A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Stratification of the Retrieved Articles
3.2. Description of the Cell Secretions
3.3. Stratification of Secretions According to Cell Type
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Serafi, A.T.; El-Serafi, I.T.; Elmasry, M.; Steinvall, I.; Sjoberg, F. Skin regeneration in three dimensions, current status, challenges and opportunities. Differentiation 2017, 96, 26–29. [Google Scholar] [CrossRef] [PubMed]
- El-Serafi, A.; Elmasry, M.; Sjöberg, F. Cell Therapy, the Future Trend for Burn Management. Clin. Surg. 2018, 3, 1896. [Google Scholar]
- Zhao, H.; Chen, Y.; Zhang, C.; Fu, X. Autologous epidermal cell suspension: A promising treatment for chronic wounds. J. Tissue Viability 2016, 25, 50–56. [Google Scholar] [CrossRef]
- Milne, J.; Searle, R.; Styche, T. The characteristics and impact of hard-to-heal wounds: Results of a standardised survey. J. Wound Care 2020, 29, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Steinvall, I.; Olofsson, P.; Thorfinn, J.; Sjoberg, F.; Astrand, L.; Fayiz, S.; Khalaf, A.; Divyasree, P.; El-Serafi, A.T.; et al. Sprayed cultured autologous keratinocytes in the treatment of severe burns: A retrospective matched cohort study. Ann. Burns Fire Disasters 2020, 33, 134–142. [Google Scholar]
- Petry, L.; Kippenberger, S.; Meissner, M.; Kleemann, J.; Kaufmann, R.; Rieger, U.M.; Wellenbrock, S.; Reichenbach, G.; Zoller, N.; Valesky, E. Directing adipose-derived stem cells into keratinocyte-like cells: Impact of medium composition and culture condition. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 2010–2019. [Google Scholar] [CrossRef]
- Chavez-Munoz, C.; Nguyen, K.T.; Xu, W.; Hong, S.J.; Mustoe, T.A.; Galiano, R.D. Transdifferentiation of adipose-derived stem cells into keratinocyte-like cells: Engineering a stratified epidermis. PLoS ONE 2013, 8, e80587. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimian, T.G.; Pouzoulet, F.; Squiban, C.; Buard, V.; Andre, M.; Cousin, B.; Gourmelon, P.; Benderitter, M.; Casteilla, L.; Tamarat, R. Cell therapy based on adipose tissue-derived stromal cells promotes physiological and pathological wound healing. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 503–510. [Google Scholar] [CrossRef] [Green Version]
- Labrador-Velandia, S.; Alonso-Alonso, M.L.; Di Lauro, S.; Garcia-Gutierrez, M.T.; Srivastava, G.K.; Pastor, J.C.; Fernandez-Bueno, I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures. Exp. Eye Res. 2019, 185, 107671. [Google Scholar] [CrossRef]
- Kao, C.Y.; Papoutsakis, E.T. Extracellular vesicles: Exosomes, microparticles, their parts, and their targets to enable their biomanufacturing and clinical applications. Curr. Opin. Biotechnol. 2019, 60, 89–98. [Google Scholar] [CrossRef]
- Shahin, H.; Elmasry, M.; Steinvall, I.; Markland, K.; Blomberg, P.; Sjoberg, F.; El-Serafi, A.T. Human serum albumin as a clinically accepted cell carrier solution for skin regenerative application. Sci. Rep. 2020, 10, 14486. [Google Scholar] [CrossRef] [PubMed]
- Buhren, B.A.; Schrumpf, H.; Gorges, K.; Reiners, O.; Bolke, E.; Fischer, J.W.; Homey, B.; Gerber, P.A. Dose- and time-dependent effects of hyaluronidase on structural cells and the extracellular matrix of the skin. Eur. J. Med. Res. 2020, 25, 60. [Google Scholar] [CrossRef] [PubMed]
- Ecoeur, F.; Weiss, J.; Schleeger, S.; Guntermann, C. Lack of evidence for expression and function of IL-39 in human immune cells. PLoS ONE 2020, 15, e0242329. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, J.; Yin, L.; Tu, J.; Yin, Z. Tacrolimus Inhibits TNF-alpha/IL-17A-Produced pro-Inflammatory Effect on Human Keratinocytes by Regulating IkappaBzeta. Inflammation 2020, 43, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.R.; Vieira, R.P. Anti-Inflammatory Activity of Miodesin: Modulation of Inflammatory Markers and Epigenetic Evidence. Oxid. Med. Cell. Longev. 2020, 2020, 6874260. [Google Scholar] [CrossRef] [PubMed]
- Igawa, S.; Choi, J.E.; Wang, Z.; Chang, Y.L.; Wu, C.C.; Werbel, T.; Ishida-Yamamoto, A.; Di Nardo, A. Human Keratinocytes Use Sphingosine 1-Phosphate and its Receptors to Communicate Staphylococcus aureus Invasion and Activate Host Defense. J. Investig. Dermatol. 2019, 139, 1743–1752.e5. [Google Scholar] [CrossRef]
- Im, A.R.; Lee, B.; Kang, D.J.; Chae, S. Protective effects of tyndallized Lactobacillus acidophilus IDCC 3302 against UVBinduced photodamage to epidermal keratinocytes cells. Int. J. Mol. Med. 2019, 43, 2499–2506. [Google Scholar]
- Jiang, L.; Huang, J.; Lu, J.; Hu, S.; Pei, S.; Ouyang, Y.; Ding, Y.; Hu, Y.; Kang, L.; Huang, L.; et al. Ganoderma lucidum polysaccharide reduces melanogenesis by inhibiting the paracrine effects of keratinocytes and fibroblasts via IL-6/STAT3/FGF2 pathway. J. Cell. Physiol. 2019, 234, 22799–22808. [Google Scholar] [CrossRef]
- Liu, S.; Wu, F.; Wu, Z.; Li, Y.; Zhang, S.; Yu, N. IL-17A synergistically enhances TLR3-mediated IL-36gamma production by keratinocytes: A potential role in injury-amplified psoriatic inflammation. Exp. Dermatol. 2019, 28, 233–239. [Google Scholar] [CrossRef]
- Schneider, L.E.; Protschka, M.; Muller, U.; Muhsen, M.; Magin, T.M.; Anderegg, U.; Saalbach, A.; Buttner, M.; Alber, G.; Siegemund, S. Orf virus infection of human keratinocytes and dermal fibroblasts: Limited virus detection and interference with intercellular adhesion molecule-1 up-regulation. Exp. Dermatol. 2019, 28, 142–151. [Google Scholar] [CrossRef]
- Sugihara, S.; Sugimoto, S.; Tachibana, K.; Kobashi, M.; Nomura, H.; Miyake, T.; Hirai, Y.; Yamasaki, O.; Morizane, S. TNF-alpha and IL-17A induce the expression of lympho-epithelial Kazal-type inhibitor in epidermal keratinocytes. J. Dermatol. Sci. 2019, 96, 26–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arndt, S.; Unger, P.; Berneburg, M.; Bosserhoff, A.K.; Karrer, S. Cold atmospheric plasma (CAP) activates angiogenesis-related molecules in skin keratinocytes, fibroblasts and endothelial cells and improves wound angiogenesis in an autocrine and paracrine mode. J. Dermatol. Sci. 2018, 89, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Popp, T.; Kriegs, C.S.; Schmidt, A.; Balszuweit, F.; Menacher, G.; Kehe, K.; Thiermann, H.; Gudermann, T.; Steinritz, D. Anti-apoptotic and moderate anti-inflammatory effects of berberine in sulfur mustard exposed keratinocytes. Toxicol. Lett. 2018, 293, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Pei, S.; Huang, J.; Chen, J.; Hu, S.; Lei, L.; Fu, C.; Jiang, L.; Ding, Y.; Leng, Y.; Huang, L.; et al. UVB-inhibited H19 activates melanogenesis by paracrine effects. Exp. Dermatol. 2018, 27, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Facchini, G.; Pinheiro, A.; da Silva, M.S.; Bonner, M.Y.; Arbiser, J.; Eberlin, S. Honokiol protects skin cells against inflammation, collagenolysis, apoptosis, and senescence caused by cigarette smoke damage. Int. J. Dermatol. 2017, 56, 754–761. [Google Scholar] [CrossRef]
- Garcia-Gomez, E.; Miranda-Ozuna, J.F.T.; Diaz-Cedillo, F.; Vazquez-Sanchez, E.A.; Rodriguez-Martinez, S.; Jan-Roblero, J.; Cancino-Diaz, M.E.; Cancino-Diaz, J.C. Staphylococcus epidermidis lipoteichoic acid: Exocellular release and ltaS gene expression in clinical and commensal isolates. J. Med. Microbiol. 2017, 66, 864–873. [Google Scholar] [CrossRef]
- Goren, I.; Lee, S.Y.; Maucher, D.; Nusing, R.; Schlich, T.; Pfeilschifter, J.; Frank, S. Inhibition of cyclooxygenase-1 and -2 activity in keratinocytes inhibits PGE2 formation and impairs vascular endothelial growth factor release and neovascularisation in skin wounds. Int. Wound J. 2017, 14, 53–63. [Google Scholar] [CrossRef]
- Hakuta, A.; Yamaguchi, Y.; Okawa, T.; Yamamoto, S.; Sakai, Y.; Aihara, M. Anti-inflammatory effect of collagen tripeptide in atopic dermatitis. J. Dermatol. Sci. 2017, 88, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Sun, J.; Lu, C.J.; Zhao, R.Z.; Lu, Y.; Lin, H.J.; Wei, J.A. Formula PSORI-CM01 inhibits the inflammatory cytokine and chemokine release in keratinocytes via NF-kappaB expression. Int. Immunopharmacol. 2017, 44, 226–233. [Google Scholar] [CrossRef]
- Li, Q.; Kang, Z.; Jiang, S.; Zhao, J.; Yan, S.; Xu, F.; Xu, J. Effects of Ambient Fine Particles PM2.5 on Human HaCaT Cells. Int. J. Environ. Res. Public Health 2017, 14, 72. [Google Scholar] [CrossRef] [Green Version]
- Nicolaus, C.; Junghanns, S.; Hartmann, A.; Murillo, R.; Ganzera, M.; Merfort, I. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. J. Ethnopharmacol. 2017, 196, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Gozali, M.V.; Yi, F.; Zhang, J.A.; Liu, J.; Wu, H.J.; Xu, Y.; Luo, D.; Zhou, B.R. Photodynamic therapy inhibit Fibroblast Growth Factor-10 induced keratinocyte differentiation and proliferation through ROS in Fibroblast Growth Factor Receptor-2b pathway. Sci. Rep. 2016, 6, 27402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.K.; Koo, G.B.; Kim, Y.S.; Kim, Y.C. Epithelial-mesenchymal interaction during photodynamic therapy-induced photorejuvenation. Arch. Dermatol. Res. 2016, 308, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Zhang, F.R.; Deng, D.Q. Relationship between UV-irradiated HaCaT cell cytokines and Th1/Th2 imbalance. Genet. Mol. Res. 2015, 14, 7976–7985. [Google Scholar] [CrossRef]
- Liu, L.; Wu, Y.; Cao, K.; Xu, Y.Y.; Gao, X.H.; Chen, H.D.; Geng, L. Shikonin inhibits IFN-gamma-induced K17 over-expression of HaCaT cells by interfering with STAT3 signaling. Int. J. Clin. Exp. Pathol. 2015, 8, 9202–9207. [Google Scholar]
- Markel, T.A.; Crafts, T.D.; Jensen, A.R.; Hunsberger, E.B.; Yoder, M.C. Human mesenchymal stromal cells decrease mortality after intestinal ischemia and reperfusion injury. J. Surg. Res. 2015, 199, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Kim, M.S.; Jeong, G.S.; Yoon, J. Xanthii fructus extract inhibits TNF-alpha/IFN-gamma-induced Th2-chemokines production via blockade of NF-kappaB, STAT1 and p38-MAPK activation in human epidermal keratinocytes. J. Ethnopharmacol. 2015, 171, 85–93. [Google Scholar] [CrossRef]
- Smithrithee, R.; Niyonsaba, F.; Kiatsurayanon, C.; Ushio, H.; Ikeda, S.; Okumura, K.; Ogawa, H. Human beta-defensin-3 increases the expression of interleukin-37 through CCR6 in human keratinocytes. J. Dermatol. Sci. 2015, 77, 46–53. [Google Scholar] [CrossRef]
- Akeda, T.; Yamanaka, K.; Tsuda, K.; Omoto, Y.; Gabazza, E.C.; Mizutani, H. CD8+ T cell granzyme B activates keratinocyte endogenous IL-18. Arch. Dermatol. Res. 2014, 306, 125–130. [Google Scholar] [CrossRef]
- Gonzalez-Curiel, I.; Trujillo, V.; Montoya-Rosales, A.; Rincon, K.; Rivas-Calderon, B.; deHaro-Acosta, J.; Marin-Luevano, P.; Lozano-Lopez, D.; Enciso-Moreno, J.A.; Rivas-Santiago, B. 1,25-dihydroxyvitamin D3 induces LL-37 and HBD-2 production in keratinocytes from diabetic foot ulcers promoting wound healing: An in vitro model. PLoS ONE 2014, 9, e111355. [Google Scholar] [CrossRef]
- Miyata, M.; Ichihara, M.; Tajima, O.; Sobue, S.; Kambe, M.; Sugiura, K.; Furukawa, K.; Furukawa, K. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor alpha and interleukin 6. Biochem. Biophys. Res. Commun. 2014, 445, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Choi, S.H.; Kim, C.H.; Lee, C.H.; Lee, T.R.; Lee, A.Y. Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J. Investig. Dermatol. 2014, 134, 1075–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, Z.; Liu, X.; Zhao, Y.; Zhang, J. Cytotoxic effects of sodium dodecyl benzene sulfonate on human keratinocytes are not associated with proinflammatory cytokines expression. Chin. Med. J. 2014, 127, 3777–3781. [Google Scholar] [PubMed]
- Park, K.; Ommori, R.; Imoto, K.; Asada, H. Epidermal growth factor receptor inhibitors selectively inhibit the expressions of human beta-defensins induced by Staphylococcus epidermidis. J. Dermatol. Sci. 2014, 75, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Paul, T.; Schumann, C.; Rudiger, S.; Boeck, S.; Heinemann, V.; Kachele, V.; Steffens, M.; Scholl, C.; Hichert, V.; Seufferlein, T.; et al. Cytokine regulation by epidermal growth factor receptor inhibitors and epidermal growth factor receptor inhibitor associated skin toxicity in cancer patients. Eur. J. Cancer 2014, 50, 1855–1863. [Google Scholar] [CrossRef]
- Ruff, A.L.; Dillman, J.F., 3rd. Sulfur mustard induced cytokine production and cell death: Investigating the potential roles of the p38, p53, and NF-kappaB signaling pathways with RNA interference. J. Biochem. Mol. Toxicol. 2010, 24, 155–164. [Google Scholar] [CrossRef]
- Sakabe, J.; Umayahara, T.; Hiroike, M.; Shimauchi, T.; Ito, T.; Tokura, Y. Calcipotriol increases hCAP18 mRNA expression but inhibits extracellular LL37 peptide production in IL-17/IL-22-stimulated normal human epidermal keratinocytes. Acta Derm.-Venereol. 2014, 94, 512–516. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, M.; Hasegawa, T.; Yamaguchi, T.; Funakushi, N.; Suto, H.; Ueki, R.; Kobayashi, H.; Ogawa, H.; Ikeda, S. Yokukansan, a traditional Japanese medicine, adjusts glutamate signaling in cultured keratinocytes. Biomed. Res. Int. 2014, 2014, 364092. [Google Scholar] [CrossRef]
- Hiroike, M.; Sakabe, J.; Kobayashi, M.; Shimauchi, T.; Ito, T.; Hirakawa, S.; Inoh, A.; Tokura, Y. Acicular, but not globular, titanium dioxide nanoparticles stimulate keratinocytes to produce pro-inflammatory cytokines. J. Dermatol. 2013, 40, 357–362. [Google Scholar] [CrossRef]
- Huang, X.Q.; Yi, J.L.; Yin, S.C.; Chen, R.Z.; Li, M.R.; Gong, Z.J.; Lai, W.; Chen, J. Exposure to heat-inactivated Trichophyton rubrum resulting in a limited immune response of human keratinocytes. Chin. Med. J. 2013, 126, 215–219. [Google Scholar]
- Kamata, M.; Tada, Y.; Tatsuta, A.; Kawashima, T.; Shibata, S.; Mitsui, H.; Asano, Y.; Sugaya, M.; Kadono, T.; Kanda, N.; et al. Ciclosporin A inhibits production of interleukin-12/23p40 and interleukin-23 by the human monocyte cell line, THP-1. Clin. Exp. Dermatol. 2013, 38, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Krolikiewicz-Renimel, I.; Michel, T.; Destandau, E.; Reddy, M.; Andre, P.; Elfakir, C.; Pichon, C. Protective effect of a Butea monosperma (Lam.) Taub. flowers extract against skin inflammation: Antioxidant, anti-inflammatory and matrix metalloproteinases inhibitory activities. J. Ethnopharmacol. 2013, 148, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Lv, F.; You, W.; Yu, Y.; Hu, J.B.; Zhang, B.; Wang, J. Effects of the 24 N-terminal amino acids of p55PIK on endotoxinstimulated release of inflammatory cytokines by HaCaT cells. J. Huazhong Univ. Sci. Technol. Med. Sci. 2013, 33, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Madonna, S.; Scarponi, C.; Doti, N.; Carbone, T.; Cavani, A.; Scognamiglio, P.L.; Marasco, D.; Albanesi, C. Therapeutical potential of a peptide mimicking the SOCS1 kinase inhibitory region in skin immune responses. Eur. J. Immunol. 2013, 43, 1883–1895. [Google Scholar] [CrossRef] [PubMed]
- Nayak, S.; Dey, S.; Kundu, S.C. Skin equivalent tissue-engineered construct: Co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons. PLoS ONE 2013, 8, e74779. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Kawamura, T.; Matsuzawa, T.; Aoki, R.; Gee, P.; Yamashita, A.; Moriishi, K.; Yamasaki, K.; Koyanagi, Y.; Blauvelt, A.; et al. Antimicrobial peptide LL-37 produced by HSV-2-infected keratinocytes enhances HIV infection of Langerhans cells. Cell Host Microbe 2013, 13, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Puiprom, O.; Morales Vargas, R.E.; Potiwat, R.; Chaichana, P.; Ikuta, K.; Ramasoota, P.; Okabayashi, T. Characterization of chikungunya virus infection of a human keratinocyte cell line: Role of mosquito salivary gland protein in suppressing the host immune response. Infect. Genet. Evol. 2013, 17, 210–215. [Google Scholar] [CrossRef]
- Sun, D.P.; Yeh, C.H.; So, E.; Wang, L.Y.; Wei, T.S.; Chang, M.S.; Hsing, C.H. Interleukin (IL)-19 promoted skin wound healing by increasing fibroblast keratinocyte growth factor expression. Cytokine 2013, 62, 360–368. [Google Scholar] [CrossRef]
- Dossel, J.; Meyer-Hoffert, U.; Schroder, J.M.; Gerstel, U. Pseudomonas aeruginosa-derived rhamnolipids subvert the host innate immune response through manipulation of the human beta-defensin-2 expression. Cell. Microbiol. 2012, 14, 1364–1375. [Google Scholar] [CrossRef]
- Gschwandtner, M.; Bunk, H.; Kother, B.; Thurmond, R.L.; Kietzmann, M.; Werfel, T.; Baumer, W.; Gutzmer, R. Histamine down-regulates IL-27 production in antigen-presenting cells. J. Leukoc. Biol. 2012, 92, 21–29. [Google Scholar] [CrossRef]
- Hu, D.H.; Zhang, Z.F.; Zhang, Y.G.; Zhang, W.F.; Wang, H.T.; Cai, W.X.; Bai, X.Z.; Zhu, H.Y.; Shi, J.H.; Tang, C.W. A potential skin substitute constructed with hEGF gene modified HaCaT cells for treatment of burn wounds in a rat model. Burns 2012, 38, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Hong, C.H.; Yu, W.T.; Chuang, H.Y.; Huang, S.K.; Chen, G.S.; Yoshioka, T.; Sakata, M.; Liao, W.T.; Ko, Y.C.; et al. Mechanistic correlations between two itch biomarkers, cytokine interleukin-31 and neuropeptide beta-endorphin, via STAT3/calcium axis in atopic dermatitis. Br. J. Dermatol. 2012, 167, 794–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parrado, A.C.; Canellada, A.; Gentile, T.; Rey-Roldan, E.B. Dopamine agonists upregulate IL-6 and IL-8 production in human keratinocytes. Neuroimmunomodulation 2012, 19, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Watson, M.K.; Yaping, E.; Dapul, G.; Lee, W.L.; Shalita, A.R.; Nowakowski, M. Modulation of cytokine and nitric oxide production by keratinocytes, epithelial cells, and mononuclear phagocytes in a co-culture model of inflammatory acne. J. Drugs Dermatol. 2012, 11, 834–836. [Google Scholar] [PubMed]
- Wolfle, U.; Heinemann, A.; Esser, P.R.; Haarhaus, B.; Martin, S.F.; Schempp, C.M. Luteolin prevents solar radiation-induced matrix metalloproteinase-1 activation in human fibroblasts: A role for p38 mitogen-activated protein kinase and interleukin-20 released from keratinocytes. Rejuvenation Res. 2012, 15, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyerich, S.; Wagener, J.; Wenzel, V.; Scarponi, C.; Pennino, D.; Albanesi, C.; Schaller, M.; Behrendt, H.; Ring, J.; Schmidt-Weber, C.B.; et al. IL-22 and TNF-alpha represent a key cytokine combination for epidermal integrity during infection with Candida albicans. Eur. J. Immunol. 2011, 41, 1894–1901. [Google Scholar] [CrossRef] [PubMed]
- Grimstad, O.; Sandanger, O.; Ryan, L.; Otterdal, K.; Damaas, J.K.; Pukstad, B.; Espevik, T. Cellular sources and inducers of cytokines present in acute wound fluid. Wound Repair Regen. 2011, 19, 337–347. [Google Scholar] [CrossRef]
- Si-Si, W.; Liao, L.; Ling, Z.; Yun-Xia, Y. Inhibition of TNF-alpha/IFN-gamma induced RANTES expression in HaCaT cell by naringin. Pharm. Biol. 2011, 49, 810–814. [Google Scholar] [CrossRef]
- Van Nguyen, H.; Di Girolamo, N.; Jackson, N.; Hampartzoumian, T.; Bullpitt, P.; Tedla, N.; Wakefield, D. Ultraviolet radiation-induced cytokines promote mast cell accumulation and matrix metalloproteinase production: Potential role in cutaneous lupus erythematosus. Scand. J. Rheumatol. 2011, 40, 197–204. [Google Scholar] [CrossRef]
- Wang, D.; Eiz-Vesper, B.; Zeitvogel, J.; Dressel, R.; Werfel, T.; Wittmann, M. Human keratinocytes release high levels of inducible heat shock protein 70 that enhances peptide uptake. Exp. Dermatol. 2011, 20, 637–641. [Google Scholar] [CrossRef]
- Gebhardt, C.; Averbeck, M.; Diedenhofen, N.; Willenberg, A.; Anderegg, U.; Sleeman, J.P.; Simon, J.C. Dermal hyaluronan is rapidly reduced by topical treatment with glucocorticoids. J. Investig. Dermatol. 2010, 130, 141–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, M.; Glanz, D.; Urbatzka, M.; Brzoska, T.; Abels, C. Keratinocytes: A source of the transmitter L-glutamate in the epidermis. Exp. Dermatol. 2009, 18, 1064–1066. [Google Scholar] [CrossRef] [PubMed]
- Gerstel, U.; Czapp, M.; Bartels, J.; Schroder, J.M. Rhamnolipid-induced shedding of flagellin from Pseudomonas aeruginosa provokes hBD-2 and IL-8 response in human keratinocytes. Cell. Microbiol. 2009, 11, 842–853. [Google Scholar] [CrossRef] [PubMed]
- Grange, P.A.; Raingeaud, J.; Calvez, V.; Dupin, N. Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kappaB and MAPK pathways. J. Dermatol. Sci. 2009, 56, 106–112. [Google Scholar] [CrossRef]
- Kinoshita, H.; Takai, T.; Le, T.A.; Kamijo, S.; Wang, X.L.; Ushio, H.; Hara, M.; Kawasaki, J.; Vu, A.T.; Ogawa, T.; et al. Cytokine milieu modulates release of thymic stromal lymphopoietin from human keratinocytes stimulated with double-stranded RNA. J. Allergy Clin. Immunol. 2009, 123, 179–186. [Google Scholar] [CrossRef]
- Liao, W.T.; Yu, C.L.; Lan, C.C.; Lee, C.H.; Chang, C.H.; Chang, L.W.; You, H.L.; Yu, H.S. Differential effects of arsenic on cutaneous and systemic immunity: Focusing on CD4+ cell apoptosis in patients with arsenic-induced Bowen’s disease. Carcinogenesis 2009, 30, 1064–1072. [Google Scholar] [CrossRef]
- Nagase, K.; Aoki, S.; Uchihashi, K.; Misago, N.; Shimohira-Yamasaki, M.; Toda, S.; Narisawa, Y. An organotypic culture system of Merkel cells using isolated epidermal sheets. Br. J. Dermatol. 2009, 161, 1239–1247. [Google Scholar] [CrossRef]
- Abtin, A.; Eckhart, L.; Mildner, M.; Gruber, F.; Schroder, J.M.; Tschachler, E. Flagellin is the principal inducer of the antimicrobial peptide S100A7c (psoriasin) in human epidermal keratinocytes exposed to Escherichia coli. FASEB J. 2008, 22, 2168–2176. [Google Scholar] [CrossRef] [Green Version]
- Arlian, L.G.; Morgan, M.S.; Peterson, K.T. House dust and storage mite extracts influence skin keratinocyte and fibroblast function. Int. Arch. Allergy Immunol. 2008, 145, 33–42. [Google Scholar] [CrossRef]
- Kaneko, K.; Smetana-Just, U.; Matsui, M.; Young, A.R.; John, S.; Norval, M.; Walker, S.L. cis-Urocanic acid initiates gene transcription in primary human keratinocytes. J. Immunol. 2008, 181, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Peric, M.; Koglin, S.; Kim, S.M.; Morizane, S.; Besch, R.; Prinz, J.C.; Ruzicka, T.; Gallo, R.L.; Schauber, J. IL-17A enhances vitamin D3-induced expression of cathelicidin antimicrobial peptide in human keratinocytes. J. Immunol. 2008, 181, 8504–8512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, J.L.; Diamandis, E.P. Regulation of human tissue kallikrein-related peptidase expression by steroid hormones in 32 cell lines. Biol. Chem. 2008, 389, 1409–1419. [Google Scholar] [CrossRef] [PubMed]
- Yoshizumi, M.; Nakamura, T.; Kato, M.; Ishioka, T.; Kozawa, K.; Wakamatsu, K.; Kimura, H. Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biol. Int. 2008, 32, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Dorn, A.; Ludwig, R.J.; Bock, A.; Thaci, D.; Hardt, K.; Bereiter-Hahn, J.; Kaufmann, R.; Bernd, A.; Kippenberger, S. Oligonucleotides suppress IL-8 in skin keratinocytes in vitro and offer anti-inflammatory properties in vivo. J. Investig. Dermatol. 2007, 127, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Hino, R.; Kobayashi, M.; Mori, T.; Orimo, H.; Shimauchi, T.; Kabashima, K.; Tokura, Y. Inhibition of T helper 2 chemokine production by narrowband ultraviolet B in cultured keratinocytes. Br. J. Dermatol. 2007, 156, 830–837. [Google Scholar] [CrossRef]
- Li, X.; Fan, X.; Zhang, K.; Yin, G.; Liu, Y. Influence of psoriatic peripheral blood CD4+ T and CD8+ T lymphocytes on C-myc, Bcl-xL and Ki67 gene expression in keratinocytes. Eur. J. Dermatol. 2007, 17, 392–396. [Google Scholar]
- Mildner, M.; Mlitz, V.; Gruber, F.; Wojta, J.; Tschachler, E. Hepatocyte growth factor establishes autocrine and paracrine feedback loops for the protection of skin cells after UV irradiation. J. Investig. Dermatol. 2007, 127, 2637–2644. [Google Scholar] [CrossRef] [Green Version]
- Tani, K.; Adachi, M.; Nakamura, Y.; Kano, R.; Makimura, K.; Hasegawa, A.; Kanda, N.; Watanabe, S. The effect of dermatophytes on cytokine production by human keratinocytes. Arch. Dermatol. Res. 2007, 299, 381–387. [Google Scholar] [CrossRef]
- Tohyama, M.; Sayama, K.; Komatsuzawa, H.; Hanakawa, Y.; Shirakata, Y.; Dai, X.; Yang, L.; Tokumaru, S.; Nagai, H.; Hirakawa, S.; et al. CXCL16 is a novel mediator of the innate immunity of epidermal keratinocytes. Int. Immunol. 2007, 19, 1095–1102. [Google Scholar] [CrossRef] [Green Version]
- Dallos, A.; Kiss, M.; Polyanka, H.; Dobozy, A.; Kemeny, L.; Husz, S. Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides 2006, 40, 251–263. [Google Scholar] [CrossRef]
- Hunt, D.W.; Boivin, W.A.; Fairley, L.A.; Jovanovic, M.M.; King, D.E.; Salmon, R.A.; Utting, O.B. Ultraviolet B light stimulates interleukin-20 expression by human epithelial keratinocytes. Photochem. Photobiol. 2006, 82, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Ottaviani, C.; Nasorri, F.; Bedini, C.; de Pita, O.; Girolomoni, G.; Cavani, A. CD56brightCD16(-) NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur. J. Immunol. 2006, 36, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Piskin, G.; Sylva-Steenland, R.M.; Bos, J.D.; Teunissen, M.B. In vitro and in situ expression of IL-23 by keratinocytes in healthy skin and psoriasis lesions: Enhanced expression in psoriatic skin. J. Immunol. 2006, 176, 1908–1915. [Google Scholar] [CrossRef] [PubMed]
- Traidl-Hoffmann, C.; Munster, I.; Ring, J.; Behrendt, H. Impact of desloratadine and loratadine on the crosstalk between human keratinocytes and leukocytes: Implications for anti-inflammatory activity of antihistamines. Int. Arch. Allergy Immunol. 2006, 140, 315–320. [Google Scholar] [CrossRef]
- Wehkamp, K.; Schwichtenberg, L.; Schroder, J.M.; Harder, J. Pseudomonas aeruginosa- and IL-1beta-mediated induction of human beta-defensin-2 in keratinocytes is controlled by NF-kappaB and AP-1. J. Investig. Dermatol. 2006, 126, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Zbytek, B.; Slominski, A.T. CRH mediates inflammation induced by lipopolysaccharide in human adult epidermal keratinocytes. J. Investig. Dermatol. 2007, 127, 730–732. [Google Scholar] [CrossRef] [Green Version]
- Moharamzadeh, K.; Van Noort, R.; Brook, I.M.; Scutt, A.M. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent. Mater. 2007, 23, 40–44. [Google Scholar] [CrossRef]
- Belleudi, F.; Cardinali, G.; Kovacs, D.; Picardo, M.; Torrisi, M.R. KGF Promotes Paracrine Activation of the SCF/c-KIT Axis from Human Keratinocytes to Melanoma Cells. Transl. Oncol. 2010, 3, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Xia, L.X.; Xiao, T.; Chen, H.D.; Li, P.; Wang, Y.K.; Wang, H. Regulation of haptoglobin expression in a human keratinocyte cell line HaCaT by inflammatory cytokines and dexamethasone. Chin. Med. J. 2008, 121, 730–734. [Google Scholar] [CrossRef]
- Lan, C.C.; Wu, C.S.; Huang, S.M.; Kuo, H.Y.; Wu, I.H.; Wen, C.H.; Chai, C.Y.; Fang, A.H.; Chen, G.S. High-Glucose Environment Inhibits p38MAPK Signaling and Reduces Human beta-Defensin-3 Expression [corrected] in Keratinocytes. Mol. Med. 2011, 17, 771–779. [Google Scholar] [CrossRef]
- Hasegawa, T.; Shimada, S.; Ishida, H.; Nakashima, M. Chafuroside B, an Oolong tea polyphenol, ameliorates UVB-induced DNA damage and generation of photo-immunosuppression related mediators in human keratinocytes. PLoS ONE 2013, 8, e77308. [Google Scholar] [CrossRef] [PubMed]
- Lo Cicero, A.; Delevoye, C.; Gilles-Marsens, F.; Loew, D.; Dingli, F.; Guere, C.; Andre, N.; Vie, K.; van Niel, G.; Raposo, G. Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat. Commun. 2015, 6, 7506. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.; Lammel, J.; Lippross, S.; Kluter, T.; Behrendt, P.; Tohidnezhad, M.; Pufe, T.; Cremer, J.; Jahr, H.; Rademacher, F.; et al. Platelet-released growth factors induce psoriasin in keratinocytes: Implications for the cutaneous barrier. Ann. Anat. 2017, 213, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Bayer, A.; Lammel, J.; Rademacher, F.; Gross, J.; Siggelkow, M.; Lippross, S.; Kluter, T.; Varoga, D.; Tohidnezhad, M.; Pufe, T.; et al. Platelet-released growth factors induce the antimicrobial peptide human beta-defensin-2 in primary keratinocytes. Exp. Dermatol. 2016, 25, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; An, H.J.; Kim, J.Y.; Gwon, M.G.; Gu, H.; Park, J.B.; Sung, W.J.; Kwon, Y.C.; Park, K.D.; Han, S.M.; et al. Bee Venom Inhibits Porphyromonas gingivalis Lipopolysaccharides-Induced Pro-Inflammatory Cytokines through Suppression of NF-kappaB and AP-1 Signaling Pathways. Molecules 2016, 21, 1508. [Google Scholar] [CrossRef]
- Ohsaki, A.; Tanuma, S.I.; Tsukimoto, M. TRPV4 Channel-Regulated ATP Release Contributes to gamma-Irradiation-Induced Production of IL-6 and IL-8 in Epidermal Keratinocytes. Biol. Pharm. Bull. 2018, 41, 1620–1626. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Fang, H.; Zhang, J.; Jiang, M.; Xue, K.; Ma, J.; Zhang, J.; Lei, J.; Zhang, Y.; Li, B.; et al. Neutrophil exosomes enhance the skin autoinflammation in generalized pustular psoriasis via activating keratinocytes. FASEB J. 2019, 33, 6813–6828. [Google Scholar] [CrossRef]
- Yamamoto, M.; Matsumura, R.; Hirata, Y.; Nagamune, H. A comparative study of skin irritation caused by novel bis-quaternary ammonium compounds and commonly used antiseptics by using cell culture methods. Toxicol. In Vitro 2019, 54, 75–81. [Google Scholar] [CrossRef]
- Zhou, W.; Tahir, F.; Wang, J.C.; Woodson, M.; Sherman, M.B.; Karim, S.; Neelakanta, G.; Sultana, H. Discovery of Exosomes from Tick Saliva and Salivary Glands Reveals Therapeutic Roles for CXCL12 and IL-8 in Wound Healing at the Tick-Human Skin Interface. Front. Cell Dev. Biol. 2020, 8, 554. [Google Scholar] [CrossRef]
- Fitoussi, J.; Virassamynaik, S.; Callejon, S.; Weber, S.; Collet, E.; Scalia, J.; Chavagnac-Bonneville, M.; Trompezinski, S.; Sayag, M. Inhibition of thymic stromal lymphopoietin production to improve pruritus and quality of life in infants and children with atopic dermatitis. J. Cosmet. Dermatol. 2020, 19, 2061–2069. [Google Scholar] [CrossRef]
- Da Silva, A.C.G.; Chialchia, A.R.; de Avila, R.I.; Valadares, M.C. Mechanistic-based non-animal assessment of eye toxicity: Inflammatory profile of human keratinocytes cells after exposure to eye damage/irritant agents. Chem. Biol. Interact. 2018, 292, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Neves, C.; Buskermolen, J.; Roffel, S.; Waaijman, T.; Thon, M.; Veerman, E.; Gibbs, S. Human saliva stimulates skin and oral wound healing in vitro. J. Tissue Eng. Regen. Med. 2019, 13, 1079–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonardo, T.R.; Shi, J.; Chen, D.; Trivedi, H.M.; Chen, L. Differential Expression and Function of Bicellular Tight Junctions in Skin and Oral Wound Healing. Int. J. Mol. Sci. 2020, 21, 2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajiki-Nishino, R.; Makino, E.; Watanabe, Y.; Tajima, H.; Ishimota, M.; Fukuyama, T. Oral Administration of Bisphenol A Directly Exacerbates Allergic Airway Inflammation but Not Allergic Skin Inflammation in Mice. Toxicol. Sci. 2018, 165, 314–321. [Google Scholar] [CrossRef] [Green Version]
- Datta, D.; Madke, B.; Das, A. Skin as an endocrine organ: A narrative review. Indian J. Dermatol. Venereol. Leprol. 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Tsoi, L.C.; Billi, A.C.; Ward, N.L.; Harms, P.W.; Zeng, C.; Maverakis, E.; Kahlenberg, J.M.; Gudjonsson, J.E. Cytokinocytes: The diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020, 5, e142067. [Google Scholar] [CrossRef]
- Filimon, A.; Preda, I.A.; Boloca, A.F.; Negroiu, G. Interleukin-8 in Melanoma Pathogenesis, Prognosis and Therapy-An Integrated View into Other Neoplasms and Chemokine Networks. Cells 2021, 11, 120. [Google Scholar] [CrossRef]
- Murata, S.; Kaneko, S.; Morita, E. Interleukin-8 Levels in the Stratum Corneum as a Biomarker for Monitoring Therapeutic Effect in Atopic Dermatitis Patients. Int. Arch. Allergy Immunol. 2021, 182, 592–606. [Google Scholar] [CrossRef]
- Cheng, H.; Zheng, Z.; Cheng, T. New paradigms on hematopoietic stem cell differentiation. Protein Cell 2020, 11, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.; Yan, Z.; Xiao, S.; Xia, Y. Proinflammatory cytokines regulate epidermal stem cells in wound epithelialization. Stem Cell Res. Ther. 2020, 11, 232. [Google Scholar] [CrossRef]
- Hofmann, E.; Fink, J.; Eberl, A.; Prugger, E.M.; Kolb, D.; Luze, H.; Schwingenschuh, S.; Birngruber, T.; Magnes, C.; Mautner, S.I.; et al. A novel human ex vivo skin model to study early local responses to burn injuries. Sci. Rep. 2021, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Guo, X. A review: Therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration. Stem Cell Res. Ther. 2018, 9, 302. [Google Scholar] [CrossRef] [PubMed]
- Nosenko, M.A.; Ambaryan, S.G.; Drutskaya, M.S. Proinflammatory Cytokines and Skin Wound Healing in Mice. Mol. Biol. 2019, 53, 741–754. [Google Scholar] [CrossRef]
- Coalson, E.; Bishop, E.; Liu, W.; Feng, Y.; Spezia, M.; Liu, B.; Shen, Y.; Wu, D.; Du, S.; Li, A.J.; et al. Stem cell therapy for chronic skin wounds in the era of personalized medicine: From bench to bedside. Genes Dis. 2019, 6, 342–358. [Google Scholar] [CrossRef]
- Salama, S.A.; Arab, H.H.; Omar, H.A.; Gad, H.S.; Abd-Allah, G.M.; Maghrabi, I.A.; Al Robaian, M.M. L-carnitine mitigates UVA-induced skin tissue injury in rats through downregulation of oxidative stress, p38/c-Fos signaling, and the proinflammatory cytokines. Chem. Biol. Interact. 2018, 285, 40–47. [Google Scholar] [CrossRef]
- Nugud, A.; Sandeep, D.; El-Serafi, A.T. Two faces of the coin: Minireview for dissecting the role of reactive oxygen species in stem cell potency and lineage commitment. J. Adv. Res. 2018, 14, 73–79. [Google Scholar] [CrossRef]
- Chessa, C.; Bodet, C.; Jousselin, C.; Wehbe, M.; Leveque, N.; Garcia, M. Antiviral and Immunomodulatory Properties of Antimicrobial Peptides Produced by Human Keratinocytes. Front. Microbiol. 2020, 11, 1155. [Google Scholar] [CrossRef]
- Koike, Y.; Yozaki, M.; Utani, A.; Murota, H. Fibroblast growth factor 2 accelerates the epithelial-mesenchymal transition in keratinocytes during wound healing process. Sci. Rep. 2020, 10, 18545. [Google Scholar] [CrossRef]
- Kahata, K.; Dadras, M.S.; Moustakas, A. TGF-beta Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition. Cold Spring Harb. Perspect. Biol. 2018, 10, a022194. [Google Scholar] [CrossRef] [Green Version]
- Ong, H.T.; Dilley, R.J. Novel non-angiogenic role for mesenchymal stem cell-derived vascular endothelial growth factor on keratinocytes during wound healing. Cytokine Growth Factor Rev. 2018, 44, 69–79. [Google Scholar] [CrossRef]
- Choi, S.M.; Lee, K.M.; Kim, H.J.; Park, I.K.; Kang, H.J.; Shin, H.C.; Baek, D.; Choi, Y.; Park, K.H.; Lee, J.W. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice. Acta Biomater. 2018, 66, 325–334. [Google Scholar] [CrossRef] [PubMed]
- Liarte, S.; Bernabe-Garcia, A.; Nicolas, F.J. Role of TGF-beta in Skin Chronic Wounds: A Keratinocyte Perspective. Cells 2020, 9, 306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deptula, M.; Karpowicz, P.; Wardowska, A.; Sass, P.; Sosnowski, P.; Mieczkowska, A.; Filipowicz, N.; Dzierzynska, M.; Sawicka, J.; Nowicka, E.; et al. Development of a Peptide Derived from Platelet-Derived Growth Factor (PDGF-BB) into a Potential Drug Candidate for the Treatment of Wounds. Adv. Wound Care 2020, 9, 657–675. [Google Scholar] [CrossRef] [PubMed]
- Mazini, L.; Rochette, L.; Hamdan, Y.; Malka, G. Skin Immunomodulation during Regeneration: Emerging New Targets. J. Pers. Med. 2021, 11, 85. [Google Scholar] [CrossRef]
- Shin, K.O.; Choe, S.J.; Uchida, Y.; Kim, I.; Jeong, Y.; Park, K. Ginsenoside Rb1 Enhances Keratinocyte Migration by a Sphingosine-1-Phosphate-Dependent Mechanism. J. Med. Food 2018, 21, 1129–1136. [Google Scholar] [CrossRef]
- Kim, H.Y.; Lee, D.H.; Shin, M.H.; Shin, H.S.; Kim, M.K.; Chung, J.H. UV-induced DNA methyltransferase 1 promotes hypermethylation of tissue inhibitor of metalloproteinase 2 in the human skin. J. Dermatol. Sci. 2018, 91, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Kishibe, M. Physiological and pathological roles of kallikrein-related peptidases in the epidermis. J. Dermatol. Sci. 2019, 95, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Talagas, M.; Lebonvallet, N.; Leschiera, R.; Marcorelles, P.; Misery, L. What about physical contacts between epidermal keratinocytes and sensory neurons? Exp. Dermatol. 2018, 27, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Steinhoff, M.; Ahmad, F.; Pandey, A.; Datsi, A.; AlHammadi, A.; Al-Khawaga, S.; Al-Malki, A.; Meng, J.; Alam, M.; Buddenkotte, J. Neuro-immune communication regulating pruritus in atopic dermatitis. J. Allergy Clin. Immunol. 2022, 149, 1875–1898. [Google Scholar] [CrossRef]
- Albers, I.; Zernickel, E.; Stern, M.; Broja, M.; Busch, H.L.; Heiss, C.; Grotheer, V.; Windolf, J.; Suschek, C.V. Blue light (lambda = 453 nm) nitric oxide dependently induces beta-endorphin production of human skin keratinocytes in-vitro and increases systemic beta-endorphin levels in humans in-vivo. Free Radic. Biol. Med. 2019, 145, 78–86. [Google Scholar] [CrossRef]
- Cirillo, N. The Local Neuropeptide System of Keratinocytes. Biomedicines 2021, 9, 1854. [Google Scholar] [CrossRef] [PubMed]
- Sinova, R.; Pavlik, V.; Ondrej, M.; Velebny, V.; Nesporova, K. Hyaluronan: A key player or just a bystander in skin photoaging? Exp. Dermatol. 2022, 31, 442–458. [Google Scholar] [CrossRef] [PubMed]
- Alemzadeh, E.; Oryan, A.; Mohammadi, A.A. Hyaluronic acid hydrogel loaded by adipose stem cells enhances wound healing by modulating IL-1beta, TGF-beta1, and bFGF in burn wound model in rat. J. Biomed. Mater. Res. B Appl. Biomater. 2020, 108, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.W.; Zhang, W.J.; Wang, Y.; Tan, L.P.; Bao, Y.L.; Song, Z.B.; Yu, C.L.; Wang, S.Y.; Liu, L.; Li, Y.X. Convallatoxin induces HaCaT cell necroptosis and ameliorates skin lesions in psoriasis-like mouse models. Biomed. Pharmacother. 2020, 121, 109615. [Google Scholar] [CrossRef] [PubMed]
- Wilkesmann, S.; Fellenberg, J.; Nawaz, Q.; Reible, B.; Moghaddam, A.; Boccaccini, A.R.; Westhauser, F. Primary osteoblasts, osteoblast precursor cells or osteoblast-like cell lines: Which human cell types are (most) suitable for characterizing 45S5-bioactive glass? J. Biomed. Mater. Res. A 2020, 108, 663–674. [Google Scholar] [CrossRef]
- Mostafa, M.M.; Rider, C.F.; Shah, S.; Traves, S.L.; Gordon, P.M.K.; Miller-Larsson, A.; Leigh, R.; Newton, R. Glucocorticoid-driven transcriptomes in human airway epithelial cells: Commonalities, differences and functional insight from cell lines and primary cells. BMC Med. Genom. 2019, 12, 29. [Google Scholar] [CrossRef]
n | Cell Secretion | Frequency of Presence | Frequency of Absence | n | Cell Secretion | Frequency of Presence | Frequency of Absence |
---|---|---|---|---|---|---|---|
1 | IL-8 | 39 | 41 | CXCL16 | 1 | ||
2 | IL-6 | 15 | 1 | 42 | HSP70 | 1 | |
3 | TNF | 15 | 3 | 43 | Human β-defensin 1 | 1 | |
4 | IL-1a | 12 | 44 | IL-1 receptor | 1 | ||
5 | Interferon inducible protein 10 (CXCL10) | 9 | 45 | IL-15 | 1 | ||
6 | IL-1β | 7 | 2 | 46 | IL-2 | 1 | |
7 | RANTES (CCL5) | 5 | 47 | IL-20 | 1 | ||
8 | Human β-defensin 2 | 5 | 1 | 48 | IL-23 | 1 | |
9 | IL-12 | 5 | 49 | IL-7 | 1 | ||
10 | CCL-20 | 4 | 50 | IL-10 | 1 | ||
11 | CXCL1 (GRO-a) | 4 | 51 | IL-18 | 1 | ||
12 | Glutamate | 3 | 52 | IL-19 | 1 | ||
13 | CCL2/MCP1 | 3 | 53 | IL-20 | 1 | ||
14 | FGF2 | 3 | 1 | 54 | Fas ligand | 1 | |
15 | Hyaluronan | 3 | 55 | Granulocyte colony stimulating factor | 1 | ||
16 | Interferon γ | 3 | 56 | Haptoglobin | 1 | ||
17 | IL-4 | 3 | 57 | IL-23p40 | 1 | ||
18 | IL-10 | 3 | 58 | IL-3 | 1 | ||
19 | IL-36γ | 3 | 59 | Keratin 17 | 1 | ||
20 | LL37 | 3 | 60 | Kallikrein-related peptidase | 1 | ||
21 | Macrophage derived chemokine (CCL22) | 3 | 61 | Lympho–epithelial Kazal-type inhibitor | 1 | ||
22 | Prostaglandin E2 | 3 | 62 | Macrophage inflammatory protein (MIP)-1b | 1 | ||
23 | VEGF | 3 | 63 | Macrophage inflammatory protein (MIP)-2 | 1 | ||
24 | EGF | 2 | 64 | Macrophage migration inhibitory factor | 1 | ||
25 | GM-CSF | 2 | 65 | miR-203 | 1 | ||
26 | Human β-defensin 3 | 2 | 66 | miR-675 | 1 | ||
27 | IL-1ra | 2 | 67 | miR-3196 | 1 | ||
28 | MMP1 | 2 | 68 | MMP10 | 1 | ||
29 | MMP2 | 2 | 69 | Nerve growth factor | 1 | ||
30 | MMP9 | 2 | 70 | Nitric Oxide | 1 | ||
31 | S100 | 2 | 71 | Serpin E1 | 1 | ||
32 | TGF-ß | 2 | 72 | Sphingosine 1 phosphate | 1 | 1 | |
33 | Thymic stromal lymphopoietin | 2 | 1 | 73 | CCL17 | 1 | |
34 | Adenylate kinase | 1 | 74 | Stem cell factor | 1 | ||
35 | α-Melanocyte stimulating hormone | 1 | 75 | TGF-α | 1 | ||
36 | Artemin | 1 | 76 | Tissue inhibitor of metalloproteinases 2 | 1 | ||
37 | β-endorphin | 1 | 77 | VEGF-EG | 1 | ||
38 | Corticotropin-releasing hormone | 1 | 78 | p19/EBI3 heterodimeric cytokine complex | 1 | ||
39 | CXCL11 | 1 | 79 | IL-37 | 1 | ||
40 | CXCL12 | 1 | 80 | PDGF | 1 |
n | Cell Secretion | HaCaT | Primary Keratinocytes | Other Cell-Types | Total |
---|---|---|---|---|---|
1 | IL-8 | 19 | 18 | 2 | 39 |
2 | IL-6 | 10 | 4 | 1 | 15 |
3 | TNF | 6 | 8 | 1 | 15 |
4 | IL-1a | 3 | 8 | 1 | 12 |
5 | CXCL10 | 2 | 7 | 0 | 9 |
6 | IL-1β | 4 | 3 | 0 | 7 |
7 | human β-defensin 2 | 1 | 4 | 0 | 5 |
8 | IL-12 | 2 | 2 | 1 | 5 |
9 | RANTES (CCL5) | 2 | 3 | 0 | 5 |
10 | CCL-20 | 1 | 3 | 0 | 4 |
11 | CXCL1 (GRO-a) | 3 | 1 | 0 | 4 |
12 | CCL2 /MCP1 | 1 | 2 | 0 | 3 |
13 | CCL22 | 1 | 2 | 0 | 3 |
14 | FGF2 | 2 | 1 | 0 | 3 |
15 | Glutamate | 1 | 2 | 0 | 3 |
16 | Hyaluronan | 2 | 1 | 0 | 3 |
17 | IFNγ | 0 | 2 | 1 | 3 |
18 | IL-4 | 2 | 1 | 0 | 3 |
19 | IL-36γ | 0 | 3 | 0 | 3 |
20 | LL37 | 0 | 3 | 0 | 3 |
21 | Prostaglandin E2 | 1 | 2 | 0 | 3 |
22 | VEGF | 1 | 1 | 1 | 3 |
23 | EGF | 1 | 0 | 1 | 2 |
24 | GM-CSF | 1 | 0 | 1 | 2 |
25 | IL-1ra | 0 | 2 | 0 | 2 |
26 | MMP1 | 1 | 1 | 0 | 2 |
27 | MMP2 | 1 | 1 | 0 | 2 |
28 | MMP9 | 1 | 1 | 0 | 2 |
29 | TGF-ß | 1 | 1 | 0 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Serafi, A.T.; El-Serafi, I.; Steinvall, I.; Sjöberg, F.; Elmasry, M. A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective. Int. J. Mol. Sci. 2022, 23, 7934. https://doi.org/10.3390/ijms23147934
El-Serafi AT, El-Serafi I, Steinvall I, Sjöberg F, Elmasry M. A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective. International Journal of Molecular Sciences. 2022; 23(14):7934. https://doi.org/10.3390/ijms23147934
Chicago/Turabian StyleEl-Serafi, Ahmed T., Ibrahim El-Serafi, Ingrid Steinvall, Folke Sjöberg, and Moustafa Elmasry. 2022. "A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective" International Journal of Molecular Sciences 23, no. 14: 7934. https://doi.org/10.3390/ijms23147934
APA StyleEl-Serafi, A. T., El-Serafi, I., Steinvall, I., Sjöberg, F., & Elmasry, M. (2022). A Systematic Review of Keratinocyte Secretions: A Regenerative Perspective. International Journal of Molecular Sciences, 23(14), 7934. https://doi.org/10.3390/ijms23147934