α/β-Hydrolase D16B Truncation Results in Premature Sperm Capacitation in Cattle
Abstract
:1. Introduction
2. Results
2.1. Spermatological Parameters
2.2. In Vitro Fertilization
2.3. Sperm Capacitation Analysis
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Animals and Samples
4.3. Analysis of Spermatological Parameters
4.4. Analysis of In Vitro Fertilization Capacity and Embryo Development
4.4.1. In Vitro Maturation and Fertilization of Bovine Embryos
4.4.2. In Vitro Culture of Bovine Embryos and Analysis of Developmental Competence
4.4.3. Individual In Vitro Culture of Bovine Embryos for Morphokinetic Analysis of Embryo Development
4.4.4. Statistical Analysis of IVF Experiments
4.5. Analysis of Sperm Capacitation
4.5.1. Culture Media
4.5.2. Sperm Suspension Preparation
4.5.3. Chlortetracycline Assessment
4.5.4. Statistical Analysis of Capacitation Experiments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, M.C. Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 1951, 168, 697–698. [Google Scholar] [CrossRef] [PubMed]
- Austin, C. Observations on the penetration of the sperm into the mammalian egg. Aust. J. Biol. Sci. 1951, 4, 581–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldi, E.; Luconi, M.; Bonaccorsi, L.; Krausz, C.; Forti, G. Human sperm activation during capacitation and acrosome reaction: Role of calcium, protein phosphorylation and lipid remodelling pathways. Front. Biosci. 1996, 1, A125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, B.K. Timing of fertilization in mammals: Sperm cholesterol/phospholipid ratio as a determinant of the capacitation interval. Proc. Natl. Acad. Sci. USA 1981, 78, 7560–7564. [Google Scholar] [CrossRef] [Green Version]
- Harrison, R.A.; Gadella, B.M. Bicarbonate-induced membrane processing in sperm capacitation. Theriogenology 2005, 63, 342–351. [Google Scholar] [CrossRef]
- Thérien, I.; Moreau, R.; Manjunath, P. Major proteins of bovine seminal plasma and high-density lipoprotein induce cholesterol efflux from epididymal sperm. Biol. Reprod. 1998, 59, 768–776. [Google Scholar] [CrossRef] [Green Version]
- Shan, S.; Xu, F.; Hirschfeld, M.; Brenig, B. Sperm Lipid Markers of Male Fertility in Mammals. Int. J. Mol. Sci. 2021, 22, 8767. [Google Scholar] [CrossRef]
- Yanagimachi, R. The movement of golden hamster spermatozoa before and after capacitation. Reproduction 1970, 23, 193–196. [Google Scholar] [CrossRef]
- Fraser, L.R. Sperm capacitation and the acrosome reaction. Hum. Reprod. 1998, 13 (Suppl. S1), 9–19. [Google Scholar] [CrossRef] [Green Version]
- Suárez, S.S.; Osman, R.A. Initiation of hyperactivated flagellar bending in mouse sperm within the female reproductive tract. Biol. Reprod. 1987, 36, 1191–1198. [Google Scholar] [CrossRef]
- Demott, R.P.; Suarez, S.S. Hyperactivated sperm progress in the mouse oviduct. Biol. Reprod. 1992, 46, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Suarez, S.; Katz, D.; Owen, D.; Andrew, J.; Powell, R. Evidence for the function of hyperactivated motility in sperm. Biol. Reprod. 1991, 44, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Suarez, S.S.; Dai, X. Hyperactivation enhances mouse sperm capacity for penetrating viscoelastic media. Biol. Reprod. 1992, 46, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Drobnis, E.; Yudin, A.; Cherr, G.; Katz, D. Hamster sperm penetration of the zona pellucida: Kinematic analysis and mechanical implications. Dev. Biol. 1988, 130, 311–323. [Google Scholar] [CrossRef]
- Stauss, C.R.; Votta, T.J.; Suarez, S.S. Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol. Reprod. 1995, 53, 1280–1285. [Google Scholar] [CrossRef]
- Okabe, M. The acrosome reaction: A historical perspective. In Sperm Acrosome Biogenesis and Function during Fertilization; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–13. [Google Scholar]
- De Lamirande, E.; Leclerc, P.; Gagnon, C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol. Hum. Reprod. 1997, 3, 175–194. [Google Scholar] [CrossRef] [Green Version]
- Suarez, S.S. Control of hyperactivation in sperm. Hum. Reprod. Update 2008, 14, 647–657. [Google Scholar] [CrossRef] [Green Version]
- De Lamirande, E.; Gagnon, C. Human sperm hyperactivation in whole semen and its association with low superoxide scavenging capacity in seminal plasma. Fertil. Steril. 1993, 59, 1291–1295. [Google Scholar] [CrossRef]
- Bailey, J.L.; Bilodeau, J.; Cormier, N. Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon. J. Androl. 2000, 21, 1–7. [Google Scholar]
- Cormier, N.; Sirard, M.A.; Bailey, J.L. Premature capacitation of bovine spermatozoa is initiated by cryopreservation. J. Androl. 1997, 18, 461–468. [Google Scholar]
- Villegas, J.; Kehr, K.; Soto, L.; Henkel, R.; Miska, W.; Sanchez, R. Reactive oxygen species induce reversible capacitation in human spermatozoa. Andrologia 2003, 35, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.-J.; Rahman, M.S.; Pang, W.-K.; Ryu, D.-Y.; Kim, B.; Pang, M.-G. Bisphenol A affects the maturation and fertilization competence of spermatozoa. Ecotoxicol. Environ. Saf. 2020, 196, 110512. [Google Scholar] [CrossRef] [PubMed]
- De Lamirande, E.; Yoshida, K.; Yoshiike, M.; Iwamato, T.; Gagnon, C. Semenogelin, the main protein of semen coagulum, inhibits human sperm capacitation by interfering with the superoxide anion generated during this process. J. Androl. 2001, 22, 672–679. [Google Scholar] [PubMed]
- Bi, Y.; Xu, W.-M.; Wong, H.Y.; Zhu, H.; Zhou, Z.-M.; Chan, H.C.; Sha, J.-H. NYD-SP27, a novel intrinsic decapacitation factor in sperm. Asian J. Androl. 2009, 11, 229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, S.; Xu, F.; Bleyer, M.; Becker, S.; Melbaum, T.; Wemheuer, W.; Hirschfeld, M.; Wacker, C.; Zhao, S.; Schütz, E. Association of α/β-Hydrolase D16B with Bovine Conception Rate and Sperm Plasma Membrane Lipid Composition. Int. J. Mol. Sci. 2020, 21, 627. [Google Scholar] [CrossRef]
- Lord, C.C.; Thomas, G.; Brown, J.M. Mammalian alpha beta hydrolase domain (ABHD) proteins: Lipid metabolizing enzymes at the interface of cell signaling and energy metabolism. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2013, 1831, 792–802. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R.; Mannowetz, N.; Iavarone, A.T.; Safavi, R.; Gracheva, E.O.; Smith, J.F.; Hill, R.Z.; Bautista, D.M.; Kirichok, Y.; Lishko, P.V. Unconventional endocannabinoid signaling governs sperm activation via the sex hormone progesterone. Science 2016, 352, 555–559. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, S.R.; De los Ángeles Monclus, M.; Rensetti, D.E.; Fornés, M.W.; Aveldaño, M.I. Differential involvement of rat sperm choline glycerophospholipids and sphingomyelin in capacitation and the acrosomal reaction. Biochimie 2010, 92, 1886–1894. [Google Scholar] [CrossRef]
- Vaquer, C.C.; Suhaiman, L.; Pavarotti, M.A.; De Blas, G.A.; Belmonte, S.A. Ceramide induces a multicomponent intracellular calcium increase triggering the acrosome secretion in human sperm. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118704. [Google Scholar] [CrossRef]
- Vazquez, J.M.; Roldan, E.R. Diacylglycerol species as messengers and substrates for phosphatidylcholine re-synthesis during Ca2+-dependent exocytosis in boar spermatozoa. Mol. Reprod. Dev. Inc. Gamete Res. 1997, 48, 95–105. [Google Scholar] [CrossRef]
- Lopez, C.I.; Pelletán, L.E.; Suhaiman, L.; De Blas, G.A.; Vitale, N.; Mayorga, L.S.; Belmonte, S.A. Diacylglycerol stimulates acrosomal exocytosis by feeding into a PKC-and PLD1-dependent positive loop that continuously supplies phosphatidylinositol 4, 5-bisphosphate. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2012, 1821, 1186–1199. [Google Scholar] [CrossRef] [PubMed]
- DasGupta, S.; Mills, C.; Fraser, L. Ca2+-related changes in the capacitation state of human spermatozoa assessed by a chlortetracycline fluorescence assay. Reproduction 1993, 99, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Singh, A.K. Trends of male factor infertility, an important cause of infertility: A review of literature. J. Hum. Reprod. Sci. 2015, 8, 191. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R. Sperm function tests and fertility. Int. J. Androl. 2006, 29, 69–75. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, H. Laboratory semen assessment and prediction of fertility: Still utopia? Reprod. Domest. Anim. 2003, 38, 312–318. [Google Scholar] [CrossRef]
- Bracke, A.; Peeters, K.; Punjabi, U.; Hoogewijs, D.; Dewilde, S. A search for molecular mechanisms underlying male idiopathic infertility. Reprod. Biomed. Online 2018, 36, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, R.; Fujihara, Y.; Ikawa, M.; Okabe, M. Mice expressing aberrant sperm-specific protein PMIS2 produce normal-looking but fertilization-incompetent spermatozoa. Mol. Biol. Cell 2012, 23, 2671–2679. [Google Scholar] [CrossRef]
- Krutskikh, A.; Poliandri, A.; Cabrera-Sharp, V.; Dacheux, J.L.; Poutanen, M.; Huhtaniemi, I. Epididymal protein Rnase10 is required for post-testicular sperm maturation and male fertility. FASEB J. 2012, 26, 4198–4209. [Google Scholar] [CrossRef] [Green Version]
- Llanos, M.N.; Meizel, S. Phospholipid methylation increases during capacitation of golden hamster sperm in vitro. Biol. Reprod. 1983, 28, 1043–1051. [Google Scholar] [CrossRef] [Green Version]
- Snider, D.; Clegg, E. Alteration of phospholipids in porcine spermatozoa during in vivo uterus and oviduct incubation. J. Anim. Sci. 1975, 40, 269–274. [Google Scholar] [CrossRef]
- Cross, N.L. Sphingomyelin modulates capacitation of human sperm in vitro. Biol. Reprod. 2000, 63, 1129–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sati, L.; Cayli, S.; Delpiano, E.; Sakkas, D.; Huszar, G. The pattern of tyrosine phosphorylation in human sperm in response to binding to zona pellucida or hyaluronic acid. Reprod. Sci. 2014, 21, 573–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visconti, P.E.; Bailey, J.L.; Moore, G.D.; Pan, D.; Olds-Clarke, P.; Kopf, G.S. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 1995, 121, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Buder, S.; Rudiger, K.; Beyerbach, M.; Waberski, D. Influences on semen traits used for selection of young AI boars. Anim. Reprod. Sci. 2014, 148, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.; Mohammadpour, F.; Schroter, F.; Jakop, U.; Honicke, H.; Hasenfuss, T.; Henne, H.; Schon, J.; Muller, K. Suitability of semen stress tests for predicting fertilizing capacity of boar ejaculates. Theriogenology 2021, 176, 73–81. [Google Scholar] [CrossRef]
- Parrish, J.; Susko-Parrish, J.; Winer, M.; First, N. Capacitation of bovine sperm by heparin. Biol. Reprod. 1988, 38, 1171–1180. [Google Scholar] [CrossRef]
- Holm, P.; Booth, P.; Schmidt, M.; Greve, T.; Callesen, H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology 1999, 52, 683–700. [Google Scholar] [CrossRef]
- Fraser, L.R.; Abeydeera, L.; Niwa, K. Ca2+-regulating mechanisms that modulate bull sperm capacitation and acrosomal exocytosis as determined by chlortetracycline analysis. Mol. Reprod. Dev. 1995, 40, 233–241. [Google Scholar] [CrossRef]
Spermatological Parameter | G/G | G/A | A/A | |
---|---|---|---|---|
(Mean ± SEM) | (Mean ± SEM) | (Mean ± SEM) | ||
Sperm morphology (%) | N | 60.5 ± 4.3 | 55.2 ± 6.3 | 52.3 ± 0.8 |
K | 3.5 ± 0.9 | 1.6 ± 0.6 | 7.3 ± 4.8 | |
KK | 26.0 ± 4.8 | 31.1 ± 6.4 | 24.0 ± 5.5 | |
KKD | 0.2 ± 0.2 | 0.3 ± 0.2 | 2.8 ± 2.3 | |
M | 4.0 ± 1.3 | 4.3 ± 1.5 | 5.0 ± 1.5 | |
prP | 1.2 ± 0.7 | 1.8 ± 1.1 | 3.0 ± 0.5 | |
distP | 0.7 ± 0.3 | 2.6 ± 1.4 | 1.8 ± 0.3 | |
PS | 1.7 ± 0.7 | 1.7 ± 0.4 | 0.5 ± 0.0 | |
S | 2.3 ± 1.2 | 1.3 ± 0.3 | 3.3 ± 1.3 | |
MB | 0.0 ± 0.0 | 0.1 ± 0.1 | 0.3 ± 0.3 | |
Post-thaw total sperm motility after TRT | 5 min | 61.7 ± 4.4 | 69.0 ± 4.6 | 70.0 ± 5.0 |
30 min | 61.7 ± 4.4 | 69.0 ± 6.2 | 72.5 ± 2.5 | |
60 min | 60.0 ± 2.9 | 67.0 ± 5.1 | 72.5 ± 2.5 | |
120 min | 61.7 ± 3.3 | 60.0 ± 9.4 | 67.5 ± 2.5 | |
180 min | 56.7 ± 1.7 | 49.0 ± 15.2 | 67.5 ± 2.5 | |
240 min | 35.0 ± 10.4 | 34.0 ± 11.6 | 40.0 ± 5.0 | |
Plasma membrane and acrosome intact spermatozoa (%) | 0 min | 49.2 ± 5.5 | 55.9 ± 5.0 | 55.7 ± 3.5 |
180 min | 41.4 ± 2.4 | 48.8 ± 5.2 | 44.1 ± 3.1 | |
240 min | 35.4 ± 0.2 | 44.8 ± 5.4 | 38.0 ± 3.2 | |
Sperm concentration (106/mL) | 86.4 ± 25.5 | 66.1 ± 10.4 | 67.8 ± 13.7 |
Development to Blastocysts | ||||||
---|---|---|---|---|---|---|
Replicates | Total | Cleaved | Day 7 | Day 9 | Day 9 Hatched | |
Bull Genotype | (n) | (n) | (Mean ± STD) | (Mean ± STD) | (Mean ± STD) | (Mean ± STD) |
G/G | 10 | 551 | 88.6 ± 4.3 a | 19.2 ± 7.6 a | 35.3 ± 5.7 a | 40.6 ± 22.1 |
A/A_1 | 10 | 535 | 84.2 ± 9.7 a | 19.0 ± 5.9 a | 33.8 ± 13.5 a | 40.0 ± 16.4 |
A/A_2 | 10 | 610 | 62.6 ± 12.2 b | 8.3 ± 10.5 b | 15.8 ± 13.0 b | 27.7 ± 24.6 |
Total | 2-Cell Stage | 4-Cell Stage | 8-Cell Stage | Early Blastocyst | Expanded Blastocyst | |
---|---|---|---|---|---|---|
Bull Genotype | (n) | (Mean ± STD) | (Mean ± STD) | (Mean ± STD) | (Mean ± STD) | (Mean ± STD) |
G/G | 70 | 29.3 ± 15.0 a | 37.7 ± 17.6 a | 53.2 ± 28.8 | 164.9 ± 72.8 | 185.9 ± 78.8 |
A/A_1 | 70 | 32.7 ± 12.4 b | 45.3 ± 28.0 ab | 61.2 ± 38.2 | 170.2 ± 81.8 | 189.1 ± 87.7 |
A/A_2 | 70 | 34.5 ± 17.6 b | 49.9 ± 32.6 b | 61.2 ± 38.2 | 164.2 ± 72.8 | 185.4 ± 82.2 |
Genotype | 0 h | 2 h | Total | ||||
---|---|---|---|---|---|---|---|
F | B | AR | F | B | AR | ||
WT | 139 | 24 | 38 | 90 | 56 | 73 | 420 |
HET | 92 | 60 | 61 | 56 | 49 | 102 | 420 |
MUT | 156 | 55 | 25 | 71 | 82 | 72 | 461 |
Total | 387 | 139 | 124 | 217 | 187 | 247 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shan, S.; Xu, F.; Hirschfeld, M.; Herrmann, C.; Schulze, M.; Sharifi, A.R.; Hoelker, M.; Brenig, B. α/β-Hydrolase D16B Truncation Results in Premature Sperm Capacitation in Cattle. Int. J. Mol. Sci. 2022, 23, 7777. https://doi.org/10.3390/ijms23147777
Shan S, Xu F, Hirschfeld M, Herrmann C, Schulze M, Sharifi AR, Hoelker M, Brenig B. α/β-Hydrolase D16B Truncation Results in Premature Sperm Capacitation in Cattle. International Journal of Molecular Sciences. 2022; 23(14):7777. https://doi.org/10.3390/ijms23147777
Chicago/Turabian StyleShan, Shuwen, Fangzheng Xu, Marc Hirschfeld, Claudia Herrmann, Martin Schulze, Ahmad Reza Sharifi, Michael Hoelker, and Bertram Brenig. 2022. "α/β-Hydrolase D16B Truncation Results in Premature Sperm Capacitation in Cattle" International Journal of Molecular Sciences 23, no. 14: 7777. https://doi.org/10.3390/ijms23147777
APA StyleShan, S., Xu, F., Hirschfeld, M., Herrmann, C., Schulze, M., Sharifi, A. R., Hoelker, M., & Brenig, B. (2022). α/β-Hydrolase D16B Truncation Results in Premature Sperm Capacitation in Cattle. International Journal of Molecular Sciences, 23(14), 7777. https://doi.org/10.3390/ijms23147777