, D. Evaluation of molecular assays to detect Leishmania donovani in Phlebotomus argentipes fed on post-kala-azar dermal leishmaniasis patients. Parasit Vectors 2021, 14, 465. [Google Scholar] [CrossRef]
- Castellanos-Gonzalez, A.; Saldarriaga, O.A.; Tartaglino, L.; Gacek, R.; Temple, E.; Sparks, H.; Melby, P.C.; Travi, B.L. A Novel Molecular Test to Diagnose Canine Visceral Leishmaniasis at the Point of Care. Am. J. Trop. Med. Hyg. 2015, 93, 970–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.H.; Ding, D.; Wang, J.Y.; Steverding, D.; Wang, X.; Yang, Y.T.; Shi, F. Development of a LAMP assay for detection of Leishmania infantum infection in dogs using conjunctival swab samples. Parasit Vectors 2015, 8, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaouch, M.; Mhadhbi, M.; Adams, E.R.; Schoone, G.J.; Limam, S.; Gharbi, Z.; Darghouth, M.A.; Guizani, I.; BenAbderrazak, S. Development and evaluation of a loop-mediated isothermal amplification assay for rapid detection of Leishmania infantum in canine leishmaniasis based on cysteine protease B genes. Vet. Parasitol. 2013, 198, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Flores-Chavez, M.D.; Abras, A.; Ballart, C.; Ibáñez Perez, I.; Perez-Gordillo, P.; Gállego, M.; Muñoz, C.; Moure, Z.; Sulleiro Igual, E.; Nieto, J.; et al. Evaluation of the Performance of the Loopamp Trypanosoma cruzi Detection Kit for the Diagnosis of Chagas Disease in an Area Where It Is Not Endemic, Spain. J. Clin. Microbiol. 2021, 59, e01860-20. [Google Scholar] [CrossRef]
- Besuschio, S.A.; Picado, A.; Muñoz-Calderón, A.; Wehrendt, D.P.; Fernández, M.; Benatar, A.; Diaz-Bello, Z.; Irurtia, C.; Cruz, I.; Ndung’u, J.M.; et al. Trypanosoma cruzi loop-mediated isothermal amplification (Trypanosoma cruzi Loopamp) kit for detection of congenital, acute and Chagas disease reactivation. PLoS Negl. Trop. Dis. 2020, 14, e0008402. [Google Scholar] [CrossRef]
- Thekisoe, O.M.; Rodriguez, C.V.; Rivas, F.; Coronel-Servian, A.M.; Fukumoto, S.; Sugimoto, C.; Kawazu, S.; Inoue, N. Detection of Trypanosoma cruzi and T. rangeli infections from Rhodnius pallescens bugs by loop-mediated isothermal amplification (LAMP). Am. J. Trop. Med. Hyg. 2010, 82, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Mugasa, C.M.; Schoone, G.J.; Ekangu, R.A.; Lubega, G.W.; Kager, P.A.; Schallig, H.D. Detection of Trypanosoma brucei parasites in blood samples using real-time nucleic acid sequence-based amplification. Diagn Microbiol. Infect Dis. 2008, 61, 440–445. [Google Scholar] [CrossRef]
- Mugasa, C.M.; Laurent, T.; Schoone, G.J.; Kager, P.A.; Lubega, G.W.; Schallig, H.D.F.H. Nucleic acid sequence-based amplification with oligochromatography for detection of Trypanosoma brucei in clinical samples. J. Clin. Microbiol. 2009, 47, 630–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashida, K.; Nambala, P.; Reet, N.V.; Büscher, P.; Kawai, N.; Mutengo, M.M.; Musaya, J.; Namangala, B.; Sugimoto, C.; Yamagishi, J. Development of a bio-inkjet printed LAMP test kit for detecting human African trypanosomiasis. PLoS Negl. Trop. Dis. 2020, 14, e0008753. [Google Scholar] [CrossRef]
- Njiru, Z.K.; Mikosza, A.S.; Matovu, E.; Enyaru, J.C.; Ouma, J.O.; Kibona, S.N.; Thompson, R.C.; Ndung’u, J.M. African trypanosomiasis: Sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Int. J. Parasitol. 2008, 38, 589–599. [Google Scholar] [CrossRef]
- Namangala, B.; Hachaambwa, L.; Kajino, K.; Mweene, A.S.; Hayashida, K.; Simuunza, M.; Simukoko, H.; Choongo, K.; Chansa, P.; Lakhi, S.; et al. The use of Loop-mediated Isothermal Amplification (LAMP) to detect the re-emerging Human African Trypanosomiasis (HAT) in the Luangwa and Zambezi valleys. Parasit Vectors 2012, 5, 282. [Google Scholar] [CrossRef] [Green Version]
- Matovu, E.; Kuepfer, I.; Boobo, A.; Kibona, S.; Burri, C. Comparative detection of trypanosomal DNA by loop-mediated isothermal amplification and PCR from flinders technology associates cards spotted with patient blood. J. Clin. Microbiol. 2010, 48, 2087–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njiru, Z.K.; Traub, R.; Ouma, J.O.; Enyaru, J.C.; Matovu, E. Detection of Group 1 Trypanosoma brucei gambiense by loop-mediated isothermal amplification. J. Clin. Microbiol. 2011, 49, 1530–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malele, I.I.; Ouma, J.O.; Enyaru, J.C.; Matovu, E.; Alibu, V.; Auma, J.E.; Onyoyo, S.G.; Bateta, R.; Changasi, R.E.; Mukiria, P.W.; et al. Comparative diagnostic and analytical performance of PCR and LAMP-based trypanosome detection methods estimated using pooled whole tsetse flies and midguts. Vet. Parasitol. 2013, 197, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Nambala, P.; Musaya, J.; Hayashida, K.; Maganga, E.; Senga, E.; Kamoto, K.; Chisi, J.; Sugimoto, C. Comparative evaluation of dry and liquid RIME LAMP in detecting trypanosomes in dead tsetse flies. Onderstepoort J. Vet. Res. 2018, 85, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, L.J.; Lingley, J.K.; Haines, L.R.; Ndung’u, J.M.; Torr, S.J.; Adams, E.R. Illuminating the Prevalence of Trypanosoma brucei s.l. in Glossina Using LAMP as a Tool for Xenomonitoring. PLoS Negl. Trop. Dis. 2016, 10, e0004441. [Google Scholar] [CrossRef]
- Cadioli, F.A.; Fidelis Junior, O.L.; Sampaio, P.H.; dos Santos, G.N.; André, M.R.; Castilho, K.J.; Machado, R.Z. Detection of Trypanosoma vivax using PCR and LAMP during aparasitemic periods. Vet. Parasitol. 2015, 214, 174–177. [Google Scholar] [CrossRef]
- Njiru, Z.K.; Ouma, J.O.; Enyaru, J.C.; Dargantes, A.P. Loop-mediated Isothermal Amplification (LAMP) test for detection of Trypanosoma evansi strain B. Exp. Parasitol. 2010, 125, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Tong, Q.; Chen, R.; Kong, Q.; Goossens, J.; Radwanska, M.; Lou, D.; Ding, J.; Zheng, B.; Fu, Y.; Wang, T.; et al. DNA detection of Trypanosoma evansi: Diagnostic validity of a new assay based on loop-mediated isothermal amplification (LAMP). Vet. Parasitol. 2018, 250, 1–6. [Google Scholar] [CrossRef]
- Kumar, B.; Maharana, B.R.; Brahmbhatt, N.N.; Thakre, B.J.; Parmar, V.L. Development of a loop-mediated isothermal amplification assay based on RoTat1.2 gene for detection of Trypanosoma evansi in domesticated animals. Parasitol. Res. 2021, 120, 1873–1882. [Google Scholar] [CrossRef]
- Thekisoe, O.M.; Inoue, N.; Kuboki, N.; Tuntasuvan, D.; Bunnoy, W.; Borisutsuwan, S.; Igarashi, I.; Sugimoto, C. Evaluation of loop-mediated isothermal amplification (LAMP), PCR and parasitological tests for detection of Trypanosoma evansi in experimentally infected pigs. Vet. Parasitol. 2005, 130, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Salim, B.; Hayashida, K.; Mossaad, E.; Nakao, R.; Yamagishi, J.; Sugimoto, C. Development and validation of direct dry loop mediated isothermal amplification for diagnosis of Trypanosoma evansi. Vet. Parasitol. 2018, 260, 53–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, D.; Gupta, S.; Sethi, K.; Kumar, S.; Kumar, R. Polymerase Spiral Reaction (PSR) as a novel rapid colorimetric isothermal point of care assay for detection of Trypanosoma evansi genomic DNA. Vet. Parasitol. 2022, 302, 109644. [Google Scholar] [CrossRef] [PubMed]
- Gummery, L.; Jallow, S.; Raftery, A.G.; Bennet, E.; Rodgers, J.; Sutton, D.G.M. Comparison of loop-mediated isothermal amplification (LAMP) and PCR for the diagnosis of infection with Trypanosoma brucei ssp. in equids in The Gambia. PLoS ONE 2020, 15, e0237187. [Google Scholar] [CrossRef]
- Namangala, B.; Oparaocha, E.; Kajino, K.; Hayashida, K.; Moonga, L.; Inoue, N.; Suzuki, Y.; Sugimoto, C. Preliminary investigation of trypanosomosis in exotic dog breeds from Zambia’s Luangwa and Zambezi valleys using LAMP. Am. J. Trop. Med. Hyg. 2013, 89, 116–118. [Google Scholar] [CrossRef] [Green Version]
- Lisulo, M.; Sugimoto, C.; Kajino, K.; Hayashida, K.; Mudenda, M.; Moonga, L.; Ndebe, J.; Nzala, S.; Namangala, B. Determination of the prevalence of African trypanosome species in indigenous dogs of Mambwe district, eastern Zambia, by loop-mediated isothermal amplification. Parasit Vectors 2014, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Laohasinnarong, D.; Thekisoe, O.M.; Malele, I.; Namangala, B.; Ishii, A.; Goto, Y.; Kawazu, S.; Sugimoto, C.; Inoue, N. Prevalence of Trypanosoma sp. in cattle from Tanzania estimated by conventional PCR and loop-mediated isothermal amplification (LAMP). Parasitol. Res. 2011, 109, 1735–1739. [Google Scholar] [CrossRef]
- Njiru, Z.K.; Ouma, J.O.; Bateta, R.; Njeru, S.E.; Ndungu, K.; Gitonga, P.K.; Guya, S.; Traub, R. Loop-mediated isothermal amplification test for Trypanosoma vivax based on satellite repeat DNA. Vet. Parasitol. 2011, 180, 358–362. [Google Scholar] [CrossRef]
- Ghosh, P.; Sharma, A.; Bhattarai, N.R.; Abhishek, K.; Nisansala, T.; Kumar, A.; Böhlken-Fascher, S.; Chowdhury, R.; Khan, M.A.A.; Faisal, K.; et al. A Multi-Country, Single-Blinded, Phase 2 Study to Evaluate a Point-of-Need System for Rapid Detection of Leishmaniasis and Its Implementation in Endemic Settings. Microorganisms 2021, 9, 588. [Google Scholar] [CrossRef]
- Thekisoe, O.M.; Bazie, R.S.; Coronel-Servian, A.M.; Sugimoto, C.; Kawazu, S.; Inoue, N. Stability of Loop-Mediated Isothermal Amplification (LAMP) reagents and its amplification efficiency on crude trypanosome DNA templates. J. Vet. Med. Sci. 2009, 71, 471–475. [Google Scholar] [CrossRef] [Green Version]
- Wehrendt, D.P.; Alonso-Padilla, J.; Liu, B.; Rojas Panozo, L.; Rivera Nina, S.; Pinto, L.; Lozano, D.; Picado, A.; Abril, M.; Pinazo, M.J.; et al. Development and Evaluation of a Three-Dimensional Printer-Based DNA Extraction Method Coupled to Loop Mediated Isothermal Amplification for Point-of-Care Diagnosis of Congenital Chagas Disease in Endemic Regions. J. Mol. Diagn. 2021, 23, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Figueredo, F.; Stolowicz, F.; Vojnov, A.; Coltro, W.K.T.; Larocca, L.; Carrillo, C.; Cortón, E. Towards a versatile and economic Chagas Disease point-of-care testing system, by integrating loop-mediated isothermal amplification and contactless/label-free conductivity detection. PLoS Negl. Trop. Dis. 2021, 15, e0009406. [Google Scholar] [CrossRef] [PubMed]
- Garafutdinov, R.R.; Gilvanov, A.R.; Sakhabutdinova, A.R. The Influence of Reaction Conditions on DNA Multimerization During Isothermal Amplification with Bst exo-DNA Polymerase. Appl. Biochem. Biotechnol. 2020, 190, 758–771. [Google Scholar] [CrossRef]
- Fischer, A.R.; Werner, P.; Goss, K.U. Photodegradation of malachite green and malachite green carbinol under irradiation with different wavelength ranges. Chemosphere 2011, 82, 210–214. [Google Scholar] [CrossRef]
- Xie, S.; Yuan, Y.; Chai, Y.; Yuan, R. Tracing Phosphate Ions Generated during Loop-Mediated Isothermal Amplification for Electrochemical Detection of Nosema bombycis Genomic DNA PTP1. Anal. Chem. 2015, 87, 10268–10274. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Honda, E.; Ogura, A.; Nomoto, A.; Hanaki, K. Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. Biotechniques 2009, 46, 167–172. [Google Scholar] [CrossRef]
- Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc. 2019, 14, 2986–3012. [Google Scholar] [CrossRef]
- Li, S.Y.; Cheng, Q.X.; Wang, J.M.; Li, X.Y.; Zhang, Z.L.; Gao, S.; Cao, R.B.; Zhao, G.P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Dueñas, E.; Nakamoto, J.A.; Cabrera-Sosa, L.; Huaihua, P.; Cruz, M.; Arévalo, J.; Milón, P.; Adaui, V. Novel CRISPR-based detection of Leishmania species. BioRxiv 2022. [Google Scholar] [CrossRef]
- Sima, N.; Dujeancourt-Henry, A.; Perlaza, B.L.; Ungeheuer, M.-N.; Rotureau, B.; Glover, L. SHERLOCK4HAT: A CRISPR-based tool kit for diagnosis of Human African Trypanosomiasis. medRxiv 2022. [Google Scholar] [CrossRef]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Boudreau, D.K.; Bergeron, M.G. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Mol. Cell Probes 2015, 29, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Mok, E.; Wee, E.; Wang, Y.; Trau, M. Comprehensive evaluation of molecular enhancers of the isothermal exponential amplification reaction. Sci. Rep. 2016, 6, 37837. [Google Scholar] [CrossRef] [PubMed]
- Özay, B.; McCalla, S.E. A review of reaction enhancement strategies for isothermal nucleic acid amplification reactions. Sens. Actuators Rep. 2021, 3, 100033. [Google Scholar] [CrossRef]
Name | Year | Den-T (°C) | Nb-Enz | Primers | Nucleic Acid | Ref. |
---|---|---|---|---|---|---|
Transcription-based amplification system (TAS) | 1989 | Yes—Multiple | 2 Reverse Transcriptasease T7 RNA polymerase | 2 | RNA 150 nt | [18] |
Self-sustained sequence replication (3SR) | 1990 | Yes—Multiple from 37 to 61 | 3 AMV RTase RNase H, T7 RNA pol | RNA DNA 200 nt | [19] | |
Nucleic acid sequence-based amplification (NASBA) * | 1991 | Yes—41 | 2–3 AMV RTase RNase H T7 RNA pol | 2 | RNA DNA | [20] |
Strand DNA displacement amplification (SDA) | 1992 | Yes—37 | 2 Rest Enz(s) DNA pol (Kleenow) | 2–4 | RNA DNA | [21] |
Rolling circle amplification (RCA) Ramification Amplification Method (RAM) hyperbranched RCA (hRCA) Cascade RCA (cRCA) Exponential (eRCA) | 1998 | No | 1 DNA pol | RNA CircDNA | [22] | |
Loop-mediated isothermal amplification (LAMP) | 2000 | Yes—60–65 | 1 DNA pol | 4–6 | RNA DNA | [23] |
Multiple displacement amplification (MDA) | 2002 | No—30–37 | 1 DNA polymerase | Random primers | DNA >10 kb Genome | [24] |
Exponential amplification reaction (EXPAR) | 2003 | Yes—60 | 2 DNA polymerase Nicking enzyme | 4 | DNA | [25] |
Helicase-dependent amplification (HAD) Circular helicase-dependent amplification (cHDA) | 2004 | No—37–65 | 3 Helicase DNA pol SS-DNA-BP | 2 | DNA | [26] |
Single primer isothermal amplification (SPIA and Ribo SPIA) | 2005 | 60 | 3 Rev Tase RNAse H DNA pol | 1 | RNA-DNA | [27] |
Recombinase polymerase assay (RPA) | 2006 | 37–42 | 3 recombinase strand-displacing polymerase single-stranded DNA binding protein | 2 | DNA | [28] |
Cross-priming amplification (CPA) | 2009 | 65 | 1 Bst DNA pol | 6–8 | DNA | [30] |
Primase-based whole genome amplification (T4pWGA) | 2010 | 37 | 2 T7gp4 primase DNA polymerase | 0 | DNA circDNA | [31] |
Polymerase spiral reaction (PSR) | 2015 | No—60–65 | 1 Bst DNA pol | 2 | RNA DNA | [32] |
Dis | Pathogens | Hosts | Targets | Upstream | Reaction | Downstream | Refs. | Sc | |
---|---|---|---|---|---|---|---|---|---|
BiolS & | Purif * | Vis/Quant | |||||||
VL | L. donovani | H | 18s rDNA | Blood | Yes | NASBA | Oligochromatography | [37,38] | 12 |
VL | L. donovani | H | ITS1 Ldonovani repeated sequence | Blood drop | Yes | LAMP | NE Fluorimetry Agarose gel | [39] | 11 |
VL | Leishmania L. donovani | H | kDNA 18s rDNA | Blood | Boil and spin | LAMP | Fluorescence | [40,41] | 10 |
VL | L. infantum | H | kDNA | Bone marrow | Yes | LAMP | NE | [42] | 10 |
VL | Leishmania | H | 18s rDNA | Blood buffy-coat | Yes | LAMP | NE | [43] | 10 |
VL | Leishmania L. donovai | H | 18s rDNA kDNA | Blood Bone marrow | Boil and spin | LAMP | Fluorimetry | [44] | 10 |
VL | L. infantum | H | K26 hydrophilic Ag (AF131228) | Blood | Yes | LAMP | NE (turbidity) | [45] | 10 |
VL | Leishmania L. donovani | H | 18s rDNA kDNA | Blood buffy-coat | Boil and spin Yes | LAMP | NE Blue Led | [46] | 8 |
VL | Leishmania | H | 18s rDNA | Blood | Boil and spin Yes | LAMP | NE | [47] | 8 |
VL | L. donovani | H | kDNA | Blood | Yes | LAMP | NE Agarose gel | [48] | 10 |
VL | L. donovani | H | kDNA | Blood | Yes | Q-RPA | Fluorescence (real-time) | [49] | 11 |
VL | L. donovani Others | H | kDNA | Blood | Yes | RPA | Fluorescence | [50] | 12 |
VL | L. donovani | H | kDNA | Blood/buffy-coat | Yes | LAMP | NE Agarose gel | [51] | 10 |
VL PKDL | Leishmania spp. | H | 18s rDNA | Skin biopsy Blood | Yes | NASBA | Oligochromatography | [52] | 11 |
VL PKDL | L. donovani | H | kDNA | Blood Bone marrow Skin biopsy | Yes | LAMP | NE | [53] | 10 |
PKDL | L. donovani | H | kDNA | Skin biopsy | Boil and spin Yes | RPA Q-RPA | Fluorescence (real-time) | [54] | 10 |
PKDL | L. donovani | H | kDNA | Punch tissue | Yes | LAMP | Fluorimetry | [55] | 10 |
VL PKDL | L. donovani | H | kDNA | Blood Skin biopsy | Yes | LAMP | Fluorescence (device) | [56] | 12 |
VL CL | Leishmania | H (HIV+) | 18s RNA | Blood/buffy-coat | Yes | LAMP | NE Fluorescence Agarose gel | [57] | 10 |
VL CL | Leishmania L. donovani | H | 18s rRNA | Blood Skin biopsy | Yes | RT LAMP | Fluorescence NE | [58] | 11 |
VL CL | Leishmania | H | 18s rDNA | Blood Skin biopsies | Yes | LAMP | NE Fluorimetry (RT) | [59] | 10 |
CL ML | L. amazonensis L. braziliensis | H | 18s rDNA | Skin biopsy Blood | Yes | NASBA | Oligochromatography | [37] | 11 |
CL | Leishmania | H | 18s rDNA | Scrap FTA | No | LAMP | NE (Malachite green) | [60] | 6 |
CL | Leishmania | H | 18s rRNA | Skin biopsy | Yes | NASBA | Chemiluminescence | [61,62] | 11 |
L. major L. tropica | H | CPB | Lesion aspirate | Yes | LAMP | NE Agarose gel | [63] | 9 | |
CL | Leishmania (Viannia) | H | NA | Lesion scrap | Yes | RPA | Lateral flow fluo | [64] | 10 |
CL | Leishmania (Viannia) | H | kDNA | Ulcer juice FTA | Yes | RPA | Lateral flow | [65] | 10 |
CL | L. donovani | H | kDNA | Punch biopsy | Yes | RPA | Fluorescence | [66] | 10 |
CL | Leishmania (Viannia) | H | kDNA | Swab-FTA | Boil | RPA | Lateral flow | [67] | 8 |
CL | Leishmania | P. panamensis M. cayennensis L. gomezi | 18s rDNA | Sandfly | Yes | LAMP | NE Agarose gel | [68] | |
SF | Leishmania | L. ayacuchensis | 18s rDNA | Whole SF | Simplified | LAMP | NE (Malachite green) | [69] | |
SF | Leishmania | P. papatasi P. alexandri S. sintoni S. baghdadis | 18s rDNA | Thorax and abdomen | Yes | LAMP | Fluorescence (EP) | [70] | |
SF | Leishmania L. martiniquensis | S. gemea | 18s rDNA | Whole SF | Yes | LAMP | NE (Malachite green) | [71] | |
SF | L. donovani | P. argentipes | kDNA | Whole SF | Yes | RPA | Fluorescence | [72] | |
Canl | L. infantum | Dogs | kDNA | Blood-FTA Mucosal scraping-FTA | Yes | RPA | Lateral flow | [73] | 10 |
CanL | L. infantum | Dogs | kDNA | Conjunctival swab | Boil | LAMP | NE Turbidimeter Agarose gel | [74] | 6 |
CanL | L. infantum | Dogs | CPB | Blood | Yes | LAMP | NE Turbidimeter | [75] | 10 |
CD | T. cruzi | H Chronic and acute | Satellite DNA | Blood | Yes | LAMP | NE Fluorimetry | [76] | 10 |
CD | T. cruzi | H | Satellite DNA | Blood-EDTA Drop blood spot CSF | Yes | LAMP | NE | [77] | 10 |
CD | T. cruzi T. rangeli | R. pallescens T. infestans | 18s rDNA SnoRNA | Digestive tract | Yes | LAMP | NE | [78] | |
HAT | T. brucei spp. | H | 18s rDNA | Blood-CSF | Yes | NASBA | Oligochromatography | [79,80] | 14 |
HAT | Trypanozoon T. b. rhodesiense | H | RIME SRA | Blood | Yes | LAMP | Fluorescence | [81] | 11 |
HAT | Trypanozoon | H | RIME | Blood/buffy-coat CSF | Boil Supernatant | LAMP | Agarose gel Fluorimetry | [82] | 10 |
HAT | Trypanozoon T. b. rhodesiensis | H | RIME SRA | Blood-FTA CSF | Yes | LAMP | Fluorescence transilluminator | [83] | 11 |
HAT | Trypanozoon T. b. rhodesiensis | H | RIME SRA | Blood | Yes | LAMP | NE | [84] | 10 |
HAT | T. b. gambiense | H | TgsGP | Blood-CSF | Yes | LAMP | NE UV SYB Green | [85] | 10 |
HAT | Trypanozoon | G. m. morsitans G. pallidipes | RIME | Whole tsetse Midgut | Yes | LAMP | NE Agarose gel | [86] | |
HAT | Trypanozoon | G. m. morsitans | RIME | Whole tsetse | Yes | LAMP | In kit (Led 500 nm) NE | [87] | |
HAT | Trypanozoon | G. f. fuscipes | RIME | Salivary gland | Yes Chelex | LAMP | Fluorescence | [88] | |
AT | T. vivax | Cattle | Satellite DNA | Blood | Yes | LAMP | Agarose gel | [89] | 12 |
AT | T. evansi B | Camel | VSG gene JN 2118Hu | Blood | Yes | LAMP | Agarose gel NE-SYBgreen Lateral flow Dipstick | [90] | 11 |
AT | T. evansi | Buffalo | RoTat 1.2 VSG | Blood | Yes | LAMP | NE- acidic molybdate and potassium antimonyl tartrate solution Agarose gel | [91] | 10 |
AT | T. evansi | Domestic animals | RoTat1.2 VSG | Blood | Yes | LAMP | NE Agarose gel | [92] | 10 |
AT | T. evansi | Pig | PFR A1 | Blood | Yes | LAMP | NA | [93] | 10 |
AT | T. evansi | Camel | RoTat1.2 VSG | Blood | Detergent Tx100 | LAMP | UV | [94] | 9 |
AT | T. evansi | Equine | Invariable surface glycoprotein (ISG) | Blood | Yes | PSR | NE | [95] | 9 |
AT | Trypanozoon T. brucei spp. | Equids | RIME | Blood CSF | Boil | LAMP | NE Fluorimetry | [96] | 8 |
AT | Trypanozoon T. b. rhodesiense T. congolense | Dogs | RIME SRA CON2 18S rRNA | Blood-FTA | Yes | LAMP | Fluorescence (EP) transillumination | [97,98] | 11 |
AT | Trypanosoma spp. | Cattle | PFR | Blood | Yes | LAMP | Turbidimeter | [99] | 11 |
AT | T. vivax | Bovine Tsetse | Sat DNA T. vivax | Blood/buffy-coat Whole tsetse | Yes | LAMP | Fluorimetry Agarose gel | [100] | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sereno, D.; Oury, B.; Geiger, A.; Vela, A.; Karmaoui, A.; Desquesnes, M. Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability. Int. J. Mol. Sci. 2022, 23, 7543. https://doi.org/10.3390/ijms23147543
Sereno D, Oury B, Geiger A, Vela A, Karmaoui A, Desquesnes M. Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability. International Journal of Molecular Sciences. 2022; 23(14):7543. https://doi.org/10.3390/ijms23147543
Chicago/Turabian StyleSereno, Denis, Bruno Oury, Anne Geiger, Andrea Vela, Ahmed Karmaoui, and Marc Desquesnes. 2022. "Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability" International Journal of Molecular Sciences 23, no. 14: 7543. https://doi.org/10.3390/ijms23147543
APA StyleSereno, D., Oury, B., Geiger, A., Vela, A., Karmaoui, A., & Desquesnes, M. (2022). Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability. International Journal of Molecular Sciences, 23(14), 7543. https://doi.org/10.3390/ijms23147543