Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions
Abstract
:1. Introduction
2. Results
2.1. Subjects
2.2. Insulin Kinetics during Hyperinsulinemic Glucose Clamp in the Fasting and Fed Conditions
2.3. Glucose Response, Insulin Secretion, and Insulin Kinetics during Mixed-Meal Test (MMT)
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Experimental Protocols
4.3. Assays
4.4. Modeling Analysis
4.5. Calculations and Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mingrone, G.; Panunzi, S.; De Gaetano, A.; Guidone, C.; Iaconelli, A.; Capristo, E.; Chamseddine, G.; Bornstein, S.R.; Rubino, F. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet 2021, 397, 293–304. [Google Scholar] [CrossRef]
- Schauer, P.R.; Bhatt, D.L.; Kirwan, J.P.; Wolski, K.; Aminian, A.; Brethauer, S.A.; Navaneethan, S.D.; Singh, R.P.; Pothier, C.E.; Nissen, S.E.; et al. Bariatric Surgery versus Intensive Medical Therapy for Diabetes—5-Year Outcomes. N. Engl. J. Med. 2017, 376, 641–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, D.; Conte, C.; Mittendorfer, B.; Eagon, J.C.; Varela, J.E.; Fabbrini, E.; Gastaldelli, A.; Chambers, K.T.; Su, X.; Okunade, A.; et al. Gastric bypass and banding equally improve insulin sensitivity and beta cell function. J. Clin. Investig. 2012, 122, 4667–4674. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, M.; Kayser, B.D.; Yoshino, J.; Stein, R.I.; Reeds, D.; Eagon, J.C.; Eckhouse, S.R.; Watrous, J.D.; Jain, M.; Knight, R.; et al. Effects of Diet versus Gastric Bypass on Metabolic Function in Diabetes. N. Engl. J. Med. 2020, 383, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Guldstrand, M.; Ahren, B.; Adamson, U. Improved beta-cell function after standardized weight reduction in severely obese subjects. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E557–E565. [Google Scholar] [CrossRef] [Green Version]
- Villareal, D.T.; Banks, M.R.; Patterson, B.W.; Polonsky, K.S.; Klein, S. Weight loss therapy improves pancreatic endocrine function in obese older adults. Obesity 2008, 16, 1349–1354. [Google Scholar] [CrossRef] [Green Version]
- Ferrannini, E.; Camastra, S.; Gastaldelli, A.; Maria Sironi, A.; Natali, A.; Muscelli, E.; Mingrone, G.; Mari, A. beta-cell function in obesity: Effects of weight loss. Diabetes 2004, 53 (Suppl. S3), S26–S33. [Google Scholar] [CrossRef] [Green Version]
- Salehi, M.; Gastaldelli, A.; DeFronzo, R. Prandial hepatic glucose production during hypoglycemia is altered after gastric bypass surgery and sleeve gastrectomy. Metabolism 2022, 131, 155199. [Google Scholar] [CrossRef]
- Salehi, M.; Woods, S.C.; D’Alessio, D.A. Gastric bypass alters both glucose-dependent and glucose-independent regulation of islet hormone secretion. Obesity 2015, 23, 2046–2052. [Google Scholar] [CrossRef] [Green Version]
- Abrahamsson, N.; Borjesson, J.L.; Sundbom, M.; Wiklund, U.; Karlsson, F.A.; Eriksson, J.W. Gastric Bypass Reduces Symptoms and Hormonal Responses in Hypoglycemia. Diabetes 2016, 65, 2667–2675. [Google Scholar] [CrossRef] [Green Version]
- Bojsen-Moller, K.N.; Dirksen, C.; Jorgensen, N.B.; Jacobsen, S.H.; Hansen, D.L.; Worm, D.; Naver, L.; Kristiansen, V.B.; Holst, J.J.; Madsbad, S. Increased Hepatic Insulin Clearance After Roux-en-Y Gastric Bypass. J. Clin. Endocrinol. Metab 2013, 98, E1066-71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojsen-Moller, K.N.; Dirksen, C.; Jorgensen, N.B.; Jacobsen, S.H.; Serup, A.K.; Albers, P.H.; Hansen, D.L.; Worm, D.; Naver, L.; Kristiansen, V.B.; et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux-en-Y gastric bypass. Diabetes 2014, 63, 1725–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauer, P.R.; Ikramuddin, S.; Gourash, W.; Ramanathan, R.; Luketich, J. Outcomes after laparoscopic Roux-en-Y gastric bypass for morbid obesity. Ann. Surg. 2000, 232, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Laferrere, B.; Teixeira, J.; McGinty, J.; Tran, H.; Egger, J.R.; Colarusso, A.; Kovack, B.; Bawa, B.; Koshy, N.; Lee, H.; et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 2479–2485. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, N.B.; Jacobsen, S.H.; Dirksen, C.; Bojsen-Moller, K.N.; Naver, L.; Hvolris, L.; Clausen, T.R.; Wulff, B.S.; Worm, D.; Lindqvist Hansen, D.; et al. Acute and long-term effects of Roux-en-Y gastric bypass on glucose metabolism in subjects with Type 2 diabetes and normal glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E122–E131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterli, R.; Wolnerhanssen, B.; Peters, T.; Devaux, N.; Kern, B.; Christoffel-Courtin, C.; Drewe, J.; von Flue, M.; Beglinger, C. Improvement in glucose metabolism after bariatric surgery: Comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: A prospective randomized trial. Ann. Surg. 2009, 250, 234–241. [Google Scholar] [CrossRef]
- Salehi, M.; Gastaldelli, A.; D’Alessio, D.A. Altered islet function and insulin clearance cause hyperinsulinemia in gastric bypass patients with symptoms of postprandial hypoglycemia. J. Clin. Endocrinol. Metab. 2014, 99, 2008–2017. [Google Scholar] [CrossRef] [Green Version]
- Gastaldelli, A.; Abdul Ghani, M.; DeFronzo, R.A. Adaptation of Insulin Clearance to Metabolic Demand Is a Key Determinant of Glucose Tolerance. Diabetes 2021, 70, 377–385. [Google Scholar] [CrossRef]
- Bergman, R.N.; Kabir, M.; Ader, M. The Physiology of Insulin Clearance. Int. J. Mol. Sci. 2022, 23, 1826. [Google Scholar] [CrossRef]
- Asmar, M.; Simonsen, L.; Madsbad, S.; Stallknecht, B.; Holst, J.J.; Bulow, J. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans. Diabetes 2010, 59, 2160–2163. [Google Scholar] [CrossRef] [Green Version]
- Mallipedhi, A.; Prior, S.L.; Barry, J.D.; Caplin, S.; Baxter, J.N.; Stephens, J.W. Temporal changes in glucose homeostasis and incretin hormone response at 1 and 6 months after laparoscopic sleeve gastrectomy. Surg. Obes. Relat. Dis. 2014, 10, 860–869. [Google Scholar] [CrossRef]
- Nannipieri, M.; Baldi, S.; Mari, A.; Colligiani, D.; Guarino, D.; Camastra, S.; Barsotti, E.; Berta, R.; Moriconi, D.; Bellini, R.; et al. Roux-en-Y gastric bypass and sleeve gastrectomy: Mechanisms of diabetes remission and role of gut hormones. J. Clin. Endocrinol. Metab. 2013, 98, 4391–4399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, M.M.; Pareja, J.C.; Alegre, S.M.; Geloneze, S.R.; Kahn, S.E.; Astiarraga, B.D.; Chaim, E.A.; Geloneze, B. Acute effect of roux-en-y gastric bypass on whole-body insulin sensitivity: A study with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3871–3875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikramuddin, S.; Korner, J.; Lee, W.J.; Connett, J.E.; Inabnet, W.B.; Billington, C.J.; Thomas, A.J.; Leslie, D.B.; Chong, K.; Jeffery, R.W.; et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: The Diabetes Surgery Study randomized clinical trial. JAMA 2013, 309, 2240–2249. [Google Scholar] [CrossRef] [PubMed]
- Campos, G.M.; Rabl, C.; Havel, P.J.; Rao, M.; Schwarz, J.M.; Schambelan, M.; Mulligan, K. Changes in post-prandial glucose and pancreatic hormones, and steady-state insulin and free fatty acids after gastric bypass surgery. Surg. Obes. Relat. Dis. 2014, 10, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackness, C.; Karmally, W.; Febres, G.; Conwell, I.M.; Ahmed, L.; Bessler, M.; McMahon, D.J.; Korner, J. Very low-calorie diet mimics the early beneficial effect of Roux-en-Y gastric bypass on insulin sensitivity and beta-cell Function in type 2 diabetic patients. Diabetes 2013, 62, 3027–3032. [Google Scholar] [CrossRef] [Green Version]
- Mittendorfer, B.; Patterson, B.W.; Smith, G.I.; Yoshino, M.; Klein, S. Beta Cell function and plasma insulin clearance in people with obesity and different glycemic status. J. Clin. Investig. 2022, 132, e154068. [Google Scholar] [CrossRef]
- Ferrannini, E.; Wahren, J.; Faber, O.K.; Felig, P.; Binder, C.; DeFronzo, R.A. Splanchnic and renal metabolism of insulin in human subjects: A dose-response study. Am. J. Physiol. 1983, 244, E517–E527. [Google Scholar] [CrossRef]
- Asare-Bediako, I.; Paszkiewicz, R.L.; Kim, S.P.; Woolcott, O.O.; Kolka, C.M.; Burch, M.A.; Kabir, M.; Bergman, R.N. Variability of Directly Measured First-Pass Hepatic Insulin Extraction and Its Association With Insulin Sensitivity and Plasma Insulin. Diabetes 2018, 67, 1495–1503. [Google Scholar] [CrossRef] [Green Version]
- Salehi, M.; Gastaldelli, A.; D'Alessio, D.A. Blockade of glucagon-like peptide 1 receptor corrects postprandial hypoglycemia after gastric bypass. Gastroenterology 2014, 146, 669–680.e2. [Google Scholar] [CrossRef] [Green Version]
- Nauck, M.A.; Homberger, E.; Siegel, E.G.; Allen, R.C.; Eaton, R.P.; Ebert, R.; Creutzfeldt, W. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J. Clin. Endocrinol. Metab. 1986, 63, 492–498. [Google Scholar] [CrossRef]
- Shuster, L.T.; Go, V.L.; Rizza, R.A.; O’Brien, P.C.; Service, F.J. Incretin effect due to increased secretion and decreased clearance of insulin in normal humans. Diabetes 1988, 37, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Mingrone, G.; Panunzi, S.; De Gaetano, A.; Ahlin, S.; Spuntarelli, V.; Bondia-Pons, I.; Barbieri, C.; Capristo, E.; Gastaldelli, A.; Nolan, J.J. Insulin sensitivity depends on the route of glucose administration. Diabetologia 2020, 63, 1382–1395. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, E.T.; Tillil, H.; Miller, M.A.; Frank, B.H.; Galloway, J.A.; Rubenstein, A.H.; Polonsky, K.S. Insulin secretion and clearance. Comparison after oral and intravenous glucose. Diabetes 1987, 36, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Holter, M.M.; Rimawi, F.; Mark, V.; Dutia, R.; McGinty, J.; Levin, B.; Laferrere, B. Insulin Clearance After Oral and Intravenous Glucose Following Gastric Bypass and Gastric Banding Weight Loss. Diabetes Care 2019, 42, 311–317. [Google Scholar] [CrossRef] [Green Version]
- Alsalim, W.; Omar, B.; Pacini, G.; Bizzotto, R.; Mari, A.; Ahren, B. Incretin and islet hormone responses to meals of increasing size in healthy subjects. J. Clin. Endocrinol. Metab. 2015, 100, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Eaton, R.P.; Allen, R.C.; Schade, D.S. Hepatic removal of insulin in normal man: Dose response to endogenous insulin secretion. J. Clin. Endocrinol. Metab. 1983, 56, 1294–1300. [Google Scholar] [CrossRef]
- Tillil, H.; Shapiro, E.T.; Miller, M.A.; Karrison, T.; Frank, B.H.; Galloway, J.A.; Rubenstein, A.H.; Polonsky, K.S. Dose-dependent effects of oral and intravenous glucose on insulin secretion and clearance in normal humans. Am. J. Physiol. 1988, 254 Pt 1, E349–E357. [Google Scholar] [CrossRef]
- Alsalim, W.; Tura, A.; Pacini, G.; Omar, B.; Bizzotto, R.; Mari, A.; Ahren, B. Mixed meal ingestion diminishes glucose excursion in comparison with glucose ingestion via several adaptive mechanisms in people with and without type 2 diabetes. Diabetes Obes. Metab. 2016, 18, 24–33. [Google Scholar] [CrossRef]
- Gastaldelli, A.; DeFronzo, R.A.; Salehi, M. Comment on Piccinini and Bergman. The Measurement of Insulin Clearance. Diabetes Care 2021, 44, e98–e99. [Google Scholar] [CrossRef]
- Waddell, W.R.; Sussman, K.E. Plasma insulin after diversion of portal and pancreatic venous blood to vena cava. J. Appl. Physiol. 1967, 22, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Edgerton, D.S.; Scott, M.; Farmer, B.; Williams, P.E.; Madsen, P.; Kjeldsen, T.; Brand, C.L.; Fledelius, C.; Nishimura, E.; Cherrington, A.D. Targeting insulin to the liver corrects defects in glucose metabolism caused by peripheral insulin delivery. JCI Insight 2019, 5, e126974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindgren, O.; Pacini, G.; Tura, A.; Holst, J.J.; Deacon, C.F.; Ahren, B. Incretin effect after oral amino acid ingestion in humans. J. Clin. Endocrinol. Metab. 2015, 100, 1172–1176. [Google Scholar] [CrossRef] [Green Version]
- Kusminski, C.M.; Scherer, P.E. New zoning laws enforced by glucagon. Proc. Natl. Acad. Sci. USA 2018, 115, 4308–4310. [Google Scholar] [CrossRef] [Green Version]
- Ishida, T.; Chou, M.C.; Lewis, R.M.; Hartley, C.J.; Entman, M.; Field, J.B. The effect of tolbutamide and hepatic extraction of insulin and glucagon and hepatic glucose output in anesthetized dogs. Endocrinology 1981, 109, 443–450. [Google Scholar] [CrossRef]
- Salehi, M.; Prigeon, R.L.; D’Alessio, D.A. Gastric bypass surgery enhances glucagon-like peptide 1-stimulated postprandial insulin secretion in humans. Diabetes 2011, 60, 2308–2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Cauter, E.; Mestrez, F.; Sturis, J.; Polonsky, K.S. Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 1992, 41, 368–377. [Google Scholar] [CrossRef]
- Varghese, R.T.; Dalla Man, C.; Laurenti, M.C.; Piccinini, F.; Sharma, A.; Shah, M.; Bailey, K.R.; Rizza, R.A.; Cobelli, C.; Vella, A. Performance of individually measured vs population-based C-peptide kinetics to assess beta-cell function in the presence and absence of acute insulin resistance. Diabetes Obes. Metab. 2018, 20, 549–555. [Google Scholar] [CrossRef]
- Schiavon, M.; Herzig, D.; Hepprich, M.; Donath, M.Y.; Bally, L.; Dalla Man, C. Model-Based Assessment of C-Peptide Secretion and Kinetics in Post Gastric Bypass Individuals Experiencing Postprandial Hyperinsulinemic Hypoglycemia. Front. Endocrinol. 2021, 12, 611253. [Google Scholar] [CrossRef]
- Elahi, D.; Nagulesparan, M.; Hershcopf, R.J.; Muller, D.C.; Tobin, J.D.; Blix, P.M.; Rubenstein, A.H.; Unger, R.H.; Andres, R. Feedback inhibition of insulin secretion by insulin: Relation to the hyperinsulinemia of obesity. N. Engl. J. Med. 1982, 306, 1196–1202. [Google Scholar] [CrossRef]
- Polidori, D.C.; Bergman, R.N.; Chung, S.T.; Sumner, A.E. Hepatic and Extrahepatic Insulin Clearance Are Differentially Regulated: Results From a Novel Model-Based Analysis of Intravenous Glucose Tolerance Data. Diabetes 2016, 65, 1556–1564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobelli, C.; Pacini, G. Insulin secretion and hepatic extraction in humans by minimal modeling of C-peptide and insulin kinetics. Diabetes 1988, 37, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.H.; Jung, C.H.; Reaven, G.M.; Kim, S.H. Adapting to insulin resistance in obesity: Role of insulin secretion and clearance. Diabetologia 2018, 61, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hovorka, R.; Powrie, J.K.; Smith, G.D.; Sonksen, P.H.; Carson, E.R.; Jones, R.H. Five-compartment model of insulin kinetics and its use to investigate action of chloroquine in NIDDM. Am. J. Physiol 1993, 265 Pt 1, E162–E175. [Google Scholar] [CrossRef]
- Bonnet, F.; Ducluzeau, P.H.; Gastaldelli, A.; Laville, M.; Anderwald, C.H.; Konrad, T.; Mari, A.; Balkau, B.; Group, R.S. Liver enzymes are associated with hepatic insulin resistance, insulin secretion, and glucagon concentration in healthy men and women. Diabetes 2011, 60, 1660–1667. [Google Scholar] [CrossRef] [Green Version]
GB (9) | SG (7) | CN (5) | |
---|---|---|---|
Age (years) | 44.4 ± 4.0 | 48.3 ± 3.8 | 44.2 ± 4.3 |
BMI (kg/m2) | 31.2 ± 2.1 | 32.3 ± 1.9 | 30.8 ± 2.9 |
Lean mass (kg) | 53.1 ± 2.5 | 55.7 ± 4.6 | 46.8 ± 6.6 |
Fat mass (kg) | 29.7 ± 3.3 | 29.9 ± 4.4 | 33.7 ± 4.8 |
Waist circumference (cm) | 101.2 ± 5.6 | 98.6 ± 3.9 | 98.2 ± 5.8 |
Sex (M/F) | 1/8 | 2/5 | 1/4 |
HbA1c (mmol/mol) | 35 ± 1 | 34 ± 2 | 36 ± 1 |
HbA1c (%) | 5.4 ± 0.1 | 5.3 ± 0.2 | 5.4 ± 0.1 |
Time since surgery (years) | 5.3 ± 1.8 | 4.7 ± 0.5 | |
Preoperative BMI (kg/m2) | 47.6 ± 2.0 | 46.6 ± 2.0 | |
Weight loss (kg) | 45.0 ± 6.0 | 39.2 ± 5.6 | |
BMI loss (kg/m2) | 16.3 ± 2.2 | 14.2 ± 1.6 | |
Max weight loss § | 55.7 ± 3.8 | 52.5 ± 5.9 |
GB (n = 9) | SG (n = 7) | CN (n = 5) | ||
---|---|---|---|---|
Glucose (mmol/L) | Basal | 5.4 ± 0.1 | 5.2 ± 0.1 | 5.6 ± 0.1 |
110–120 min | 3.1 ± 0.0 | 3.2 ± 0.1 | 3.3 ± 0.0 | |
GIR (µmol·min−1·kg−1) | 110–120 min | 21 ± 3 | 24 ± 4 | 17 ± 2 |
Insulin (pmol/L) | Basal | 39 ± 7 | 29 ± 6 | 50 ± 8 |
110–120 min | 1491 ± 80 | 1458 ± 140 | 1819 ± 168 * | |
ISR (pmol·min−1·m−2) | Basal | 131 ± 23 | 86 ± 7 | 93 ± 11 |
110–120 min | 26 ± 8 | 16 ± 2 | 7 ± 2 * | |
AUCISR (nmol·m−2) | 120–180 min | 2.5 ± 1.2 | 0.2 ± 0.3 | 0.4 ± 0.1 * |
120–300 min | 1.4 ± 1.2 | −0.5 ± 0.6 | 0.2 ± 0.0 | |
Insulin clearance rate | Basal | 3.5 ± 0.6 | 3.5 ± 0.7 | 1.9 ± 0.2 * |
(L·min−1·m−2) | 110–120 min | 0.5 ± 0.0 | 0.5 ± 0.1 | 0.4 ± 0.1 |
Hepatic insulin clearance | Basal | 3.3 ± 0.6 | 3.2 ± 0.7 | 1.7 ± 0.2 * |
(L·min−1·m−2) | 110–120 min | 0.25 ± 0.01 | 0.24 ± 0.01 | 0.21 ± 0.04 |
Insulin sensitivity (M/I) | 110–120 min | 16 ± 3 | 18 ± 3 | 11 ± 2 |
GB (n = 9) | SG (n = 7) | ||
---|---|---|---|
Glucose (mmol/L) | Fasting | 5.4 ± 0.2 | 5.3 ± 0.2 |
Time to glucose peak (min) | 20 ± 2 | 19 ± 6 | |
AUCGlucose (mmol·m−2) | 0–60 min | 251 ± 38 | 142 ± 23 * |
0–180 min | 219 ± 57 | 193 ± 39 | |
ISR (pmol·min−1·m−2) | Fasting | 160 ± 27 | 101 ± 11 |
Time to ISR peak (min) | 17 ± 3 | 17 ± 7 | |
AUCISR (nmol·m−2) | 0–60 min | 2.5 ± 1.0 | 0.6 ± 0.2 * |
0–180 min | 105 ± 39 | 36 ± 7 * | |
Insulin (pmol/L) | Fasting | 74 ± 7 | 47 ± 8 |
Time to insulin peak (min) | 31 ± 3 | 24 ± 7 | |
AUCInsulin (nmol·m−2·min−1) | 0–60 min | 68 ± 10 | 33 ± 9 * |
0–180 min | 77 ± 10 | 48 ± 13 | |
Hepatic insulin fractional extraction (%) | 69 ± 3 | 70 ± 4 | |
ICR (L·min−1·m−2) | Fasting | 3.5 ± 0.5 | 3.4 ± 0.6 |
AUCICR (L·m−2) | 0–60 min | −102 ± 22 | −108 ± 28 |
0–180 min | −317 ± 72 | −282 ± 77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salehi, M.; DeFronzo, R.; Gastaldelli, A. Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions. Int. J. Mol. Sci. 2022, 23, 7667. https://doi.org/10.3390/ijms23147667
Salehi M, DeFronzo R, Gastaldelli A. Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions. International Journal of Molecular Sciences. 2022; 23(14):7667. https://doi.org/10.3390/ijms23147667
Chicago/Turabian StyleSalehi, Marzieh, Ralph DeFronzo, and Amalia Gastaldelli. 2022. "Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions" International Journal of Molecular Sciences 23, no. 14: 7667. https://doi.org/10.3390/ijms23147667
APA StyleSalehi, M., DeFronzo, R., & Gastaldelli, A. (2022). Altered Insulin Clearance after Gastric Bypass and Sleeve Gastrectomy in the Fasting and Prandial Conditions. International Journal of Molecular Sciences, 23(14), 7667. https://doi.org/10.3390/ijms23147667