A Novel Cartesian Plot Analysis for Fixed Monolayers That Relates Cell Phenotype to Transfer of Contents between Fibroblasts and Cancer Cells by Cell-Projection Pumping
Abstract
:1. Introduction
2. Results
2.1. Fluorescent Labels Transferred between Co-Cultured Cell Populations
2.2. Cartesian Plot Analysis Demonstrated Five Sub-Populations of Cells in Co-Cultures
2.3. The Distribution of Co-Cultured Cells Classified According to Cartesian Plot Analysis Varied Amongst Co-Cultures, and Most Co-Cultured Cancer Cells Had Uptake of Fibroblast Fluorescence
2.4. The Distribution of Co-Cultured Cells according to Exchange Units Varied amongst Co-Cultures
2.5. FACS Demonstrated Preferential Transfer of Label from Fibroblasts to Cancer Cells Together with Higher Transferability of DiD Label Compared with DiO Label
2.6. Cartesian Plot Analysis Indicated That Transfer of Fluorescence from Fibroblasts to Cancer Cells Was Associated with Reduced Cancer Cell Circularity and Increased Cancer Cell Profile Area
2.7. The Orientation of Fluorescent Dyes in Co-Cultures Did Not Affect Results of Cartesian Plot Analysis with Regard to Morphological Phenotype
2.8. Nuclei Labelled for 5mc and Propidium Iodide
2.9. Cell Circularity and Cell-Profile Area Were as Expected
2.10. Control HDF Cultured in Isolation Had Higher Normalised 5mc Compared with Control SAOS-2
2.11. Co-cultured Cells with DiD–DiO Fluorescence Indistinguishable from Control HDF, Had Fluorescence Lower than HDF Control Cells
2.12. There was No Convincing Relationship between Cell-Projection Pumping and Changes in Normalised 5mc of Co-Cultured Cells
3. Discussion
4. Materials and Methods
4.1. Experiments across Two Laboratories
4.2. Materials
4.2.1. Materials for Cartesian Plot Experiments Performed at MSKCC
4.2.2. Materials for Cartesian Plot Experiments Performed at the CMPRU
4.2.3. Cells Used in Experiments
4.3. Cell Culture
4.4. Labelling of Cells with Lipophilic Fluorescent Membrane Markers
4.5. Co-Culture Conditions
4.6. Quantitation of Fluorescence in Fixed Adherent Cells and Measurement of Cell Circularity and Cell Profile Area
4.7. The Cartesian Plot Method for Quantitation of Fluorescence Transfer
4.8. Automation of the Cartesian Plot Analysis Method by MATLAB Script and Statistical Evaluation
4.9. Fluorescence Activated Cell Sorting Analysis
4.10. Labelling to Relate Global DNA Methylation with DiO/DiD Fluorescence in Co-Cultures
4.11. Normalisation of 5mc Fluorescence Relative to Propidium Iodide Fluorescence and Fibroblast Controls
4.12. Numerical Analysis of Global 5mc Fluorescence Related to the Cartesian Plot
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- David, M.S.; Huynh, M.D.; Kelly, E.; Rizos, H.; Coleman, H.; Rogers, G.; Zoellner, H. Membrane and cytoplasmic marker exchange between malignant neoplastic cells and fibroblasts via intermittent contact: Increased tumour cell diversity independent of genetic change. J. Pathol. 2012, 228, 495–505. [Google Scholar] [CrossRef] [PubMed]
- Zoellner, H.; Chami, B.; Kelly, E.; Moore, M.A.S. Increased cell size, structural complexity and migration of cancer cells acquiring fibroblast organelles by cell-projection pumping. PLoS ONE 2019, 14, e0224800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoellner, H.; Paknejad, N.; Cornwell, J.A.; Chami, B.; Romin, Y.; Boyko, V.; Fujisawa, S.; Kelly, E.; Lynch, G.W.; Rogers, G.; et al. Potential Hydrodynamic Cytoplasmic Transfer between Mammalian Cells: Cell-Projection Pumping. Biophys. J. 2020, 118, 1248–1260. [Google Scholar] [CrossRef]
- Mahadevan, S.; Cornwell, J.A.; Chami, B.; Kelly, E.; Zoellner, H. Cell-Projection Pumping of Fibroblast Contents into Osteosarcoma SAOS-2 Cells Correlates with Increased SAOS-2 Proliferation and Migration, as well as Altered Morphology. Biomolecules 2021, 11, 1875. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, M.; Brandes, R.P.; Haendeler, J.; Zeiher, A.M.; Dimmeler, S. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: A novel mechanism for cell fate changes? Circ. Res. 2005, 96, 1039–1041. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, K.A.; Yerkovich, S.T.; Hopkins, P.M.; Chambers, D.C. Characterization of intercellular communication and mitochondrial donation by mesenchymal stromal cells derived from the human lung. Stem Cell Res. Ther. 2016, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Pasquier, J.; Guerrouahen, B.S.; Al Thawadi, H.; Ghiabi, P.; Maleki, M.; Abu-Kaoud, N.; Jacob, A.; Mirshahi, M.; Galas, L.; Rafii, S.; et al. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med. 2013, 11, 94. [Google Scholar] [CrossRef] [Green Version]
- Vallabhaneni, K.C.; Haller, H.; Dumler, I. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem. Cells Dev. 2012, 21, 3104–3113. [Google Scholar] [CrossRef] [Green Version]
- Davis, D.M.; Sowinski, S. Membrane nanotubes: Dynamic long-distance connections between animal cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, H.H.; Rustom, A.; Wang, X. Tunneling nanotubes, an emerging intercellular communication route in development. Mech. Dev. 2013, 130, 381–387. [Google Scholar] [CrossRef]
- Onfelt, B.; Nedvetzki, S.; Benninger, R.K.; Purbhoo, M.A.; Sowinski, S.; Hume, A.N.; Seabra, M.C.; Neil, M.A.; French, P.M.; Davis, D.M. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 2006, 177, 8476–8483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guescini, M.; Leo, G.; Genedani, S.; Carone, C.; Pederzoli, F.; Ciruela, F.; Guidolin, D.; Stocchi, V.; Mantuano, M.; Borroto-Escuela, D.O.; et al. Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Exp. Cell Res. 2012, 318, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Thayanithy, V.; Babatunde, V.; Dickson, E.L.; Wong, P.; Oh, S.; Ke, X.; Barlas, A.; Fujisawa, S.; Romin, Y.; Moreira, A.L.; et al. Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells. Exp. Cell Res. 2014, 323, 178–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget 2017, 8, 59950–59964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, E.; Fujisawa, S.; Barlas, A.; Romin, Y.; Manova-Todorova, K.; Moore, M.A.; Subramanian, S. Tunneling Nanotubes: A new paradigm for studying intercellular communication and therapeutics in cancer. Commun. Integr. Biol. 2012, 5, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Ariazi, J.; Benowitz, A.; De Biasi, V.; Den Boer, M.L.; Cherqui, S.; Cui, H.; Douillet, N.; Eugenin, E.A.; Favre, D.; Goodman, S.; et al. Tunneling Nanotubes and Gap Junctions-Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions. Front. Mol. Neurosci. 2017, 10, 333. [Google Scholar] [CrossRef]
- Hood, J.L.; Pan, H.; Lanza, G.M.; Wickline, S.A.; On behalf of Consortium for Translational Research in Advanced Imaging and Nanomedicine (C-TRAIN). Paracrine induction of endothelium by tumor exosomes. Lab. Investig. 2009, 89, 1317–1328. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.H.; Lee, O.K. Exosomes from mesenchymal stem cells induce the conversion of hepatocytes into progenitor oval cells. Stem Cell Res. Ther. 2017, 8, 117. [Google Scholar] [CrossRef]
- McCready, J.; Sims, J.D.; Chan, D.; Jay, D.G. Secretion of extracellular hsp90alpha via exosomes increases cancer cell motility: A role for plasminogen activation. BMC Cancer 2010, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Hanna, S.J.; McCoy-Simandle, K.; Leung, E.; Genna, A.; Condeelis, J.; Cox, D. Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. J. Cell Sci. 2019, 132, jcs223321. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Ji, K.; Guo, L.; Wu, W.; Lu, H.; Shan, P.; Yan, C. Mesenchymal stem cells rescue injured endothelial cells in an In Vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res. 2014, 92, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Matula, Z.; Mikala, G.; Lukacsi, S.; Matko, J.; Kovacs, T.; Monostori, E.; Uher, F.; Valyi-Nagy, I. Stromal Cells Serve Drug Resistance for Multiple Myeloma via Mitochondrial Transfer: A Study on Primary Myeloma and Stromal Cells. Cancers 2021, 13, 3461. [Google Scholar] [CrossRef] [PubMed]
- Caicedo, A.; Fritz, V.; Brondello, J.M.; Ayala, M.; Dennemont, I.; Abdellaoui, N.; de Fraipont, F.; Moisan, A.; Prouteau, C.A.; Boukhaddaoui, H.; et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci. Rep. 2015, 5, 9073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Zheng, X.; Li, F.; Yu, Y.; Chen, Z.; Liu, Z.; Wang, Z.; Xu, H.; Yang, W. Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget 2017, 8, 15539–15552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlein, C.R.; Piddock, R.E.; Mistry, J.J.; Zaitseva, L.; Hellmich, C.; Horton, R.H.; Zhou, Z.; Auger, M.J.; Bowles, K.M.; Rushworth, S.A. CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Res. 2019, 79, 2285–2297. [Google Scholar] [CrossRef] [Green Version]
- Salaud, C.; Alvarez-Arenas, A.; Geraldo, F.; Belmonte-Beitia, J.; Calvo, G.F.; Gratas, C.; Pecqueur, C.; Garnier, D.; Perez-Garcia, V.; Vallette, F.M.; et al. Mitochondria transfer from tumor-activated stromal cells (TASC) to primary Glioblastoma cells. Biochem. Biophys. Res. Commun. 2020, 533, 139–147. [Google Scholar] [CrossRef]
- Ippolito, L.; Morandi, A.; Taddei, M.L.; Parri, M.; Comito, G.; Iscaro, A.; Raspollini, M.R.; Magherini, F.; Rapizzi, E.; Masquelier, J.; et al. Cancer-associated fibroblasts promote prostate cancer malignancy via metabolic rewiring and mitochondrial transfer. Oncogene 2019, 38, 5339–5355. [Google Scholar] [CrossRef]
- Zampieri, L.X.; Silva-Almeida, C.; Rondeau, J.D.; Sonveaux, P. Mitochondrial Transfer in Cancer: A Comprehensive Review. Int. J. Mol. Sci. 2021, 22, 3245. [Google Scholar] [CrossRef]
- David, M.S.; Kelly, E.; Cheung, I.; Xaymardan, M.; Moore, M.A.; Zoellner, H. SAOS-2 osteosarcoma cells bind fibroblasts via ICAM-1 and this is increased by tumour necrosis factor-alpha. PLoS ONE 2014, 9, e101202. [Google Scholar] [CrossRef] [Green Version]
- David, M.S.; Kelly, E.; Zoellner, H. Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures. Cytokine 2013, 62, 48–51. [Google Scholar] [CrossRef]
- Kumar, V.; Abbas, A.K. Robbins and Cotran Pathologic Basis of Disease, 9th ed.; Elsevier Saunders: Philadelphia, PN, USA, 2014. [Google Scholar]
- Cornwell, J.A.; Gutierrez, M.Z.; Harvey, R.P.; Nordon, R.E. Live cell imaging and single cell tracking of mesenchymal stromal cells in vitro. In The Biology and Therapeutic Application of Mesenchymal Cells; Atkinson, K., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 326–346. [Google Scholar]
- Cornwell, J.A.; Mahadevan, S.; Draper, J.S.; Joun, G.L.; Zoellner, H.; Asli, N.S.; Harvey, R.P.; Nordon, R.E. TrackPad: Software for semi-automated single-cell tracking and lineage annotation. SoftwareX 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Chen, Z.; Li, S.; Subramaniam, S.; Shyy, J.Y.; Chien, S. Epigenetic Regulation: A New Frontier for Biomedical Engineers. Annu. Rev. Biomed. Eng. 2017, 19, 195–219. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.D.; Issa, J.J. The promise of epigenetic therapy: Reprogramming the cancer epigenome. Curr. Opin. Genet. Dev. 2017, 42, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, M. DNA methylation in cancer: Too much, but also too little. Oncogene 2002, 21, 5400–5413. [Google Scholar] [CrossRef] [Green Version]
- Kulis, M.; Esteller, M. DNA methylation and cancer. Adv. Genet. 2010, 70, 27–56. [Google Scholar]
- Brocks, D.; Assenov, Y.; Minner, S.; Bogatyrova, O.; Simon, R.; Koop, C.; Oakes, C.; Zucknick, M.; Lipka, D.B.; Weischenfeldt, J.; et al. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Rep. 2014, 8, 798–806. [Google Scholar] [CrossRef] [Green Version]
- Wenger, A.; Ferreyra Vega, S.; Kling, T.; Bontell, T.O.; Jakola, A.S.; Caren, H. Intratumor DNA methylation heterogeneity in glioblastoma: Implications for DNA methylation-based classification. Neuro Oncol. 2019, 21, 616–627. [Google Scholar] [CrossRef]
- Chen, W.J.; Ho, C.C.; Chang, Y.L.; Chen, H.Y.; Lin, C.A.; Ling, T.Y.; Yu, S.L.; Yuan, S.S.; Chen, Y.J.; Lin, C.Y.; et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat. Commun. 2014, 5, 3472. [Google Scholar] [CrossRef]
- Yu, Y.; Xiao, C.H.; Tan, L.D.; Wang, Q.S.; Li, X.Q.; Feng, Y.M. Cancer-associated fibroblasts induce epithelial-mesenchymal transition of breast cancer cells through paracrine TGF-beta signalling. Br. J. Cancer 2014, 110, 724–732. [Google Scholar] [CrossRef] [Green Version]
- Qiao, Y.; Zhang, C.; Li, A.; Wang, D.; Luo, Z.; Ping, Y.; Zhou, B.; Liu, S.; Li, H.; Yue, D.; et al. IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 2018, 37, 873–883. [Google Scholar] [CrossRef]
- Feig, C.; Jones, J.O.; Kraman, M.; Wells, R.J.; Deonarine, A.; Chan, D.S.; Connell, C.M.; Roberts, E.W.; Zhao, Q.; Caballero, O.L.; et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013, 110, 20212–20217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, I.X.; Chauhan, V.P.; Posada, J.; Ng, M.R.; Wu, M.W.; Adstamongkonkul, P.; Huang, P.; Lindeman, N.; Langer, R.; Jain, R.K. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 4558–4566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018, 554, 544–548. [Google Scholar] [CrossRef]
- Brewer, G.; Fortier, A.M.; Park, M.; Moraes, C. The case for cancer-associated fibroblasts: Essential elements in cancer drug discovery? Future Drug Discov. 2022, 4, FDD71. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Gonda, T.A.; Gamble, M.V.; Salas, M.; Seshan, V.; Tu, S.; Twaddell, W.S.; Hegyi, P.; Lazar, G.; Steele, I.; et al. Global hypomethylation of genomic DNA in cancer-associated myofibroblasts. Cancer Res. 2008, 68, 9900–9908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vizoso, M.; Puig, M.; Carmona, F.J.; Maqueda, M.; Velasquez, A.; Gomez, A.; Labernadie, A.; Lugo, R.; Gabasa, M.; Rigat-Brugarolas, L.G.; et al. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts. Carcinogenesis 2015, 36, 1453–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, M.I.; Engelbrecht, A.M. Metabolic hijacking: A survival strategy cancer cells exploit? Crit. Rev. Oncol. Hematol. 2017, 109, 1–8. [Google Scholar] [CrossRef]
- Senthebane, D.A.; Rowe, A.; Thomford, N.E.; Shipanga, H.; Munro, D.; Mazeedi, M.; Almazyadi, H.A.M.; Kallmeyer, K.; Dandara, C.; Pepper, M.S.; et al. The Role of Tumor Microenvironment in Chemoresistance: To Survive, Keep Your Enemies Closer. Int. J. Mol. Sci. 2017, 18, 1586. [Google Scholar] [CrossRef] [Green Version]
- LeBleu, V.S.; Kalluri, R. A peek into cancer-associated fibroblasts: Origins, functions and translational impact. Dis. Models Mech. 2018, 11, dmm029447. [Google Scholar] [CrossRef] [Green Version]
- Derzko, Z.; Jacobson, K. Comparative lateral diffusion of fluorescent lipid analogues in phospholipid multibilayers. Biochemistry 1980, 19, 6050–6057. [Google Scholar] [CrossRef]
- Noda, M.; Yoon, K.; Rodan, G.A.; Koppel, D.E. High lateral mobility of endogenous and transfected alkaline phosphatase: A phosphatidylinositol-anchored membrane protein. J. Cell Biol. 1987, 105, 1671–1677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shia, J.; Schultz, N.; Kuk, D.; Vakiani, E.; Middha, S.; Segal, N.H.; Hechtman, J.F.; Berger, M.F.; Stadler, Z.K.; Weiser, M.R.; et al. Morphological characterization of colorectal cancers in The Cancer Genome Atlas reveals distinct morphology-molecular associations: Clinical and biological implications. Mod. Pathol. 2017, 30, 599–609. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Long, L.R.; Antani, S.; Thoma, G.R. Histology image analysis for carcinoma detection and grading. Comput. Methods Programs Biomed. 2012, 107, 538–556. [Google Scholar] [CrossRef] [Green Version]
- Ehrlich, M. DNA hypomethylation in cancer cells. Epigenomics 2009, 1, 239–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, M.; Gama-Sosa, M.A.; Huang, L.H.; Midgett, R.M.; Kuo, K.C.; McCune, R.A.; Gehrke, C. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982, 10, 2709–2721. [Google Scholar] [CrossRef]
- Gama-Sosa, M.A.; Midgett, R.M.; Slagel, V.A.; Githens, S.; Kuo, K.C.; Gehrke, C.W.; Ehrlich, M. Tissue-specific differences in DNA methylation in various mammals. Biochim. Biophys. Acta 1983, 740, 212–219. [Google Scholar] [CrossRef]
- Bedford, M.T.; van Helden, P.D. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res. 1987, 47, 5274–5276. [Google Scholar]
- de Capoa, A.; Musolino, A.; Della Rosa, S.; Caiafa, P.; Mariani, L.; Del Nonno, F.; Vocaturo, A.; Donnorso, R.P.; Niveleau, A.; Grappelli, C. DNA demethylation is directly related to tumour progression: Evidence in normal, pre-malignant and malignant cells from uterine cervix samples. Oncol. Rep. 2003, 10, 545–549. [Google Scholar]
- Kim, K.; Sohn, Y.J.; Lee, R.; Yoo, H.J.; Kang, J.Y.; Choi, N.; Na, D.; Yeon, J.H. Cancer-Associated Fibroblasts Differentiated by Exosomes Isolated from Cancer Cells Promote Cancer Cell Invasion. Int. J. Mol. Sci. 2020, 21, 8153. [Google Scholar] [CrossRef]
- McEwen, A.; Emmanuel, C.; Medbury, H.; Leick, A.; Walker, D.M.; Zoellner, H. Induction of contact-dependent endothelial apoptosis by osteosarcoma cells suggests a role for endothelial cell apoptosis in blood-borne metastasis. J. Pathol. 2003, 201, 395–403. [Google Scholar] [CrossRef]
- Celik-Uzuner, S.; Li, Y.; Peters, L.; O’Neill, C. Measurement of global DNA methylation levels by flow cytometry in mouse fibroblasts. In Vitro Cell Dev. Biol. Anim. 2017, 53, 1–6. [Google Scholar] [CrossRef] [PubMed]
Co-Cultured Cells According to Cartesian Plot Grouping | |||||||||
---|---|---|---|---|---|---|---|---|---|
Cell Line | Exp. | Control Fibroblasts | Cells Indistinguishable from Fibroblast Controls | Fibroblasts with Some Cancer Cell Labelling | Cells of Uncertain Origin | Cancer Cells with Some Fibroblast Labelling | Cells Indist-inguishable from Cancer Cell Controls | Total Co-Cultured Cells | Control Cancer Cells |
SAOS-2 | a | 100 | 103 (43.1%) | 1 (0.4%) | 52 (21.8%) | 81 (33.9%) | 2 (0.8%) | 239 | 100 |
SAOS-2 | b | 96 | 33 (28.0%) | 0 (0%) | 2 (1.7%) | 41 (34.7%) | 42 (35.6%) | 118 | 40 |
SAOS-2 | c* | 102 | 0 (0%) | 10 (13.3%) | 30 (40.0%) | 17 (22.7%) | 18 (23.7%) | 75 | 97 |
SAOS-2 | d | 100 | 464 (50.0%) | 199 (21.4%) | 123 (13.3%) | 0 (0%) | 142 (15.3%) | 928 | 97 |
SAOS-2 | e | 86 | 212 (21.2%) | 416 (41.6%) | 365 (36.5%) | 0 (0%) | 6 (0.6%) | 999 | 95 |
SAOS-2 | f | 97 | 197 (20.4%) | 40 (4.1%) | 50 (5.2%) | 178 (18.4%) | 501 (51.9%) | 966 | 100 |
SAOS-2 | g | 97 | 184 (24.9%) | 5 (0.7%) | 206 (27.8%) | 0 (0%) | 345 (46.6%) | 740 | 98 |
SAOS-2 | h | 99 | 73 (7.4%) | 54 (5.5%) | 423 (43.1%) | 223 (22.7%) | 209 (21.3%) | 982 | 92 |
SAOS-2 | i | 98 | 406 (46.6%) | 38 (4.4%) | 426 (48.9%) | 0 (0%) | 2 (0.2%) | 872 | 99 |
U2OS | a | 100 | 162 (48.8%) | 3 (0.9%) | 56 (16.9%) | 102 (30.7%) | 9 (2.7%) | 332 | 98 |
U2OS | c* | 102 | 6 (5.9%) | 1 (1.0%) | 62 (61.4%) | 32 (31.7%) | 0 (0%) | 101 | 98 |
MeIRMu | a | 100 | 168 (48.1%) | 0 (0%) | 19 (5.4%) | 128 (36.7%) | 34 (9.7%) | 349 | 96 |
MeIRMu | c* | 94 | 5 (6.9%) | 1 (1.6%) | 11 (17.2%) | 43 (67.2%) | 5 (5.6%) | 64 | 102 |
MM200-B12 | a | 100 | 159 (47.3%) | 0 (0%) | 40 (11.9%) | 119 (35.4%) | 18 (5.4%) | 336 | 98 |
MM200-B12 | b | 96 | 79 (69.3%) | 3 (2.6%) | 5 (4.4%) | 24 (21.1%) | 3 (2.6%) | 114 | 68 |
MM200-B12 | c* | 102 | 0 (0%) | 16 (27.6%) | 40 (69.0%) | 2 (3.4%) | 0 (0%) | 58 | 100 |
MM200-B12 | j | 98 | 44 (21.2%) | 57 (27.4%) | 21 (10.1%) | 20 (9.6%) | 66 (31.7%) | 208 | 100 |
NM39 | c* | 102 | 0 (0%) | 9 (11.5%) | 69 (88.5%) | 0 (0%) | 0 (0%) | 78 | 88 |
WM175 | a | 100 | 168 (49.4%) | 2 (0.6%) | 17 (5.0%) | 122 (35.9%) | 31 (9.1%) | 340 | 97 |
WM175 | c* | 102 | 3 (4.9%) | 21 (35.6%) | 35 (59.3%) | 0 (0%) | 0 (0%) | 59 | 94 |
Colo316 | a | 100 | 188 (48.0%) | 3 (0.8%) | 79 (20.2%) | 113 (28.8%) | 9 (2.3%) | 392 | 100 |
Colo316 | b | 96 | 107 (54.0%) | 3 (1.5%) | 24 (12.2%) | 34 (17.3%) | 28 (14.1%) | 196 | 75 |
Colo316 | c* | 102 | 6 (5.8%) | 50 (49.5%) | 34 (33.7%) | 11 (10.9%) | 0 (0%) | 101 | 89 |
PEO1 | c* | 102 | 2 (2.5%) | 41 (50.6%) | 35 (43.2%) | 3 (3.7%) | 0 (0%) | 81 | 92 |
Co-Cultured Cells Grouped According to Exchange Units (EU) | ||||||||
---|---|---|---|---|---|---|---|---|
Cell Line | Exp. | EU = −50 | −50 < EU ≤ −30 | −30 < EU ≤ −10 | −10 < EU ≤ 10 | 10 < EU ≤ 30 | 30 < EU < 50 | EU = 50 |
SAOS-2 | a | 103 (43.1%) | 1 (0.4%) | 4 (1.7%) | 17 (7.1%) | 29 (12.1%) | 83 (34.7%) | 2 (0.8%) |
SAOS-2 | b | 33 (28.0%) | 0 (0%) | 0 (0%) | 0 (0%) | 6 (5.1%) | 37 (31.4%) | 42 (35.6%) |
SAOS-2 | c* | 0 (0%) | 2 (2.6%) | 7 (9.2%) | 10 (13.2%) | 12 (15.8%) | 27 (35.5%) | 18 (23.7%) |
SAOS-2 | d | 464 (50.0%) | 142 (15.3%) | 56 (6.0%) | 60 (6.5%) | 63 (6.8%) | 1 (0.1%) | 142 (15.3%) |
SAOS-2 | e | 212 (21.2%) | 531 (53.2%) | 97 (9.7%) | 86 (8.6%) | 52 (5.2%) | 15 (1.5%) | 6 (0.6%) |
SAOS-2 | f | 197 (20.4%) | 51 (5.2%) | 18 (1.8%) | 22 (2.3%) | 31 3.2(%) | 153 (15.7%) | 501 (51.9%) |
SAOS-2 | g | 184 (24.9%) | 49 (6.6%) | 27 (3.6%) | 15 (2.0%) | 28 (3.8%) | 92 (12.4%) | 345 (46.6%) |
SAOS-2 | h | 73 (7.4%) | 133 (13.5%) | 85 (8.7%) | 92 (9.4%) | 114 (11.6%) | 276 (28.1%) | 209 (21.3%) |
SAOS-2 | i | 406 (46.6%) | 178 (20.4%) | 110 (12.6%) | 87 (10.0%) | 63 (7.2%) | 26 (3.0%) | 2 (0.2%) |
U2OS | a | 162 (48.8%) | 3 (0.9%) | 6 (1.8%) | 12 (3.6%) | 36 (10.8%) | 104 (31.3%) | 9 (2.7%) |
U2OS | c* | 6 (5.9%) | 1 (1.0%) | 5 (5.0%) | 8 (7.9%) | 21 (20.8%) | 60 (59.4%) | 0 (0%) |
MeIRMu | a | 168 (48.1%) | 2 (0.6%) | 0 (0%) | 4 (1.1%) | 12 (3.4%) | 129 (37.0%) | 34 (9.7%) |
MeIRMu | c* | 5 (6.9%) | 18 (25.0%) | 23 (31.9%) | 12 (16.7%) | 7 (9.7%) | 3 (4.2%) | 5 (5.6%) |
MM200-B12 | a | 159 (47.3%) | 2 (0.6%) | 4 (1.2%) | 4 1.2(%) | 20 (6.0%) | 129 (38.4%) | 18 (5.4%) |
MM200-B12 | b | 79 (69.3%) | 3 (2.6%) | 0 (0%) | 2 (1.8%) | 6 (5.3%) | 21 (18.4%) | 3 (2.6%) |
MM200-B12 | c* | 0 (0%) | 20 (33.9%) | 22 (37.3%) | 9 (15.3%) | 5 (8.5%) | 3 (5.1%) | 0 (0%) |
MM200-B12 | j | 44 (21.2%) | 69 (33.2%) | 5 (2.4%) | 0 (0%) | 1 (0.5%) | 23 (11.1%) | 66 (31.7%) |
NM39 | c* | 0 (0%) | 12 (15.4%) | 36 (46.2%) | 28 (35.9%) | 2 (2.6%) | 0 (0%) | 0 (0%) |
WM175 | a | 168 (49.4%) | 2 (0.6%) | 3 (0.9%) | 5 (1.5%) | 13 (3.8%) | 118 (34.7%) | 31 (9.1%) |
WM175 | c* | 3 (4.9%) | 7 (11.5%) | 8 (13.1%) | 21 (34.4%) | 17 (27.9%) | 5 (8.2%) | 0 (0%) |
Colo316 | a | 188 (48.0%) | 2 0.5(%) | 8 (2.0%) | 10 (2.6%) | 29 (7.4%) | 146 (37.2%) | 9 (2.3%) |
Colo316 | b | 107 (54.0%) | 9 (4.5%) | 9 4.5(%) | 4 (2.0%) | 14 (7.1%) | 27 (13.6%) | 28 (14.1%) |
Colo316 | c* | 6 (5.8%) | 43 (41.7%) | 14 (13.6%) | 8 (7.8%) | 19 (18.4%) | 13 (12.6%) | 0 (0%) |
PEO1 | c* | 2 (2.5%) | 22 (26.8%) | 23 (28%) | 23 (28%) | 10 (12.2%) | 2 (2.4%) | 0 (0%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahadevan, S.; Kwong, K.; Lu, M.; Kelly, E.; Chami, B.; Romin, Y.; Fujisawa, S.; Manova, K.; Moore, M.A.S.; Zoellner, H. A Novel Cartesian Plot Analysis for Fixed Monolayers That Relates Cell Phenotype to Transfer of Contents between Fibroblasts and Cancer Cells by Cell-Projection Pumping. Int. J. Mol. Sci. 2022, 23, 7949. https://doi.org/10.3390/ijms23147949
Mahadevan S, Kwong K, Lu M, Kelly E, Chami B, Romin Y, Fujisawa S, Manova K, Moore MAS, Zoellner H. A Novel Cartesian Plot Analysis for Fixed Monolayers That Relates Cell Phenotype to Transfer of Contents between Fibroblasts and Cancer Cells by Cell-Projection Pumping. International Journal of Molecular Sciences. 2022; 23(14):7949. https://doi.org/10.3390/ijms23147949
Chicago/Turabian StyleMahadevan, Swarna, Kenelm Kwong, Mingjie Lu, Elizabeth Kelly, Belal Chami, Yevgeniy Romin, Sho Fujisawa, Katia Manova, Malcolm A. S. Moore, and Hans Zoellner. 2022. "A Novel Cartesian Plot Analysis for Fixed Monolayers That Relates Cell Phenotype to Transfer of Contents between Fibroblasts and Cancer Cells by Cell-Projection Pumping" International Journal of Molecular Sciences 23, no. 14: 7949. https://doi.org/10.3390/ijms23147949
APA StyleMahadevan, S., Kwong, K., Lu, M., Kelly, E., Chami, B., Romin, Y., Fujisawa, S., Manova, K., Moore, M. A. S., & Zoellner, H. (2022). A Novel Cartesian Plot Analysis for Fixed Monolayers That Relates Cell Phenotype to Transfer of Contents between Fibroblasts and Cancer Cells by Cell-Projection Pumping. International Journal of Molecular Sciences, 23(14), 7949. https://doi.org/10.3390/ijms23147949