In Vitro Strategy for the Enhancement of the Production of Bioactive Polyphenols in Transformed Roots of Salvia bulleyana
Abstract
:1. Introduction
2. Results
2.1. The Effect of Basal Medium on Culture Growth and Polyphenolic Acid Accumulation
2.2. The Effect of Vitamin Content on Culture Growth and Polyphenolic Acid Accumulation
2.3. The Effect of Sucrose Content on Culture Growth and Polyphenolic Acid Accumulation
2.4. The Effect of Light Conditions on Culture Growth and Polyphenolic Acid Accumulation
2.5. Growth Kinetics of Hairy Root Culture and Polyphenolic Acid Accumulation
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Growth Estimation
4.3. Phytochemical Analysis
4.4. Effect of Basal Medium on Growth and Polyphenolic Acid Accumulation
4.5. Effect of Vitamin Content on Growth and Polyphenolic Acid Accumulation
4.6. Effect of Sucrose Content on Growth and Polyphenolic Acid Accumulation
4.7. Effect of Light Condition on Growth and Polyphenolic Acid Accumulation
4.8. Growth and Production Studies
4.9. TOPSIS Analysis
4.10. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Wei, K.; Zhang, G.; Lei, L.; Yang, D.; Wang, W.; Han, Q.; Xia, Y.; Bi, Y.; Yang, M.; et al. Ethnopharmacology, phytochemistry, and pharmacology of Chinese Salvia species: A review. J. Ethnopharmacol. 2018, 225, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-H.; Chen, J.-M.; Peng, Y.; Wu, Q.; Xiao, P.-G. Investigation of Danshen and related medicinal plants in China. J. Ethnopharmacol. 2008, 120, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Peng, Y.; Xiao, P.G. Distribution of tanshinones in the genus Salvia (family Lamiaceae) from China and its systematic significance. J. Syst. Evol. 2010, 48, 118–122. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Krzemińska, M.; Kiss, A.K.; Olszewska, M.A.; Owczarek, A. Phytochemical Profile and Antioxidant Activity of Aerial and Underground Parts of Salvia bulleyana Diels. Plants. Metabolites 2020, 10, 497. [Google Scholar] [CrossRef]
- Kasimu, R.; Tanaka, K.; Tezuka, Y.; Gong, Z.-N.; Li, J.-X.; Basnet, P.; Namba, T.; Kadota, S. Comparative Study of Seventeen Salvia Plants: Aldose Reductase Inhibitory Activity of Water and MeOH Extracts and Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis of Water Extracts. Chem. Pharm. Bull. 1998, 46, 500–504. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jiang, P.; Ye, M.; Kim, S.-H.; Jiang, C.; Lü, J. Tanshinones: Sources, Pharmacokinetics and Anti-Cancer Activities. Int. J. Mol. Sci. 2012, 13, 13621–13666. [Google Scholar] [CrossRef] [Green Version]
- Truong, D.H.; Ngo, T.C.; Nhung, N.T.A.; Quang, D.T.; Nguyen, T.L.A.; Khiri, D.; Taamalli, S.; Louis, F.; El Bakali, A.; Dao, D.Q. New insights into the competition between antioxidant activities and pro-oxidant risks of rosmarinic acid. RSC Adv. 2022, 12, 1499–1514. [Google Scholar] [CrossRef]
- Choi, S.-H.; Jang, G.-W.; Choi, S.-I.; Jung, T.-D.; Cho, B.-Y.; Sim, W.-S.; Han, X.; Lee, J.-S.; Kim, D.-Y.; Kim, D.-B.; et al. Development and Validation of an Analytical Method for Carnosol, Carnosic Acid and Rosmarinic Acid in Food Matrices and Evaluation of the Antioxidant Activity of Rosemary Extract as a Food Additive. Antioxidants 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, Q.; Zhou, P.-P.; Li, N.-N.; Han, S.-Y. Copigmentation evidence of oenin with phenolic compounds: A comparative study of spectrographic, thermodynamic and theoretical data. Food Chem. 2020, 313, e126163. [Google Scholar] [CrossRef]
- Ferraro, V.; Madureira, A.R.; Sarmento, B.; Gomes, A.; Pintado, M.E. Study of the interactions between rosmarinic acid and bovine milk whey protein α-Lactalbumin, β-Lactoglobulin and Lactoferrin. Food Res. Int. 2015, 77, 450–459. [Google Scholar] [CrossRef]
- Li, Z.; Henning, S.M.; Zhang, Y.; Zerlin, A.; Li, L.; Gao, K.; Lee, R.P.; Karp, H.; Thames, G.; Bowerman, S.; et al. Antioxidant-rich spice added to hamburger meat during cooking results in reduced meat, plasma, and urine malondialdehyde concentrations. Am. J. Clin. Nutr. 2010, 91, 1180–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guitard, R.; Paul, J.-F.; Nardello-Rataj, V.; Aubry, J.-M. Myricetin, rosmarinic and carnosic acids as superior natural antioxidant alternatives to α-tocopherol for the preservation of omega-3 oils. Food Chem. 2016, 213, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Findley, W.E.; Hollstein, U.; Besch, P.K. Effect of purified lithospermic acid its oxidation product on luteinizing hormone release in vitro. Biol. Reprod. 1985, 33, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Salawu, S.O.; Ogundare, A.O.; Ola-Salawu, B.B.; Akindahunsi, A.A. Antimicrobial activities of phenolic containing extracts of some tropical vegetables. Afr. J. Pharm. Pharmacol. 2011, 5, 486–492. [Google Scholar]
- Chockalingam, N.; Muruhan, S. Anti-inflammatory properties of rosmarinic acid—A review. Int. J. Res. Pharm. Sci. 2017, 8, 656–662. [Google Scholar]
- Zhao, L.; Zhang, Y.; Liu, G.; Hao, S.; Wang, C.; Wang, Y. Black rice anthocyanin-rich extract and rosmarinic acid, alone and in combination, protect against DSS-induced colitis in mice. Food Funct. 2018, 9, 2796–2808. [Google Scholar] [CrossRef] [PubMed]
- Vasileva, L.V.; Savova, M.S.; Tews, D.; Wabitsch, M.; Georgiev, M.I. Rosmarinic acid attenuates obesity and obesity-related inflammation in human adipocytes. Food Chem. Toxicol. 2021, 149, e112002. [Google Scholar] [CrossRef]
- Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl. Microbiol. Biotechnol. 2018, 102, 7775–7793. [Google Scholar] [CrossRef]
- Hossan, S.; Rahman, S.; Bashar, A.; Jahan, R.; Al-Nahain, A.; Rahmatullah, M. Rosmarinic acid: A review of its anticancer action. World J. Pharm. Pharm. Sci. 2014, 3, 57–70. [Google Scholar]
- Fotovvat, M.; Radjabian, T.; Saboora, A. HPLC Fingerprint of Important Phenolic Compounds in Some Salvia L. Species from Iran. Rec. Nat. Prod. 2018, 13, 37–49. [Google Scholar] [CrossRef]
- Soni, U.; Brar, S.; Gauttam, V.K. Effect of seasonal variation on secondary metabolites of medicinal plants. Int. J. Pharm. Sci. Res. 2015, 6, 3654–3662. [Google Scholar] [CrossRef]
- Kumar, N.; Reddy, M.P. In vitro plant propagation: A review. J. For. Environ. Sci. 2011, 27, 61–72. [Google Scholar]
- Marchev, A.S.; Yordanova, Z.P.; Georgiev, M.I. Green (cell) factories for advanced production of plant secondary metabolites. Crit. Rev. Biotechnol. 2020, 40, 443–458. [Google Scholar] [CrossRef]
- Georgiev, M.I.; Agostini, E.; Ludwig-Müller, J.; Xu, J. Genetically transformed roots: From plant disease to biotechnological resource. Trends Biotechnol. 2012, 30, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Wojciechowska, M.; Owczarek, A.; Kiss, A.K.; Grąbkowska, R.; Olszewska, M.A.; Grzegorczyk-Karolak, I. Establishment of hairy root cultures of S. bulleyana Diels for production of polyphenolic compounds. J. Biotechnol. 2020, 318, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Hesami, M.; Jones, A.M.P. Application of artificial intelligence models and optimization algorithms in plant cell and tissue culture. Appl. Microbiol. Biotechnol. 2020, 104, 9449–9485. [Google Scholar] [CrossRef] [PubMed]
- Ataei, E. Application of TOPSIS and fuzzy TOPSIS methods for plant layout design. World Appl. Sci. J. 2013, 23, 38–53. [Google Scholar]
- Santos, P.A.; Figueiredo, A.C.; Oliveira, M.M.; Barroso, J.G.; Pedro, L.G.; Deans, S.G.; Scheffer, J.J. Growth and essential oil composition of hairy root cultures of Levisticum officinale W.D.J. Koch (lovage). Plant Sci. 2005, 168, 1089–1096. [Google Scholar] [CrossRef]
- Santos, P.M.; Figueiredo, A.; Oliveira, M.; Barroso, J.; Pedro, L.G.; Deans, S.G.; Younus, A.; Scheffer, J.J. Essential oils from hairy root cultures and from fruits and roots of Pimpinella anisum. Phytochemistry 1998, 48, 455–460. [Google Scholar] [CrossRef]
- Xu, H.; Park, J.H.; Kim, Y.K.; Park, N., II; Lee, S.Y.; Park, S.U. Optimization of growth and pyranocoumarins production in hairy root culture of Angelica gigas Nakai. J. Med. Plant. Res. 2009, 3, 978–981. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.J. The components of plant tissue culture media I: Macro-and micro-nutrients. In Plant Propagation by Tissue Culture; George, E.F., Hall, M.A., Klerk, G.J.D., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 65–113. [Google Scholar] [CrossRef]
- Li, L.; Wang, J.; Wang, W.; Lu, Y.; Wang, Y.; Zhou, G.; Kai, G. Optimization of induction and culture conditions and tropane alkaloid production in hairy roots of Anisodus acutangulus. Biotechnol. Bioprocess Eng. 2008, 13, 606–612. [Google Scholar] [CrossRef]
- Dhakulkar, S.; Ganapathi, T.; Bhargava, S.; Bapat, V. Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Sci. 2005, 169, 812–818. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I. Optimization of culture conditions and cultivation phase for the growth of Salvia viridis transformed roots and polyphenolic compound production. Plant Cell Tissue Organ Cult. 2020, 142, 571–581. [Google Scholar] [CrossRef]
- Prasad, A.; Mathur, A.; Singh, M.; Gupta, M.M.; Uniyal, G.C.; Lal, R.K.; Mathur, A.K. Growth and asiaticoside production in multiple shoot cultures of a medicinal herb, Centella asiatica (L.) Urban, under the influence of nutrient manipulations. J. Nat. Med. 2011, 66, 383–387. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Ouyang, F.; Ye, H.; Li, G. Production of artemisinin by hairy root cultures of Artemisia annua L. Biotechnol. Lett. 1997, 19, 927–929. [Google Scholar] [CrossRef]
- Nussbaumer, P.; Kapétanidis, I.; Christen, P. Hairy roots of Datura candida×D. aurea: Effect of culture medium composition on growth and alkaloid biosynthesis. Plant Cell Rep. 1998, 17, 405–409. [Google Scholar] [CrossRef]
- Kiviharju, E.; Moisander, S.; Laurila, J. Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tissue Organ Cult. 2005, 81, 1–9. [Google Scholar] [CrossRef]
- Kowalczyk, S.; Bandurski, R.S. Enzymic synthesis of 1-O-(indol-3-ylacetyl)-β-d-glucose. Purification of the enzyme from Zea mays, and preparation of antibodies to the enzyme. Biochem. J. 1991, 279, 509–514. [Google Scholar] [CrossRef]
- Shinde, A.N.; Malpathak, N.; Fulzele, D.P. Impact of nutrient components on production of the phytoestrogens daidzein and genistein by hairy roots of Psoralea corylifolia. J. Nat. Med. 2010, 64, 346–353. [Google Scholar] [CrossRef]
- Weremczuk-Jeżyna, I.; Skała, E.; Olszewska, M.; Kiss, A.; Balcerczak, E.; Wysokińska, H.; Kicel, A. The identification and quantitative determination of rosmarinic acid and salvianolic acid B in hairy root cultures of Dracocephalum forrestii W.W. Smith. Ind. Crop. Prod. 2016, 91, 125–131. [Google Scholar] [CrossRef]
- Cui, X.-H.; Murthy, H.N.; Wu, C.-H.; Paek, K.-Y. Sucrose-induced osmotic stress affects biomass, metabolite, and antioxidant levels in root suspension cultures of Hypericum perforatum L. Plant Cell Tissue Organ Cult. 2010, 103, 7–14. [Google Scholar] [CrossRef]
- Merkli, A.; Christen, P.; Kapetanidis, I. Production of diosgenin by hairy root cultures of Trigonella foenum-graecum L. Plant Cell Rep. 1997, 16, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Mathur, A.K.; Gangwar, A.; Yadav, S.; Verma, P.; Sangwan, R.S. Anthocyanin production in a callus line of Panax sikkimensis Ban. In Vitro Cell Dev. Biol. Plant 2010, 46, 13–21. [Google Scholar] [CrossRef]
- Weremczuk-Jeżyna, I.; Hnatuszko-Konka, K.; Lebelt, L.; Grzegorczyk-Karolak, I. The Protective Function and Modification of Secondary Metabolite Accumulation in Response to Light Stress in Dracocephalum forrestii Shoots. Int. J. Mol. Sci. 2021, 22, 7965. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Cao, S.; Shi, L.; Chen, W.; Su, X.; Yang, Z. Blue Light Irradiation Affects Anthocyanin Content and Enzyme Activities Involved in Postharvest Strawberry Fruit. J. Agric. Food Chem. 2014, 62, 4778–4783. [Google Scholar] [CrossRef] [PubMed]
- Gam, D.T.; Khoi, P.H.; Ngoc, P.B.; Linh, L.K.; Hung, N.K.; Anh, P.T.L.; Thu, N.T.; Hien, N.T.T.; Khanh, T.D.; Ha, C.H. LED Lights Promote Growth and Flavonoid Accumulation of Anoectochilus roxburghii and Are Linked to the Enhanced Expression of Several Related Genes. Plants 2020, 9, 1344. [Google Scholar] [CrossRef] [PubMed]
- Lobiuc, A.; Vasilache, V.; Oroian, M.; Stoleru, T.; Burducea, M.; Pintilie, O.; Zamfirache, M.-M. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef] [Green Version]
- Park, W.T.; Yeo, S.K.; Sathasivam, R.; Park, J.S.; Kim, J.K.; Park, S.U. Influence of light-emitting diodes on phenylpropanoid biosynthetic gene expression and phenylpropanoid accumulation in Agastache rugosa. Appl. Biol. Chem. 2020, 63, 25. [Google Scholar] [CrossRef]
- Weremczuk-Jeżyna, I.; Grzegorczyk-Karolak, I.; Frydrych, B.; Królicka, A.; Wysokińska, H. Hairy roots of Dracocephalum moldavica: Rosmarinic acid content and antioxidant potential. Acta Physiol. Plant. 2013, 35, 2095–2103. [Google Scholar] [CrossRef] [Green Version]
- Grzegorczyk, I.; Królicka, A.; Wysokińska, H. Establishment of Salvia officinalis L. hairy root cultures for the production of rosmarinic acid. Z. Naturforsch. C 2006, 61, 351–356. [Google Scholar] [CrossRef]
- Chen, I.-G.J.; Lee, M.-S.; Lin, M.-K.; Ko, C.-Y.; Chang, W.-T. Blue light decreases tanshinone IIA content in Salvia miltiorrhiza hairy roots via genes regulation. J. Photochem. Photobiol. B Biol. 2018, 183, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Skała, E.; Kicel, A.; Olszewska, M.; Kiss, A.; Wysokińska, H. Establishment of Hairy Root Cultures of Rhaponticum carthamoides (Willd.) Iljin for the Production of Biomass and Caffeic Acid Derivatives. BioMed Res. Int. 2015, 2015, e181098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Yang, X.; Li, B.; Lu, X.; Kang, J.; Cao, X. Establishment of in vitro culture system for Codonopsis pilosula transgenic hairy roots. 3 Biotech 2020, 10, 137. [Google Scholar] [CrossRef]
- Hajimehdipoor, H.; Saeidnia, S.; Gohari, A.R.; Hamedani, M.P.; Shekarchi, M. Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacogn. Mag. 2012, 8, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochan, E.; Wysokińska, H.; Chmiel, A.; Grabias, B. Rosmarinic acid and other phenolic acids in hairy roots of Hyssopus officinalis. Z. Naturforsch. C 1999, 54, 11–16. [Google Scholar] [CrossRef]
- Lee, S.Y.; Xu, H.; Kim, Y.K.; Park, S.U. Rosmarinic acid production in hairy root cultures of Agastache rugosa Kuntze. World J. Microbiol. Biotechnol. 2008, 24, 969–972. [Google Scholar] [CrossRef]
- Murakami, Y.; Omoto, T.; Asai, I.; Shimomura, K.; Yoshihira, K.; Ishimaru, K. Rosmarinic acid and related phenolics in transformed root cultures of Hyssopus officinalis. Plant Cell Tissue Organ Cult. 1998, 53, 75–78. [Google Scholar] [CrossRef]
- Lloyd, G.; McCown, B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Int. Plant Prop. Soc. 1980, 30, 421–427. [Google Scholar]
- Schenk, R.U.; Hildebrandt, A.C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 1972, 50, 199–204. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojina, K. Nutrient requirement of suspension cultures of soybean root cell. Exp. Cell Rep. 1968, 50, 151–158. [Google Scholar] [CrossRef]
Medium Type | WP | ½WP | SH | ½SH | MS | ½MS | B5 | ½B5 |
---|---|---|---|---|---|---|---|---|
CA | 0.67 ± 0.14 a | 0.51 ± 0.01 ab | 0.58 ± 0.01 ab | 0.59 ± 0.01 a | 0.14 ± 0.01 d | 0.32 ± 0.01 c | 0.50 ± 0.01 ab | 0.42 ± 0.08 abc |
RAH | 0.46 ± 0.03 c | 0.27 ± 0.02 d | 2.34 ± 0.03 a | 1.03 ± 0.01 b | 0.09 ± 0.01 e | 0.19 ± 0.03 de | 0.21 ± 0.04 d | 0.21 ± 0.01 d |
SAE | 1.64 ± 0.25 bc | 3.02 ± 0.02 a | 2.19 ± 0.02 b | 1.43 ± 0.03 c | 0.76 ± 0.08 d | 0.94 ± 0.22 cd | 0.59 ± 0.07 d | 1.04 ± 0.23 cd |
RA | 42.81 ± 2.47 c | 41.88 ± 0.07 c | 62.17 ± 0.91 a | 49.45 ± 0.62 bc | 31.04 ± 2.41 d | 52.59 ± 0.63 b | 55.01 ± 2.52 ab | 59.23 ± 1.36 ab |
SAK | 4.78 ± 0.30 c | 3.94 ± 0.02 d | 8.08 ± 0.09 a | 5.70 ± 0.05 b | 0.68 ± 0.13 fg | 0.60 ± 0.04 g | 1.07 ± 0.02 ef | 1.41 ± 0.16 e |
CAD I | 0.44 ± 0.02 d | 0.53 ± 0.01 cd | 1.00 ± 0.02 b | 1.15 ± 0.01 a | 0.58 ± 0.01 c | 0.96 ± 0.02 b | 0.47 ± 0.02 d | 0.55 ± 0.01 c |
MR | 0.59 ± 0.03 b | 0.62 ± 0.01 b | 1.14 ± 0.01 a | 0.75 ± 0.01 b | 0.67 ± 0.09 b | 1.03 ± 0.28 ab | 0.81 ± 0.08 ab | 0.88 ± 0.03 b |
SAF I | 0.46 ± 0.16 ab | 0.96 ± 0.01 a | 0.36 ± 0.01 b | 0.51 ± 0.02 b | 0.32 ± 0.04 b | 0.34 ± 0.073 b | 0.26 ± 0.08 b | 0.22 ± 0.12 b |
SAF II | 1.43 ± 0.10 b | 1.83 ± 0.01 a | 1.31 ± 0.03 b | 1.55 ± 0.02 b | 0.47 ± 0.03 d | 0.77 ± 0.06 cd | 1.03 ± 0.06 bc | 0.74 ± 0.16 cd |
TOTAL | 53.29 ± 2.60 c | 53.54 ± 0.03 c | 79.18 ± 1.07 a | 62.15 ± 0.73 b | 34.76 ± 2.22 d | 57.73 ± 0.37 c | 59.94 ± 2.45 bc | 64.69 ± 1.48 b |
Medium | SH FV | SH ½V | SH ¼V | SH 0V | ½SH FV | ½SH ½V | ½SH ¼V | ½SH 0V |
---|---|---|---|---|---|---|---|---|
CA | 0.33 ± 0.01 de | 0.31 ± 0.01 e | 0.38 ± 0.01 cd | 0.51 ± 0.01 b | 0.58 ± 0.01 ab | 0.35 ± 0.01 de | 0.41 ± 0.01 c | 0.52 ± 0.03 ab |
RAH | 0.15 ± 0.01 e | 0.14 ± 0.01 e | 0.08 ± 0.01 e | 0.13 ± 0.02 e | 1.02 ± 0.01 b | 1.47 ± 0.11 a | 0.61 ± 0.01 c | 0.33 ± 0.01 d |
SAE | 3.50 ± 0.04 a | 2.92 ± 0.05 bc | 2.64 ± 0.05 c | 0.82 ± 0.06 e | 1.40 ± 0.05 d | 3.75 ± 0.14 a | 3.14 ± 0.03 b | 0.23 ± 0.03 f |
RA | 66.20 ± 0.36 a | 61.68 ± 0.41 b | 51.93 ± 0.42 c | 25.76 ± 1.24 d | 48.79 ± 1.01 c | 64.02 ± 0.95 ab | 62.35 ± 0.50 b | 22.80 ± 0.39 d |
SAK | 3.01 ± 0.03 e | 1.78 ± 0.02 f | 1.52 ± 0.03 f | 5.94 ± 0.14 bc | 5.59 ± 0.13 c | 6.61 ± 0.11 b | 3.74 ± 0.04 d | 7.84 ± 0.36 a |
CAD I | 0.61 ± 0.01 c | 0.49 ± 0.01 d | 0.50 ± 0.01 d | 0.17 ± 0.01 f | 1.14 ± 0.01 a | 1.12 ± 0.04 a | 0.72 ± 0.02 b | 0.24 ± 0.01 e |
MR | 1.34 ± 0.01 a | 0.95 ± 0.01 c | 0.82 ± 0.01 e | 0.80 ± 0.02 e | 0.74 ± 0.01 ab | 1.14 ± 0.07 b | 0.90 ± 0.01 cd | 0.87 ± 0.01 d |
SAF I | 0.48 ± 0.03 b | 0.42 ± 0.03 b | 0.67 ± 0.01 a | 0.46 ± 0.04 b | 0.49 ± 0.02 b | 0.27 ± 0.05 d | 0.31 ± 0.01 c | 0.44 ± 0.01 b |
SAF II | 1.26 ± 0.01 cd | 1.32 ± 0.03 c | 1.70 ± 0.04 a | 1.08 ± 0.05 de | 1.52 ± 0.03 ab | 1.05 ± 0.07 e | 1.30 ± 0.02 c | 1.41 ± 0.06 bc |
TOTAL | 76.87 ± 0.45 a | 70.01 ± 0.52 b | 60.24 ± 0.43 c | 35.67 ± 1.22 d | 61.26 ± 1.25 c | 79.78 ± 0.88 a | 73.47 ± 0.59 b | 34.68 ± 0.33 d |
Medium | Weighted Normalized Culture Parameters | TOPSIS Parameters | |||||
---|---|---|---|---|---|---|---|
GI DW | TPC | RA | SAK | S+ | S− | P | |
SH FV | 0.1093 | 0.1067 | 0.1105 | 0.0532 | 0.0854 | 0.1264 | 0.5967 |
SH ½V | 0.1014 | 0.0972 | 0.1030 | 0.0314 | 0.1085 | 0.1096 | 0.5026 |
SH ¼V | 0.0986 | 0.0836 | 0.0867 | 0.0269 | 0.1178 | 0.0927 | 0.4404 |
SH 0V | 0.0280 | 0.0495 | 0.0430 | 0.1049 | 0.1267 | 0.0783 | 0.3819 |
½SH FV | 0.0962 | 0.0850 | 0.0814 | 0.0988 | 0.0571 | 0.1143 | 0.6670 |
½SH ½V | 0.1087 | 0.1108 | 0.1069 | 0.1168 | 0.0220 | 0.1525 | 0.8737 |
½SH ¼V | 0.0880 | 0.1020 | 0.1041 | 0.0661 | 0.0763 | 0.1113 | 0.5933 |
½SH 0V | 0.0307 | 0.0481 | 0.0381 | 0.1385 | 0.1239 | 0.1117 | 0.4741 |
Sucrose Content | 2% | 3% | 4% | 5% |
---|---|---|---|---|
CA | 0.43 ± 0.01 a | 0.27 ± 0.01 c | 0.33 ± 0.01 b | 0.32 ± 0.01 b |
RAH | 0.66 ± 0.02 d | 3.01 ± 0.04 c | 4.63 ± 0.02 a | 4.29 ± 0.04 b |
SAE | 5.00 ± 0.14 a | 3.23 ± 0.04 b | 2.18 ± 0.02 c | 2.14 ± 0.03 c |
RA | 83.48 ± 1.32 a | 72.68 ± 0.99 b | 58.91 ± 0.36 c | 56.25 ± 0.62 c |
SAK | 6.99 ± 0.14 d | 9.86 ± 0.12 c | 11.70 ± 0.09 b | 12.53 ± 0.11 a |
CAD I | 0.75 ± 0.03 a | 0.77 ± 0.02 a | 0.57 ± 0.01 b | 0.52 ± 0.01 b |
MR | 1.33 ± 0.03 b | 1.45 ± 0.02 a | 1.14 ± 0.01 c | 1.22 ± 0.02 c |
SAF I | 0.61 ± 0.02 a | 0.38 ± 0.02 b | 0.34 ± 0.01 b | 0.28 ± 0.01 c |
SAF II | 1.17 ± 0.05 a | 0.81 ± 0.02 b | 0.89 ± 0.01 b | 0.71 ± 0.01 c |
TOTAL | 100.43 ± 1.23 a | 92.45 ± 1.04 b | 80.71 ± 0.45 c | 78.26 ± 0.80 c |
Sucrose Content | Weighted Normalized Culture Parameters | TOPSIS Parameters | |||||
---|---|---|---|---|---|---|---|
GI DW | TPC | RA | SAK | S+ | S− | P | |
2% | 0.0858 | 0.1420 | 0.1519 | 0.0833 | 0.085 | 0.0587 | 0.4085 |
3% | 0.1300 | 0.1307 | 0.1322 | 0.1175 | 0.0402 | 0.0665 | 0.6232 |
4% | 0.1372 | 0.1141 | 0.1072 | 0.1394 | 0.0537 | 0.0763 | 0.5869 |
5% | 0.1393 | 0.1106 | 0.1023 | 0.1493 | 0.0587 | 0.085 | 0.5915 |
Light | White | Mixed | Blue | Red | Dark |
---|---|---|---|---|---|
CA | 0.63 ± 0.01 b | 0.68 ± 0.01 a | 0.60 ± 0.01 b | 0.45 ± 0.01 c | 0.27 ± 0.01 d |
RAH | 0.29 ± 0.01 c | 0.21 ± 0.01 c | 0.23 ± 0.02 c | 0.59 ± 0.01 b | 4.08 ± 0.61 a |
SAE | 0.35 ± 0.01 c | 0.32 ± 0.02 c | 0.46 ± 0.02 c | 0.70 ± 0.03 b | 4.19 ± 0.54 a |
RA | 29.08 ± 0.03 c | 32.16 ± 0.09 bc | 35.18 ± 1.45 b | 31.17 ± 1.39 bc | 70.05 ± 0.95 a |
SAK | 5.38 ± 0.14 b | 6.20 ± 0.27 b | 3.18 ± 0.14 c | 4.08 ± 0.23 c | 9.79 ± 0.20 a |
CAD I | 0.31 ± 0.01 b | 0.40 ± 0.04 b | 0.36 ± 0.02 b | 0.42 ± 0.02 b | 1.19 ± 0.22 a |
MR | 0.54 ± 0.01 b | 0.61 ± 0.05 b | 0.52 ± 0.02 b | 0.62 ± 0.02 b | 1.37 ± 0.02 a |
SAF I | 0.61 ± 0.01 b | 0.67 ± 0.01 b | 0.84 ± 0.02 a | 0.51 ± 0.02 c | 0.36 ± 0.05 d |
SAF II | 1.62 ± 0.03 a | 1.71 ± 0.01 a | 1.68 ± 0.05 a | 1.32 ± 0.02 b | 0.76 ± 0.07 c |
TOTAL | 38.80 ± 0.09 b | 42.96 ± 0.48 b | 43.06 ± 1.75 b | 39.88 ± 1.70 b | 92.06 ± 0.79 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzemińska, M.; Owczarek, A.; Olszewska, M.A.; Grzegorczyk-Karolak, I. In Vitro Strategy for the Enhancement of the Production of Bioactive Polyphenols in Transformed Roots of Salvia bulleyana. Int. J. Mol. Sci. 2022, 23, 7771. https://doi.org/10.3390/ijms23147771
Krzemińska M, Owczarek A, Olszewska MA, Grzegorczyk-Karolak I. In Vitro Strategy for the Enhancement of the Production of Bioactive Polyphenols in Transformed Roots of Salvia bulleyana. International Journal of Molecular Sciences. 2022; 23(14):7771. https://doi.org/10.3390/ijms23147771
Chicago/Turabian StyleKrzemińska, Marta, Aleksandra Owczarek, Monika A. Olszewska, and Izabela Grzegorczyk-Karolak. 2022. "In Vitro Strategy for the Enhancement of the Production of Bioactive Polyphenols in Transformed Roots of Salvia bulleyana" International Journal of Molecular Sciences 23, no. 14: 7771. https://doi.org/10.3390/ijms23147771
APA StyleKrzemińska, M., Owczarek, A., Olszewska, M. A., & Grzegorczyk-Karolak, I. (2022). In Vitro Strategy for the Enhancement of the Production of Bioactive Polyphenols in Transformed Roots of Salvia bulleyana. International Journal of Molecular Sciences, 23(14), 7771. https://doi.org/10.3390/ijms23147771