Structural Diversity of Mercury(II) Halide Complexes Containing Bis-pyridyl-bis-amide with Bulky and Angular Backbones: Ligand Effect and Metal Sensing
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure of 1
2.2. Crystal Structure of 2
2.3. Crystal Structure of 3
2.4. Crystal Structures of 4–6
2.5. Crystal Structures of 7–9
2.6. Effect of Halide Anion and Ligand Type on Structural Diversity
2.7. Luminescence Properties
2.8. Mechanochemical Synthesis and Stability of Complexes 7–9
2.9. Halide Anion Effect on Metal Sensing
3. Materials and Methods
3.1. General Procedures
3.2. Materials
3.3. Preparations
3.3.1. [HgCl2]⋅2L1, 1
3.3.2. [HgBr2(L1)]n, 2
3.3.3. [HgI2(L1)], 3
3.3.4. [Hg2Cl4(L2)2], 4
3.3.5. [Hg2Br4(L2)2], 5
3.3.6. [Hg2I4(L2)2], 6
3.3.7. {[HgCl2(L3)]⋅H2O}n, 7
3.3.8. {[HgBr2(L3)]⋅H2O}n, 8
3.3.9. {[HgI2(L3)]⋅H2O}n, 9
3.4. Powder X-ray Analysis
3.5. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lustig, W.P.; Mukherjee, S.; Rudd, N.D.; Desai, A.V.; Li, J.; Ghosh, S.K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wen, H.-M.; Cui, Y.; Zhou, W.; Qian, G.; Chen, B. Emerging Multifunctional Metal-Organic Framework Materials. Adv. Mater. 2016, 28, 8819–8860. [Google Scholar] [CrossRef] [PubMed]
- Wales, D.J.; Grand, J.; Ting, V.P.; Burke, R.D.; Edler, K.J.; Bowen, C.R.; Mintova, S.; Burrows, A.D. Gas sensing using porous materials for automotive applications. Chem. Soc. Rev. 2015, 44, 4290–4321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsali, A.; Masoomi, M.Y. Structures and properties of mercury(II) coordination polymers. Coord. Chem. Rev. 2009, 253, 1882–1905. [Google Scholar] [CrossRef]
- Mahmoudi, G.; Zaręba, J.K.; Bauzá, A.; Kubicki, M.; Bartyzel, A.; Keramidas, A.D.; Butusov, L.; Mirosławh, B.; Frontera, A. Recurrent supramolecular motifs in discrete complexes and coordination polymers based on mercury halides: Prevalence of chelate ring stacking and substituent effects. CrystEngComm 2018, 20, 1065–1076. [Google Scholar] [CrossRef] [Green Version]
- Rana, L.K.; Sharma, S.; Hundal, G. First report on crystal engineering of Hg(II) halides with fully substituted 3,4-pyridinedi carboxamides: Generation of two-dimensional coordination polymers and linear zig-zag chains of mercury metal ions. Cryst. Growth Des. 2016, 16, 92–107. [Google Scholar] [CrossRef]
- Mahmoudi, G.; Bauzá, A.; Gurbanov, A.V.; Zubkov, F.I.; Maniukiewicz, W.; Rodriguez-Diéguez, A.; López-Torres, E.; Frontera, A. The role of unconventional stacking interactions in the supramolecular assemblies of Hg(II) coordination compounds. CrystEngComm 2016, 18, 9056–9066. [Google Scholar] [CrossRef]
- Mobin, S.M.; Srivastava, A.K.; Mathur, P.; Lahiri, G.K. Reversible single-crystal to single-crystal transformations in a Hg(II) derivative. 1D-polymeric chain ⇋ 2D-networking as a function of temperature. Dalton Trans. 2010, 39, 8698–8705. [Google Scholar] [CrossRef]
- Mahmoudi, G.; Khandar, A.A.; White, J.; Mitoraj, M.P.; Jena, H.S.; Der Voort, P.V.; Qureshi, N.; Kirillov, A.M.; Robeyns, K.; Safin, D.A. Polar protic solvent-trapping polymorphism of the HgII-hydrazone coordination polymer: Experimental and theoretical findings. CrystEngComm 2017, 19, 3017–3025. [Google Scholar] [CrossRef]
- Yuan, Z.Z.; Luo, F.; Song, Y.-M.; Sun, G.-M.; Tian, X.-Z.; Huang, H.-X.; Zhu, Y.; Feng, X.-F.; Luo, M.-B.; Liu, S.-J.; et al. Solvent-induced supramolecular isomers, structural diversity, and unprecedented in situ formation of both inorganic and organic ions in inorganic–organic mercury(ii) complexes. Dalton Trans. 2012, 41, 12670–12673. [Google Scholar] [CrossRef]
- Wang, H.; Wang, P.; Huang, C.; Chang, L.; Wu, J.; Hou, H.; Fan, Y. Construction of a series of mercury(II) complexes based on a bis-pyridyl-bis-amide ligand: Effect of counter anions, interactions on the supermolecular structures. Inorg. Chim. Acta 2011, 378, 326–332. [Google Scholar] [CrossRef]
- Hsu, W.; Li, Y.-S.; He, H.-Y.; Chen, K.-T.; Wu, H.-S.; Proserpio, D.M.; Chen, J.-D.; Wang, J.-C. Stepwise formation of heteronuclear coordination networks based on quadruple-bonded dimolybdenum units containing formamidinate ligands. CrystEngComm 2014, 16, 7385–7388. [Google Scholar] [CrossRef]
- Hsu, W.; Yang, X.-K.; Chhetri, P.M.; Chen, J.-D. Hg(II) coordination polymers based on N,N’-bis(pyridine-4-yl)formamidine. Polymers 2016, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahat Chhetri, P.; Yang, X.-K.; Chen, J.-D. Solvent-mediated reversible structural transformation of mercury iodide coordination polymers: Role of halide anions. Cryst. Growth Des. 2017, 17, 4801–4809. [Google Scholar] [CrossRef]
- Mahat Chhetri, P.; Yang, X.-K.; Chen, J.-D. Mercury halide coordination polymers exhibiting reversible structural transformation. CrystEngComm 2018, 20, 2126–2134. [Google Scholar] [CrossRef]
- Mahat Chhetri, P.; Yang, X.-K.; Yang, C.-Y.; Chen, J.-D. One-dimensional Mercury Halide Coordination Polymers Based on a Semi-rigid N-donor Ligand: Reversible Structural Transformation. Polymers 2019, 11, 436. [Google Scholar] [CrossRef] [Green Version]
- Mahat Chhetri, P.; Yang, X.-K.; Chen, J.-D. Isostructural Hg(II) halide coordination polymers: A comparison of powder XRD, IR, emission and Hirshfeld Surface Analysis. J. Mol. Struct. 2021, 1239, 130543. [Google Scholar] [CrossRef]
- Thapa, K.B.; Hsu, Y.-F.; Lin, H.-C.; Chen, J.-D. Hg(II) supramolecular isomers: Structural transformation and photoluminescence change. CrystEngComm 2015, 17, 7574–7582. [Google Scholar] [CrossRef]
- Kreno, L.E.; Leong, K.; Farha, O.K.; Allendorf, M.; Van Duyne, R.P.; Hupp, J.T. Metal–organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125. [Google Scholar] [CrossRef]
- Allendorf, M.D.; Bauer, C.A.; Bhakta, R.K.; Houk, R.J.T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352. [Google Scholar] [CrossRef]
- Mac, M.; Danel, A.; Kizior, K.; Nowak, P.; Karocki, A.; Tokarczyk, B. Investigations of the heavy atom effect occurring in bianthryl and 10,10′-dibromobianthryl. Fluorescence, cyclovoltamperometric and actinometric studies. Phys. Chem. Chem. Phys. 2003, 5, 988–997. [Google Scholar] [CrossRef]
- Ge, F.-Y.; Sun, G.-H.; Meng, L.; Ren, S.-S.; Zheng, H.-G. Four New Luminescent Metal–Organic Frameworks as Multifunctional Sensors for Detecting Fe3+, Cr2O72– and Nitromethane. Cryst. Growth Des. 2020, 20, 1898–1904. [Google Scholar] [CrossRef]
- Zhang, S.-H.; Zhang, S.-Y.; Li, J.-R.; Huang, Z.-Q.; Yang, J.; Yue, K.-F.; Wang, Y.-Y. Rational synthesis of an ultra-stable Zn(ii) coordination polymer based on a new tripodal pyrazole ligand for the highly sensitive and selective detection of Fe3+ and Cr2O72− in aqueous media. Dalton Trans. 2020, 49, 11201–11208. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Bardhan, D.; Chand, D.K. Multistimuli-Responsive Hydrolytically Stable “Smart” Mercury(II) Coordination Polymer. Inorg. Chem. 2018, 57, 11369–11381. [Google Scholar] [CrossRef]
- Pamei, M.; Puzari, A. Luminescent transition metal–organic frameworks: An emerging sensor for detecting biologically essential metal ions. Nano-Struct. Nano-Objects 2019, 19, 100364. [Google Scholar] [CrossRef]
- Yang, X.-K.; Lee, W.-T.; Hu, J.-H.; Chen, J.-D. Zn(II) and Cd(II) coordination polymers with a new angular bis-pyridyl-bis-amide: Synthesis, structures and sensing properties. CrystEngComm 2021, 23, 4486–4493. [Google Scholar] [CrossRef]
- Yu, Z.-Q.; Pan, M.; Jiang, J.-J.; Liu, Z.-M.; Su, C.-Y. Anion Modulated Structural Diversification in the Assembly of Cd(II) Complexes Based on a Balance-like Dipodal Ligand. Cryst. Growth Des. 2012, 12, 2389–2396. [Google Scholar] [CrossRef]
- Ganguly, S.; Parveen, R.; Dastidar, P. Rheoreversible Metallogels Derived from Coordination Polymers. Chem. Asian J. 2018, 13, 1474–1484. [Google Scholar] [CrossRef]
- Kumar, G.; Turnbull, M.M.; Thakur, V.; Gupta, S.; Trivedi, M.; Kumar, R.; Husain, A. Solvothermal synthesis, structural characterization, DFT and magnetic studies of a dinuclear paddlewheel Cu(II)-metallamacrocycle. J. Mol. Struct. 2020, 1201, 127193. [Google Scholar] [CrossRef]
- Bruker AXS. APEX2, V2008.6, SADABS V2008/1, SAINT V7.60A, SHELXTL V6.14; Bruker AXS Inc.: Madison, WI, USA, 2008. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. [Google Scholar] [CrossRef] [Green Version]
4 | 5 | 6 | |
---|---|---|---|
Hg-N(1) | 2.452(4) | 2.503(4) | 2.507(3) |
Hg-N(4A) | 2.510(4) | 2.453(4) | 2.459(3) |
Hg-X(1) | 2.3554(14) | 2.4681(8) | 2.6386(4) |
Hg-X(2) | 2.3461(15) | 2.4670(8) | 2.6322(4) |
∠N(1)-Hg-N(4A) | 84.27(13) | 84.31(15) | 83.92(12) |
∠N(1)-Hg-X(1) | 100.98(11) | 98.54(10) | 99.37(8) |
∠N(1)-Hg-X(2) | 97.22(10) | 97.14(11) | 100.10(9) |
∠N(4A)-Hg-X(1) | 97.47(10) | 101.43(12) | 102.67(9) |
∠N(4A)-Hg-X(2) | 94.91(10) | 99.21(12) | 100.18(9) |
∠X(1)-Hg-X(2) | 158.88(5) | 155.15(2) | 151.300(12) |
7 | 8 | 9 | |
---|---|---|---|
Hg-X(1) | 2.3374(11) | 2.4771(13) | 2.6270(6) |
Hg-X(2) | 2.3858(10) | 2.5213(12) | 2.6732(6) |
Hg-N(4A) | 2.413(3) | 2.419(9) | 2.435(5) |
Hg-N(1) | 2.418(3) | 2.388(8) | 2.405(5) |
∠X(1)-Hg-X(2) | 147.79(4) | 143.29(5) | 139.976(18) |
∠X(1)-Hg-N(4A) | 105.38(8) | 106.6(2) | 107.22(12) |
∠X(2)-Hg-N(4A) | 97.52(7) | 99.1(2) | 100.84(12) |
∠X(1)-Hg-N(1) | 104.26(7) | 106.4(2) | 106.63(11) |
∠X(2)-Hg-N(1) | 99.16(7) | 100.2(2) | 102.16(11) |
∠N(4A)-Hg-N(1) | 87.10(10) | 88.0(3) | 88.18(18) |
d1 (Å) | d2 (Å) | d3 (Å) | θ1 (°) | θ2 (°) | θ3 (°) | C-O-C | |
---|---|---|---|---|---|---|---|
7 | 11.05 | 11.50 | 19.80 | 21.75 | 77.79 | 2.11 | 118.3(2) |
8 | 11.06 | 11.47 | 19.60 | 19.52 | 81.09 | 3.21 | 117.3(7) |
9 | 11.06 | 11.40 | 19.41 | 16.89 | 84.51 | 5.94 | 117.3(4) |
Complex | Structure |
---|---|
[HgCl2]⋅2L1, 1 | 1D supramolecular chain |
[HgBr2(L1)]n, 2 | 1D zigzag chain |
[HgI2(L1)], 3 | 2D supramolecular layer |
[Hg2Cl4(L2)2], 4 | Dinuclear metallocycle |
[Hg2Br4(L2)2], 5 | Dinuclear metallocycle |
[Hg2I4(L2)2], 6 | Dinuclear metallocycle |
{[HgCl2(L3)] H2O}n, 7 | 1D zigzag chain |
{[HgBr2(L3)] H2O}n, 8 | 1D zigzag chain |
{[HgI2(L3)] H2O}n, 9 | 1D zigzag chain |
Compound | Excitation λex (nm) | Emission λem (nm) |
---|---|---|
L3 | 330 | 430 |
7 | 325 | 420 |
8 | 326 | 416 |
9 | 316 | 400 |
Compound | 1 | 2 | 3 |
---|---|---|---|
Formula | C44H32Cl2HgN8O8 | C22H16Br2HgN4O4 | C22H16HgI2N4O4 |
Formula weight | 1072.26 | 760.80 | 854.78 |
Crystal system | Triclinic | Triclinic | Triclinic |
Space group | Pī | Pī | Pī |
a, Å | 8.7814(14) | 6.80779(8) | 9.7275(5) |
b, Å | 10.5498(16) | 11.83139(14) | 11.5101(8) |
c, Å | 10.9631(16) | 14.71857(16) | 12.4521(7) |
α, ° | 85.121(4) | 80.4699(6) | 106.3362(18) |
β, ° | 74.166(4) | 85.6414(6) | 98.0437(13) |
γ, ° | 81.889(4) | 81.8897(6) | 114.9454(11) |
V, Å3 | 966.2(3) | 1155.78(2) | 1158.30(12) |
Z | 1 | 2 | 2 |
Dcalc, Mg/m3 | 1.843 | 2.186 | 2.451 |
F(000) | 530 | 716 | 788 |
µ (Mo Kα), mm−1 | 4.192 | 10.153 | 9.347 |
Range (2θ) for data collection, deg | 3.86 ≤ 2θ ≤ 56.73 | 3.52 ≤ 2θ ≤ 56.60 | 3.57 ≤ 2θ ≤ 52.00 |
Independent reflections | 4816 [R(int) = 0.0350] | 5727 [R(int) = 0.0298] | 4540 [R(int) = 0.0317] |
Data/restraints/parameters | 4816/0/286 | 5727/0/298 | 4540/0/298 |
quality-of-fit indicator c | 1.088 | 1.070 | 1.029 |
Final R indices [I > 2σ(I)] a,b | R1 = 0.0142, wR2 = 0.0368 | R1 = 0.0289, wR2 = 0. 696 | R1 = 0.0158, wR2 = 0.0396 |
R indices (all data) | R1 = 0.0142, wR2 = 0.0368 | R1 = 0.0327, wR2 = 0.0714 | R1 = 0.0161, wR2 = 0.0397 |
Compound | 4 | 5 | 6 |
Formula | C48H40Cl4Hg2N8O8 | C48H40Br4Hg2N8O8 | C48H40Hg2I4N8O8 |
Formula weight | 1399.86 | 1577.70 | 1765.66 |
Crystal system | Monoclinic | Monoclinic | Monoclinic |
Space group | C2/c | C2/c | C2/c |
a, Å | 25.8153(6) | 26.208(2) | 26.7552(5) |
b, Å | 7.0635(2) | 7.1272(7) | 7.2351(1) |
c, Å | 27.1652(7) | 27.046(3) | 27.0340(5) |
α, ° | 90 | 90 | 90 |
β, ° | 97.5487(12) | 97.866(5) | 98.0783(9) |
γ, ° | 90 | 90 | 90 |
V, Å3 | 4910.5(2) | 5004.3(8) | 5181.22(15) |
Z | 4 | 4 | 4 |
Dcalc, Mg/m3 | 1.893 | 2.094 | 2.264 |
F(000) | 2704 | 2992 | 3280 |
µ (Mo Kα), mm−1 | 6.525 | 9.383 | 8.362 |
Range (2θ) for data collection, deg | 3.024 ≤ 2θ ≤ 56.656 | 3.04 ≤ 2θ ≤ 56.89 | 3.044 ≤ 2θ ≤ 56.678 |
Independent reflections | 6126 [R(int) = 0.0372] | 6265 [R(int) = 0.0588] | 6439 [R(int) = 0.0371] |
Data/restraints/parameters | 6126/0/316 | 6265/0/298 | 6439/0/317 |
quality-of-fit indicator c | 1.059 | 1.025 | 1.033 |
Final R indices [I > 2σ(I)] a,b | R1 = 0.0380, wR2 = 0.0951 | R1 = 0.0397, wR2 = 0.0815 | R1 = 0.0294, wR2 = 0.0674 |
R indices (all data) | R1 = 0.0506, wR2 = 0.1001 | R1 = 0.0717, wR2 = 0.0904 | R1 = 0.0363, wR2 = 0.0706 |
Compound | 7 | 8 | 9 |
Formula | C24H20Cl2HgN4O4 | C24H20 Br2HgN4O4 | C24H20HgI2N4O4 |
Formula weight | 699.93 | 788.85 | 882.83 |
Crystal system | Monoclinic | Monoclinic | Monoclinic |
Space group | P21/c | P21/c | P21/c |
a, Å | 18.4292(3) | 18.2680(16) | 18.052(3) |
b, Å | 13.6689(2) | 13.9475(11) | 14.386(3) |
c, Å | 9.8057 | 9.9861(8) | 10.1560(18) |
α, ° | 90 | 90 | 90 |
β, ° | 90.3635(9) | 91.326(4) | 91.810(7) |
γ, ° | 90 | 90 | 90 |
V, Å3 | 2470.09(7) | 2543.7(4) | 2636.3(8) |
Z | 4 | 4 | 4 |
Dcalc, Mg/m3 | 1.882 | 2.060 | 2.224 |
F(000) | 1352 | 1496 | 1640 |
µ(Mo Kα), mm−1 | 6.486 | 9.230 | 8.217 |
Range (2θ) for data collection, deg | 3.71 ≤ 2θ ≤ 56.70 | 3.67 ≤ 2θ ≤ 52.11 | 3.62 ≤ 2θ ≤ 56.70 |
Independent reflections | 6145 [R(Int) = 0.0357] | 4984 [R(Int) = 0.0512] | 6571 [R(Int) = 0.0448] |
Data/restraints/parameters | 6145/0/324 | 4984/0/321 | 6571/0/316 |
quality-of-fit indicator c | 1.048 | 1.044 | 1.034 |
Final R indices [I > 2σ(I)] a,b | R1 = 0.0285, wR2 = 0.0689 | R1 = 0.0535, wR2 = 0.1408 | R1 = 0.0396, wR2 = 0.0929 |
R indices (all data) | R1 = 0.0366, wR2 = 0.0722 | R1 = 0.0760, wR2 = 0.1506 | R1 = 0.0592, wR2 = 0.1008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Govindaraj, M.; Huang, W.-C.; Lee, C.-Y.; Lakshmanan, V.; Liu, Y.-H.; So, P.B.; Lin, C.-H.; Chen, J.-D. Structural Diversity of Mercury(II) Halide Complexes Containing Bis-pyridyl-bis-amide with Bulky and Angular Backbones: Ligand Effect and Metal Sensing. Int. J. Mol. Sci. 2022, 23, 7861. https://doi.org/10.3390/ijms23147861
Govindaraj M, Huang W-C, Lee C-Y, Lakshmanan V, Liu Y-H, So PB, Lin C-H, Chen J-D. Structural Diversity of Mercury(II) Halide Complexes Containing Bis-pyridyl-bis-amide with Bulky and Angular Backbones: Ligand Effect and Metal Sensing. International Journal of Molecular Sciences. 2022; 23(14):7861. https://doi.org/10.3390/ijms23147861
Chicago/Turabian StyleGovindaraj, Manivannan, Wei-Chun Huang, Chia-Yi Lee, Venkatesan Lakshmanan, Yu-Hsiang Liu, Pamela Berilyn So, Chia-Her Lin, and Jhy-Der Chen. 2022. "Structural Diversity of Mercury(II) Halide Complexes Containing Bis-pyridyl-bis-amide with Bulky and Angular Backbones: Ligand Effect and Metal Sensing" International Journal of Molecular Sciences 23, no. 14: 7861. https://doi.org/10.3390/ijms23147861
APA StyleGovindaraj, M., Huang, W. -C., Lee, C. -Y., Lakshmanan, V., Liu, Y. -H., So, P. B., Lin, C. -H., & Chen, J. -D. (2022). Structural Diversity of Mercury(II) Halide Complexes Containing Bis-pyridyl-bis-amide with Bulky and Angular Backbones: Ligand Effect and Metal Sensing. International Journal of Molecular Sciences, 23(14), 7861. https://doi.org/10.3390/ijms23147861