Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics †
Abstract
:1. Introduction
2. Photochemistry of Porphyrin-Based TTA-UC for Chemical Transformations
2.1. Photoisomerization
2.2. Photochemical Synthesis
2.3. TTA Photopolymerization
Entry | Sensitizer | Annihilator | Exemplary Reactions | Ref. |
---|---|---|---|---|
1 | PtTPTNP | TTBP | [69] | |
2 | PtOEP | DPA | [94] | |
3 | ZnTPP | ZnTPP | [95] | |
4 | PdTPTBP | TIPS derivatives | [70] | |
5 | PdOEP | DPA | [96] |
2.4. Photocatalytic Degradation
2.5. Photochemical/Photoelectrochemical Water Splitting
3. Photochemistry of Porphyrin-Based TTA-UC for Biomedical Applications
4. Conclusions and Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AuNPs | Au Nanoparticles |
BDPPA | 9,10-Bis(diphenylphosphoryl)anthracene |
CLCPs | Crosslinked Liquid-Crystal Polymers |
cRGDfK | cyclo-(RGDfK) peptide |
DEACM | (7-diethylaminocoumarin-4-yl)methyl |
DIPEA | N,N-Diisopropylethylamine |
DPA | 9,10-Diphenylanthracene |
FRET | Förster Resonance Energy Transfer |
G | Graphene |
g-C3N4 | Graphitic Carbon Nitride |
HUVECs | Human Umbilical Vein Endothelial Cells |
HAT | H-Atom Transfer |
HER | Hydrogen Evolution Reaction |
ISC | Intersystem Crossing |
AVS | Inverted V-shape Structure |
LSPR | Local Surface Plasmon Resonance |
MA | Methyl Acrylate |
MLCT | Metal-to-Ligand Charge-Transfer |
Mo:BVO4 | Mo-doped BiVO4 |
ND | Nanodiamond |
NIR | Near-Infrared |
OER | Oxygen Evolution Reaction |
PBS | Phosphate-Buffered Saline |
PDT | Photodynamic Therapy |
PdTPTBP | Palladium(II) Tetraphenyltetrabenzoporphine |
PdTPNEt2P | Palladium(II) tetra(N,N-diethylaniline)porphyrin |
PdTPTNP | Palladium(II) Tetraphenyltetranaphthoporphyrin |
PET | Photoinduced Electron Transfer |
PLA−PEG | Poly(D,L-lactic acid) −Poly(ethylene oxide) |
PtDPAP | Platinum (II)-octaethylporphyrin and 9,10-Diphenylanthracene |
PtTPTBP | Platinum(II) Tetraphenyltetrabenzoporphine |
PtTPTNP | Platinum(II) Tetraphenyltetranaphthoporphyrin |
PtOEP | Platinum(II) Octaethylporphyrin |
RAFT | Reversible Addition−Fragmentation Chain Transfer |
ROS | Reactive Oxygen Species |
SET | Single Electron Transfer |
TEA | Triethanolamine |
TMPTA | Trimethylolpropane Triacrylate |
TTAP | Triplet−Triplet-Annihilation Photopolymerization |
TTET | Triplet-Triplet Energy Transfer |
TTA-UC | Triplet-Triplet Annihilation Upconversion |
TTBP | Tetratertbutylperylene |
U87 | Human Glioblastoma Cells |
UCNPs | Upconversion Nanoparticle |
ZnTPP | Zinc Tetraphenylporphyrin |
References
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465. [Google Scholar] [CrossRef] [PubMed]
- Richards, B.S.; Hudry, D.; Busko, D.; Turshatov, A.; Howard, I.A. Photon upconversion for photovoltaics and photocatalysis: A critical review. Chem. Rev. 2021, 121, 9165–9195. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Qin, X.; Zheng, K.; Liu, X. Energy flux manipulation in upconversion nanosystems. Acc. Chem. Res. 2019, 52, 228–236. [Google Scholar] [CrossRef]
- Medishetty, R.; Zareba, J.K.; Mayer, D.; Samoć, M.; Fischer, R.A. Nonlinear optical properties, upconversion and lasing in metal-organic frameworks. Chem. Soc. Rev. 2017, 46, 4976–5004. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Tian, W.; Imran, M.; Cao, H.; Zhao, J. Controlling the triplet states and their application in external stimuli-responsive triplet-triplet-annihilation photon upconversion: From the perspective of excited state photochemistry. Chem. Soc. Rev. 2021, 50, 9686–9714. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Ebrahim, F.M.; Stylianou, K.C. Photoluminescent, upconversion luminescent and nonlinear optical metal-organic frameworks: From fundamental photophysics to potential applications. Coord. Chem. Rev. 2018, 377, 259–306. [Google Scholar] [CrossRef]
- Tian, G.; Zhang, X.; Gu, Z.; Zhao, Y. Recent advances in upconversion nanoparticles-based multifunctional nanocomposites for combined cancer therapy. Adv. Mater. 2015, 27, 7692–7712. [Google Scholar] [CrossRef]
- Chen, S.; Weitemier, A.Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A.J.Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H.; et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics. Science 2018, 359, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Ansari, A.A.; Parchur, A.K.; Chen, G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord. Chem. Rev. 2022, 457, 214423. [Google Scholar] [CrossRef]
- Ansari, A.A.; Thakur, V.K.; Chen, G. Functionalized upconversion nanoparticles: New strategy towards FRET-based luminescence bio-sensing. Coord. Chem. Rev. 2021, 436, 213821. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, X.; Bu, W. Upconversion-based photodynamic cancer therapy. Coord. Chem. Rev. 2019, 379, 82–98. [Google Scholar] [CrossRef]
- Sun, L.; Wei, R.; Feng, J.; Zhang, H. Tailored lanthanide-doped upconversion nanoparticles and their promising bioapplication prospects. Coord. Chem. Rev. 2018, 364, 10–32. [Google Scholar] [CrossRef]
- Nadort, A.; Zhao, J.; Goldys, E.M. Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties. Nanoscale 2016, 8, 13099–13130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Wu, W.; Li, Y.; Zhang, J.; Wang, L.; Ågren, H. Recent research progress for upconversion assisted dye-sensitized solar cells. Chinese Chem. Lett. 2021, 32, 1834–1846. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, T.; Zhu, X.; Li, Q.; Wu, Y.; Zhang, J.; Liu, J.; Zhang, Y. Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications. Mater. Chem. Front. 2021, 5, 1743–1770. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y.; Zhang, Y. Self-assembly of upconversion nanoparticles based materials and their emerging applications. Small 2022, 18, 2103241. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y. Orthogonal emissive upconversion nanoparticles: Material design and applications. Small 2021, 17, 2004552. [Google Scholar] [CrossRef]
- Dong, H.; Sun, L.-D.; Yan, C.-H. Lanthanide-doped upconversion nanoparticles for super-resolution microscopy. Front. Chem. 2020, 8, 619377. [Google Scholar] [CrossRef]
- Pei, S.; Ge, X.; Sun, L. Metal ions doping for boosting luminescence of lanthanide-doped nanocrystals. Front. Chem. 2020, 8, 610481. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, Z.; Jin, T.; Lian, T.; Tang, M.L. Mechanistic understanding and rational design of quantum dot/mediator interfaces for efficient photon upconversion. Acc. Chem. Res. 2021, 54, 70–80. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, J.; Schuck, P.J.; Suh, Y.D.; Schmidt, T.W.; Jin, D. Future and challenges for hybrid upconversion nanosystems. Nat. Photonics 2019, 13, 828–838. [Google Scholar] [CrossRef]
- Gupta, A.; Ghosh, S.; Thakur, M.K.; Zhou, J.; Ostrikov, K.; Jin, D.; Chattopadhyay, S. Up-conversion hybrid nanomaterials for light- and heat-driven applications. Prog. Mater. Sci. 2021, 121, 100838. [Google Scholar] [CrossRef]
- Han, Y.; He, S.; Wu, K. Molecular triplet sensitization and photon upconversion using colloidal semiconductor nanocrystals. ACS Energy Lett. 2021, 6, 3151–3166. [Google Scholar] [CrossRef]
- Singh-Rachford, T.N.; Castellano, F.N. Photon upconversion based on sensitized triplet–triplet annihilation. Coord. Chem. Rev. 2010, 254, 2560–2573. [Google Scholar] [CrossRef]
- Yanai, N.; Kimizuka, N. New triplet sensitization routes for photon upconversion: Thermally activated delayed fluorescence molecules, inorganic nanocrystals, and singlet-to-triplet absorption. Acc. Chem. Res. 2017, 50, 2487–2495. [Google Scholar] [CrossRef]
- Bharmoria, P.; Bildirir, H.; Moth-Poulsen, K. Triplet-triplet annihilation based near infrared to visible molecular photon upconversion. Chem. Soc. Rev. 2020, 49, 6529–6554. [Google Scholar] [CrossRef] [PubMed]
- Rauch, M.P.; Knowles, R.R. Applications and prospects for triplet-triplet annihilation photon upconversion. Chimia 2018, 72, 501–507. [Google Scholar] [CrossRef]
- Seo, S.E.; Choe, H.-S.; Cho, H.; Kim, H.-I.; Kim, J.-H.; Kwon, O.S. Recent advances in materials for and applications of triplet–triplet annihilation-based upconversion. J. Mater. Chem. C 2022, 10, 4483–4496. [Google Scholar] [CrossRef]
- Ye, C.; Zhou, L.; Wang, X.; Liang, Z. Photon upconversion: From two-photon absorption (TPA) to triplet-triplet annihilation (TTA). Phys. Chem. Chem. Phys. 2016, 18, 10818–10835. [Google Scholar] [CrossRef]
- Sasaki, Y.; Amemori, S.; Yanai, N.; Kimizuka, N. Singlet-to-triplet absorption for near-infrared-to-visible photon upconversion. Bull. Chem. Soc. Jpn. 2021, 94, 1760–1768. [Google Scholar] [CrossRef]
- Pérez-Ruiz, R. Photon upconversion systems based on triplet-triplet annihilation as photosensitizers for chemical transformations. Top. Curr. Chem. 2022, 380, 23. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Wang, J.; Li, H.; Ouyang, Q.; Wu, W.; Chen, Q. Strategies for combining triplet–triplet annihilation upconversion sensitizers and acceptors in a host matrix. Coord. Chem. Rev. 2021, 439, 213944. [Google Scholar] [CrossRef]
- Ji, S.; Wu, W.; Wu, W.; Guo, H.; Zhao, J. Ruthenium(II) polyimine complexes with a long-lived 3IL excited state or a 3MLCT/3IL equilibrium: Efficient triplet sensitizers for low-power upconversion. Angew. Chem. Int. Ed. 2011, 50, 1626–1629. [Google Scholar] [CrossRef] [PubMed]
- Kerzig, C.; Wenger, O.S. Sensitized triplet-triplet annihilation upconversion in water and its application to photochemical transformations. Chem. Sci. 2018, 9, 6670–6678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boutin, P.C.; Ghiggino, K.P.; Kelly, T.L.; Steer, R.P. Photon upconversion by triplet–triplet annihilation in Ru(bpy)3- and DPA-functionalized polymers. J. Phys. Chem. Lett. 2013, 4, 4113–4118. [Google Scholar] [CrossRef]
- Duan, P.; Yanai, N.; Kimizuka, N. A bis-cyclometalated iridium complex as a benchmark sensitizer for efficient visible-to-UV photon upconversion. Chem. Commun. 2014, 50, 13111–13113. [Google Scholar] [CrossRef]
- Sun, J.; Zhong, F.; Yi, X.; Zhao, J. Efficient enhancement of the visible-light absorption of cyclometalated Ir(III) complexes triplet photosensitizers with Bodipy and applications in photooxidation and triplet-triplet annihilation upconversion. Inorg. Chem. 2013, 52, 6299–6310. [Google Scholar] [CrossRef]
- Pfund, B.; Steffen, D.M.; Schreier, M.R.; Bertrams, M.S.; Ye, C.; Börjesson, K.; Wenger, O.S.; Kerzig, C. UV light generation and challenging photoreactions enabled by upconversion in water. J. Am. Chem. Soc. 2020, 142, 10468–10476. [Google Scholar] [CrossRef]
- Mase, K.; Sasaki, Y.; Sagara, Y.; Tamaoki, N.; Weder, C.; Yanai, N.; Kimizuka, N. Stimuli-responsive dual-color photon upconversion: A singlet-to-triplet absorption sensitizer in a soft luminescent cyclophane. Angew. Chem. Int. Ed. 2018, 57, 2806–2810. [Google Scholar] [CrossRef]
- Sasaki, Y.; Oshikawa, M.; Bharmoria, P.; Kouno, H.; Hayashi-Takagi, A.; Sato, M.; Ajioka, I.; Yanai, N.; Kimizuka, N. Near-infrared optogenetic genome engineering based on photon-upconversion hydrogels. Angew. Chem. Int. Ed. 2019, 58, 17827–17833. [Google Scholar] [CrossRef]
- Amemori, S.; Sasaki, Y.; Yanai, N.; Kimizuka, N. Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0-T1 absorption. J. Am. Chem. Soc. 2016, 138, 8702–8705. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.A.; Perkinson, C.F.; Baldo, M.A. Strategies for high-performance solid-state triplet-triplet-annihilation-based photon upconversion. Adv. Mater. 2020, 32, 1908175. [Google Scholar] [CrossRef] [PubMed]
- Olesund, A.; Gray, V.; Mårtensson, J.; Albinsson, B. Diphenylanthracene dimers for triplet-triplet annihilation photon upconversion: Mechanistic insights for intramolecular pathways and the importance of molecular geometry. J. Am. Chem. Soc. 2021, 143, 5745–5754. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; Goswami, S.; Young, R.M.; Schlesinger, I.; Mian, M.R.; Enciso, A.E.; Zhang, X.; Hornick, J.E.; Farha, O.K.; Wasielewski, M.R.; et al. Photon upconversion in a glowing metal-organic framework. J. Am. Chem. Soc. 2021, 143, 5053–5059. [Google Scholar] [CrossRef]
- Vasilev, A.; Kostadinov, A.; Kandinska, M.; Landfester, K.; Baluschev, S. Tetrathienothiophene porphyrin as a metal-free sensitizer for room-temperature triplet-triplet annihilation upconversion. Front. Chem. 2022, 10, 809863. [Google Scholar] [CrossRef]
- Lu, H.; Kobayashi, N. Optically active porphyrin and phthalocyanine systems. Chem. Rev. 2016, 116, 6184–6261. [Google Scholar] [CrossRef]
- Montaseri, H.; Kruger, C.A.; Abrahamse, H. Recent advances in porphyrin-based inorganic nanoparticles for cancer treatment. Int. J. Mol. Sci. 2020, 21, 3358. [Google Scholar] [CrossRef]
- Hiroto, S.; Miyake, Y.; Shinokubo, H. Synthesis and functionalization of porphyrins through organometallic methodologies. Chem. Rev. 2017, 117, 2910–3043. [Google Scholar] [CrossRef]
- Gao, C.; Wong, W.W.H.; Qin, Z.; Lo, S.C.; Namdas, E.B.; Dong, H.; Hu, W. Application of triplet–triplet annihilation upconversion in organic optoelectronic devices: Advances and perspectives. Adv. Mater. 2021, 33, 2100704. [Google Scholar] [CrossRef]
- Frazer, L.; Gallaher, J.K.; Schmidt, T.W. Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2017, 2, 1346–1354. [Google Scholar] [CrossRef]
- Saenz, F.; Ronchi, A.; Mauri, M.; Vadrucci, R.; Meinardi, F.; Monguzzi, A.; Weder, C. Nanostructured polymers enable stable and efficient low-power photon upconversion. Adv. Funct. Mater. 2020, 31, 2004495. [Google Scholar] [CrossRef]
- Filatov, M.A.; Baluschev, S.; Landfester, K. Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chem. Soc. Rev. 2016, 45, 4668–4689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askes, S.H.C.; Bonnet, S. Solving the oxygen sensitivity of sensitized photon upconversion in life science applications. Nat. Rev. Chem. 2018, 2, 437–452. [Google Scholar] [CrossRef]
- Gray, V.; Moth-Poulsen, K.; Albinsson, B.; Abrahamsson, M. Towards efficient solid-state triplet–triplet annihilation based photon upconversion: Supramolecular, macromolecular and self-assembled systems. Coord. Chem. Rev. 2018, 362, 54–71. [Google Scholar] [CrossRef]
- Healy, C.; Hermanspahn, L.; Kruger, P.E. Photon upconversion in self-assembled materials. Coord. Chem. Rev. 2021, 432, 213756. [Google Scholar] [CrossRef]
- Alves, J.; Feng, J.; Nienhaus, L.; Schmidt, T.W. Challenges, progress and prospects in solid state triplet fusion upconversion. J. Mater. Chem. C 2022, 10, 7783–7798. [Google Scholar] [CrossRef]
- Joarder, B.; Yanai, N.; Kimizuka, N. Solid-state photon upconversion materials: Structural integrity and triplet-singlet dual energy migration. J. Phys. Chem. Lett. 2018, 9, 4613–4624. [Google Scholar] [CrossRef]
- Bennison, M.J.; Collins, A.R.; Zhang, B.; Evans, R.C. Organic polymer hosts for triplet-triplet annihilation upconversion systems. Macromolecules 2021, 54, 5287–5303. [Google Scholar] [CrossRef]
- Schulze, T.F.; Schmidt, T.W. Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 2015, 8, 103–125. [Google Scholar] [CrossRef] [Green Version]
- Dilbeck, T.; Hanson, K. Molecular photon upconversion solar cells using multilayer assemblies: Progress and prospects. J. Phys. Chem. Lett. 2018, 9, 5810–5821. [Google Scholar] [CrossRef]
- Huang, L.; Kakadiaris, E.; Vaneckova, T.; Huang, K.; Vaculovicova, M.; Han, G. Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles. Biomaterials 2019, 201, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Dou, Q.; Jiang, L.; Kai, D.; Owh, C.; Loh, X.J. Bioimaging and biodetection assisted with TTA-UC materials. Drug Discov. Today 2017, 22, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Han, J.; Duan, P.; Liu, M. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems: Energy transfer, photon upconversion, charge transfer, and organic radical. Acc. Chem. Res. 2020, 53, 1279–1292. [Google Scholar] [CrossRef]
- Yang, D.; Han, J.; Liu, M.; Duan, P. Photon upconverted circularly polarized luminescence via triplet-triplet annihilation. Adv. Mater. 2019, 31, 1805683. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Duan, P. Recent advances of circularly polarized luminescence in photon upconversion systems. Chem. Lett. 2021, 50, 546–552. [Google Scholar] [CrossRef]
- Yanai, N.; Kimizuka, N. Stimuli-responsive molecular photon upconversion. Angew. Chem. Int. Ed. 2020, 59, 10252–10264. [Google Scholar] [CrossRef]
- Qi, Z.L.; Cheng, Y.H.; Xu, Z.; Chen, M.L. Recent advances in porphyrin-based materials for metal ions detection. Int. J. Mol. Sci. 2020, 21, 5839. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics: What’s coming next after nanotechnology? Nanoscale Horiz. 2021, 6, 364–378. [Google Scholar] [CrossRef]
- Ravetz, B.D.; Pun, A.B.; Churchill, E.M.; Congreve, D.N.; Rovis, T.; Campos, L.M. Photoredox catalysis using infrared light via triplet fusion upconversion. Nature 2019, 565, 343–346. [Google Scholar] [CrossRef]
- Sanders, S.N.; Schloemer, T.H.; Gangishetty, M.K.; Anderson, D.; Seitz, M.; Gallegos, A.O.; Stokes, R.C.; Congreve, D.N. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature 2022, 604, 474–478. [Google Scholar] [CrossRef]
- Glaser, F.; Kerzig, C.; Wenger, O.S. Multi-photon excitation in photoredox catalysis: Concepts, applications, methods. Angew. Chem. Int. Ed. 2020, 59, 10266–10284. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Soriano, J.; Herrera-Luna, J.C.; Díaz, D.D.; Jiménez, M.C.; Pérez-Ruiz, R. Recent applications of biphotonic processes in organic synthesis. Org. Chem. Front. 2020, 7, 1709–1716. [Google Scholar] [CrossRef]
- Sellet, N.; Cormier, M.; Goddard, J.-P. The dark side of photocatalysis: Near-infrared photoredox catalysis for organic synthesis. Org. Chem. Front. 2021, 8, 6783–6790. [Google Scholar] [CrossRef]
- Yao, B.; Sun, H.; Yang, L.; Wang, S.; Liu, X. Recent progress in light-driven molecular shuttles. Front. Chem. 2021, 9, 832735. [Google Scholar] [CrossRef]
- Wu, S.; Butt, H.J. Near-infrared-sensitive materials based on upconverting nanoparticles. Adv. Mater. 2016, 28, 1208–1226. [Google Scholar] [CrossRef]
- Jiang, Z.; Xu, M.; Li, F.; Yu, Y. Red-light-controllable liquid-crystal soft actuators via low-power excited upconversion based on triplet-triplet annihilation. J. Am. Chem. Soc. 2013, 135, 16446–16453. [Google Scholar] [CrossRef]
- Tokunaga, A.; Uriarte, L.M.; Mutoh, K.; Fron, E.; Hofkens, J.; Sliwa, M.; Abe, J. Photochromic reaction by red light via triplet fusion upconversion. J. Am. Chem. Soc. 2019, 141, 17744–17753. [Google Scholar] [CrossRef]
- Bagheri, M.; Mirzaee, M.; Hosseini, S.; Gholamzadeh, P. The photochromic switchable imidazoles: Their genesis, development, synthesis, and characterization. Dyes Pigments 2022, 203, 110322. [Google Scholar] [CrossRef]
- Ghosh, I.; Shaikh, R.S.; König, B. Sensitization-initiated electron transfer for photoredox catalysis. Angew. Chem. Int. Ed. 2017, 56, 8544–8549. [Google Scholar] [CrossRef]
- Lederhose, P.; Chen, Z.; Mgller, R.; Blinco, J.P.; Wu, S.; Barner-Kowollik, C. Near-infrared photoinduced coupling reactions assisted by upconversion nanoparticles. Angew. Chem. Int. Ed. 2016, 55, 12195–12199. [Google Scholar] [CrossRef]
- Cesana, P.T.; Li, B.X.; Shepard, S.G.; Ting, S.I.; Hart, S.M.; Olson, C.M.; Martinez Alvarado, J.I.; Son, M.; Steiman, T.J.; Castellano, F.N.; et al. A biohybrid strategy for enabling photoredox catalysis with low-energy light. Chem 2022, 8, 174–185. [Google Scholar] [CrossRef]
- Glaser, F.; Kerzig, C.; Wenger, O.S. Sensitization-initiated electron transfer via upconversion: Mechanism and photocatalytic applications. Chem. Sci. 2021, 12, 9922–9933. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Li, G.; Huang, J.; Han, C.; Turro, C.; Sun, Y. Two-photon-absorbing ruthenium complexes enable near infrared light-driven photocatalysis. Nat. Commun. 2022, 13, 2288. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, J.-H. Encapsulated triplet-triplet annihilation-based upconversion in the aqueous phase for sub-band-gap semiconductor photocatalysis. J. Am. Chem. Soc. 2012, 134, 17478–17481. [Google Scholar] [CrossRef] [PubMed]
- Kwon, O.S.; Kim, J.-H.; Cho, J.K.; Kim, J.-H. Triplet–triplet annihilation upconversion in CdS-decorated SiO2 nanocapsules for sub-bandgap photocatalysis. ACS Appl. Mater. Interfaces 2015, 7, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Häring, M.; Pérez-Ruiz, R.; von Wangelin, A.J.; Díaz, D.D. Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chem. Commun. 2015, 51, 16848–16851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Wu, W.; Li, Y.; Huang, K.; Zeng, L.; Lin, W.; Han, G. Highly effective near-infrared activating triplet-triplet annihilation upconversion for photoredox catalysis. J. Am. Chem. Soc. 2020, 142, 18460–18470. [Google Scholar] [CrossRef] [PubMed]
- Majek, M.; Faltermeier, U.; Dick, B.; Pérez-Ruiz, R.; von Wangelin, A.J. Application of visible-to-UV photon upconversion to photoredox catalysis: The activation of aryl bromides. Chem. Eur. J. 2015, 21, 15496–15501. [Google Scholar] [CrossRef]
- Wu, S.; Blinco, J.P.; Barner-Kowollik, C. Near-infrared photoinduced reactions assisted by upconverting nanoparticles. Chem. Eur. J. 2017, 23, 8325–8332. [Google Scholar] [CrossRef]
- Xiao, Q.; Ji, Y.; Xiao, Z.; Zhang, Y.; Lin, H.; Wang, Q. Novel multifunctional NaYF4:Er3+,Yb3+/PEGDA hybrid microspheres: NIR-light-activated photopolymerization and drug delivery. Chem. Commun. 2013, 49, 1527–1529. [Google Scholar] [CrossRef]
- Ding, C.; Wang, J.; Zhang, W.; Pan, X.; Zhang, Z.; Zhang, W.; Zhu, J.; Zhu, X. Platform of near-infrared light-induced reversible deactivation radical polymerization: Upconversion nanoparticles as internal light sources. Polym. Chem. 2016, 7, 7370–7374. [Google Scholar] [CrossRef]
- Liu, R.; Chen, H.; Li, Z.; Shi, F.; Liu, X. Extremely deep photopolymerization using upconversion particles as internal lamps. Polym. Chem. 2016, 7, 2457–2463. [Google Scholar] [CrossRef]
- Kocaarslan, A.; Tabanli, S.; Eryurek, G.; Yagci, Y. Near-infrared free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting using upconverting glass. Angew. Chem. Int. Ed. 2017, 56, 14507–14510. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Rui, J.; Fang, J.; Ni, Y.; Fang, L.; Lu, C.; Xu, Z. Triplet-triplet annihilation up-Conversion luminescent assisted free-radical reactions of polymers using visible light. Macromol. Chem. Phys. 2022, 2200038. [Google Scholar] [CrossRef]
- Awwad, N.; Bui, A.T.; Danilov, E.O.; Castellano, F.N. Visible-light-initiated free-radical polymerization by homomolecular triplet-triplet annihilation. Chem 2020, 6, 3071–3085. [Google Scholar] [CrossRef]
- Limberg, D.K.; Kang, J.H.; Hayward, R.C. Triplet-triplet annihilation photopolymerization for high-resolution 3D printing. J. Am. Chem. Soc. 2022, 144, 5226–5232. [Google Scholar] [CrossRef]
- Dadashi-Silab, S.; Doran, S.; Yagci, Y. Photoinduced electron transfer reactions for macromolecular syntheses. Chem. Rev. 2016, 116, 10212–10275. [Google Scholar] [CrossRef]
- Yeow, J.; Boyer, C. Photoinitiated polymerization-induced self-assembly (photo-PISA): New insights and opportunities. Adv. Sci. 2017, 4, 1700137. [Google Scholar] [CrossRef]
- Yeow, J.; Joshi, S.; Chapman, R.; Boyer, C. A self-reporting photocatalyst for online fluorescence monitoring of high throughput RAFT polymerization. Angew. Chem. Int. Ed. 2018, 57, 10102–10106. [Google Scholar] [CrossRef]
- Yeow, J.; Shanmugam, S.; Corrigan, N.; Kuchel, R.P.; Xu, J.; Boyer, C. A polymerization-induced self-assembly approach to nanoparticles loaded with singlet oxygen generators. Macromolecules 2016, 49, 7277–7285. [Google Scholar] [CrossRef]
- Shanmugam, S.; Xu, J.; Boyer, C. Exploiting metalloporphyrins for selective living radical polymerization tunable over visible wavelengths. J. Am. Chem. Soc. 2015, 137, 9174–9185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelmakh, G.F.; Tsvirko, M.P. Metalloporphyrin dimeric S2 emission resulting from triplet-triplet annihilation. ACS Symp. Ser. 1986, 321, 118–127. [Google Scholar]
- Sugunan, S.K.; Tripathy, U.; Brunet, S.M.K.; Paige, M.F.; Steer, R.P. Mechanisms of low-power noncoherent photon upconversion in metalloporphyrin-organic blue emitter systems in solution. J. Phys. Chem. A 2009, 113, 8548–8556. [Google Scholar] [CrossRef] [PubMed]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mulhaüpt, R. Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, E.; Wicker, R. Multiprocess 3D printing for increasing component functionality. Science 2016, 353, aaf2093. [Google Scholar] [CrossRef]
- Geng, Q.; Wang, D.; Chen, P.; Chen, S.-C. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun. 2019, 10, 2179. [Google Scholar] [CrossRef]
- Weon, S.; He, F.; Choi, W. Status and challenges in photocatalytic nanotechnology for cleaning air polluted with volatile organic compounds: Visible light utilization and catalyst deactivation. Environ. Sci. Nano 2019, 6, 3185–3214. [Google Scholar] [CrossRef]
- Kim, H.I.; Kim, H.-N.; Weon, S.; Moon, G.-H.; Kim, J.-H.; Choi, W. Robust Co-catalytic performance of nanodiamonds loaded on WO3 for the decomposition of volatile organic compounds under visible light. ACS Catal. 2016, 6, 8350–8360. [Google Scholar] [CrossRef] [Green Version]
- Torres-Pinto, A.; Sampaio, M.J.; Silva, C.G.; Faria, J.L.; Silva, A.M.T. Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds. Appl. Catal. B Environ. 2019, 252, 128–137. [Google Scholar] [CrossRef]
- Sheng, J.; Li, X.; Xu, Y. Generation of H2O2 and OH radicals on Bi2WO6 for phenol degradation under visible light. ACS Catal. 2014, 4, 732–737. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.F.; Li, X.Y.; Chi, D.Z.; Zhang, H.J.; Liu, X.G. Lanthanide-doped upconversion materials: Emerging applications for photovoltaics and photocatalysis. Nanotechnology 2014, 25, 482001. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-I.; Weon, S.; Kang, H.; Hagstrom, A.L.; Kwon, O.S.; Lee, Y.-S.; Choi, W.; Kim, J.-H. Plasmon-enhanced sub-bandgap photocatalysis via triplet-triplet annihilation upconversion for volatile organic compound degradation. Environ. Sci. Technol. 2016, 50, 11184–11192. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cheng, R.; Liao, L.; Zhou, H.; Bai, J.; Liu, G.; Liu, L.; Huang, Y.; Duan, X. Plasmon resonance enhanced multicolour photodetection by graphene. Nat. Commun. 2011, 2, 579. [Google Scholar] [CrossRef] [Green Version]
- Zijlstra, P.; Paulo, P.M.R.; Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 2012, 7, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, D.M.; Garćia-Etxarri, A.; Salleo, A.; Dionne, J.A. Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 2014, 5, 4020–4031. [Google Scholar] [CrossRef] [PubMed]
- Hagstrom, A.L.; Weon, S.; Choi, W.; Kim, J.-H. Triplet–triplet annihilation upconversion in broadly absorbing layered film systems for sub-bandgap photocatalysis. ACS Appl. Mater. Interfaces 2019, 11, 13304–13318. [Google Scholar] [CrossRef]
- Fang, J.; Zhou, C.; Chen, Y.; Fang, L.; Wang, W.; Zhu, C.; Ni, Y.; Lu, C. Efficient photocatalysis of composite films based on plasmon-enhanced triplet-triplet annihilation. ACS Appl. Mater. Interfaces 2020, 12, 717–726. [Google Scholar] [CrossRef]
- Fang, J.; Chen, Y.; Zhu, C.; Li, X.; Wang, W.; Lu, C.; Ni, Y.; Fang, L.; Xu, Z. Enhanced triplet–triplet annihilation upconversion by photonic crystals and Au plasma resonance for efficient photocatalysis. Catal. Sci. Technol. 2020, 10, 8325–8331. [Google Scholar] [CrossRef]
- Yin, Z.; Li, H.; Xu, W.; Cui, S.; Zhou, D.; Chen, X.; Zhu, Y.; Qin, G.; Song, H. Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect. Adv. Mater. 2016, 28, 2518–2525. [Google Scholar] [CrossRef]
- Ding, B.; Hrelescu, C.; Arnold, N.; Isic, G.; Klar, T.A. Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals. Nano Lett. 2013, 13, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, H.; Shen, L.; Xiao, Z.; Hu, Y.; Zhou, J.; Wang, X.; Liu, Z.; Li, Z.; Li, X. Applying triplet-triplet annihilation upconversion in degradation of oxidized lignin model with good selectivity. Chem. Eng. J. 2022, 431, 133377. [Google Scholar] [CrossRef]
- Beery, D.; Schmidt, T.W.; Hanson, K. Harnessing sunlight via molecular photon upconversion. ACS Appl. Mater. Interfaces 2021, 13, 32601–32605. [Google Scholar] [CrossRef] [PubMed]
- Goldschmidt, J.C.; Fischer, S. Upconversion for photovoltaics–a review of materials, devices and concepts for performance enhancement. Adv. Optical Mater. 2015, 3, 510–535. [Google Scholar] [CrossRef]
- Steer, R.P. Prospects for efficient solar energy upconversion using metalloporphyrins as dual absorber-upconverters. Dalton Trans. 2018, 47, 8517–8525. [Google Scholar] [CrossRef] [PubMed]
- Gray, V.; Dzebo, D.; Abrahamsson, M.; Albinsson, B.; Moth-Poulsen, K. Triplet-triplet annihilation photon-upconversion: Towards solar energy applications. Phys. Chem. Chem. Phys. 2014, 16, 10345–10352. [Google Scholar] [CrossRef]
- Fang, J.; Wang, W.; Zhu, C.; Fang, L.; Jin, J.; Ni, Y.; Lu, C.; Xu, Z. CdS/Pt photocatalytic activity boosted by high-energetic photons based on efficient triplet–triplet annihilation upconversion. Appl. Catal. B Environ. 2017, 217, 100–107. [Google Scholar] [CrossRef]
- Fang, J.; Chen, Y.; Wang, W.; Fang, L.; Lu, C.; Zhu, C.; Kou, J.; Ni, Y.; Xu, Z. Highly efficient photocatalytic hydrogen generation of g-C3N4-CdS sheets based on plasmon-enhanced triplet–triplet annihilation upconversion. Appl. Catal. B Environ. 2019, 258, 117762. [Google Scholar] [CrossRef]
- Kageshima, Y.; Tateyama, S.; Kishimoto, F.; Teshima, K.; Domen, K.; Nishikiori, H. Photocatalytic oxygen evolution triggered by photon upconverted emission based on triplet-triplet annihilation. Phys. Chem. Chem. Phys. 2021, 23, 5673–5679. [Google Scholar] [CrossRef]
- Yao, B.; He, Y.; Wang, S.; Sun, H.; Liu, X. Recent advances in porphyrin-based systems for electrochemical oxygen evolution reaction. Int. J. Mol. Sci. 2022, 23, 6036. [Google Scholar] [CrossRef]
- Liu, B.; Li, J.; Wu, H.-L.; Liu, W.-Q.; Jiang, X.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Improved photoelectrocatalytic performance for water oxidation by earth-abundant cobalt molecular porphyrin complex-integrated BiVO4 photoanode. ACS Appl. Mater. Interfaces 2016, 8, 18577–18583. [Google Scholar] [CrossRef]
- Wei, P.; Lin, K.; Meng, D.; Xie, T.; Na, Y. Photoelectrochemical performance for water oxidation improved by molecular nickel porphyrin-integrated WO3/TiO2 photoanode. ChemSusChem 2018, 11, 1746–1750. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Sun, W.; Dong, Y.; Dong, C.; Hu, Q.; Ma, B.; Ding, Y. A graphene oxide–molecular Cu porphyrin-integrated BiVO4 photoanode for improved photoelectrochemical water oxidation performance. J. Mater. Chem. A 2020, 8, 4062–4072. [Google Scholar] [CrossRef]
- Khnayzer, R.S.; Blumhoff, J.; Harrington, J.A.; Haefele, A.; Deng, F.; Castellano, F.N. Upconversion-powered photoelectrochemistry. Chem. Commun. 2012, 48, 209–211. [Google Scholar] [CrossRef] [Green Version]
- Monguzzi, A.; Oertel, A.; Braga, D.; Riedinger, A.; Kim, D.K.; Knüsel, P.N.; Bianchi, A.; Mauri, M.; Simonutti, R.; Norris, D.J.; et al. Photocatalytic water-splitting enhancement by sub-bandgap photon harvesting. ACS Appl. Mater. Interfaces 2017, 9, 40180–40186. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Nam, S.K.; Kim, K.; Moon, J.H. Enhanced photoelectrochemical water splitting through bismuth vanadate with a photon upconversion luminescent reflector. Angew. Chem. Int. Ed. 2019, 58, 6891–6895. [Google Scholar] [CrossRef]
- Mattiello, S.; Monguzzi, A.; Pedrini, J.; Sassi, M.; Villa, C.; Torrente, Y.; Marotta, R.; Meinardi, F.; Beverina, L. Self-assembled dual dye-doped nanosized micelles for high-contrast up-conversion bioimaging. Adv. Funct. Mater. 2016, 26, 8447–8454. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, W.; Xu, M.; Li, F. Two-photon excitation-based imaging postprocessing algorithm model for background-free bioimaging. Anal. Chem. 2021, 93, 2551–2559. [Google Scholar] [CrossRef]
- Tian, B.; Wang, Q.; Su, Q.; Feng, W.; Li, F. In vivo biodistribution and toxicity assessment of triplet-triplet annihilation-based upconversion nanocapsules. Biomaterials 2017, 112, 10–19. [Google Scholar] [CrossRef]
- Liu, Q.; Yin, B.; Yang, T.; Yang, Y.; Shen, Z.; Yao, P.; Li, F. A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. J. Am. Chem. Soc. 2013, 135, 5029–5037. [Google Scholar] [CrossRef]
- Askes, S.H.; Pomp, W.; Hopkins, S.L.; Kros, A.; Wu, S.; Schmidt, T.; Bonnet, S. Imaging upconverting polymersomes in cancer cells: Biocompatible antioxidants brighten triplet-triplet annihilation upconversion. Small 2016, 12, 5579–5590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.E.; Park, C.S.; Park, S.J.; Kim, K.H.; Lee, J.; Kim, J.; Lee, S.H.; Song, H.S.; Ha, T.H.; Kim, J.-H.; et al. Single-photon-driven up-/down-conversion nanohybrids for in vivo mercury detection and real-time tracking. J. Mater. Chem. A 2020, 8, 1668–1677. [Google Scholar] [CrossRef]
- Iyisan, B.; Thiramanas, R.; Nazarova, N.; Avlasevich, Y.; Mailänder, V.; Baluschev, S.; Landfester, K. Temperature sensing in cells using polymeric upconversion nanocapsules. Biomacromolecules 2020, 21, 4469–4478. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zou, X.; Su, Q.; Yuan, W.; Cao, C.; Wang, Q.; Zhu, X.; Feng, W.; Li, F. Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat. Commun. 2018, 9, 2698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askes, S.H.; Bahreman, A.; Bonnet, S. Activation of a photodissociative ruthenium complex by triplet-triplet annihilation upconversion in liposomes. Angew. Chem. Int. Ed. 2014, 53, 1029–1033. [Google Scholar] [CrossRef]
- Askes, S.H.; Kloz, M.; Bruylants, G.; Kennis, J.T.; Bonnet, S. Triplet-triplet annihilation upconversion followed by FRET for the red light activation of a photodissociative ruthenium complex in liposomes. Phys. Chem. Chem. Phys. 2015, 17, 27380–27390. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, Q.; Zhan, C.; Barhoumi, A.; Yang, T.; Wylie, R.G.; Armstrong, P.A.; Kohane, D.S. Efficient triplet-triplet annihilation-based upconversion for nanoparticle phototargeting. Nano Lett. 2015, 15, 6332–6338. [Google Scholar] [CrossRef]
- Weinstain, R.; Slanina, T.; Kand, D.; Klán, P. Visible-to-NIR-light activated release: From small molecules to nanomaterials. Chem. Rev. 2020, 120, 13135–13272. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, B.; Sun, H.; He, Y.; Wang, S.; Liu, X. Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. Int. J. Mol. Sci. 2022, 23, 8041. https://doi.org/10.3390/ijms23148041
Yao B, Sun H, He Y, Wang S, Liu X. Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. International Journal of Molecular Sciences. 2022; 23(14):8041. https://doi.org/10.3390/ijms23148041
Chicago/Turabian StyleYao, Bin, Hongfei Sun, Youzhou He, Song Wang, and Xingyan Liu. 2022. "Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics" International Journal of Molecular Sciences 23, no. 14: 8041. https://doi.org/10.3390/ijms23148041
APA StyleYao, B., Sun, H., He, Y., Wang, S., & Liu, X. (2022). Recent Advances in the Photoreactions Triggered by Porphyrin-Based Triplet–Triplet Annihilation Upconversion Systems: Molecular Innovations and Nanoarchitectonics. International Journal of Molecular Sciences, 23(14), 8041. https://doi.org/10.3390/ijms23148041