Peptide Assembly of Al/CuO Nanothermite for Enhanced Reactivity of Nanoaluminum Particles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Aqueous Stability of Al NPs
2.2. Aqueous Stability of Al/CuO NPs
2.3. Thermal Analysis
3. Materials and Methods
3.1. Materials
3.2. Methods
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, K.; Rossi, C.; Ardila Rodriguez, G.A.; Tenailleau, C.; Alphonse, P. Development of a nano-Al/CuO based energetic material on silicon substrate. Appl. Phys. Lett. 2007, 91, 113117. [Google Scholar] [CrossRef] [Green Version]
- Berner, M.K.; Zarko, V.E.; Talawar, M.B. Nanoparticles of energetic materials: Synthesis and properties (review). Combust. Explos. Shock Waves 2013, 49, 625–647. [Google Scholar] [CrossRef]
- Zhou, X.; Torabi, M.; Lu, J.; Shen, R.; Zhang, K. Nanostructured energetic composites: Synthesis, ignition/combustion modeling, and applications. ACS Appl. Mater. Interfaces 2014, 6, 3058–3074. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, Y.; Ke, X.; Zhang, K. Exploring the solid-state interfacial reaction of Al/Fe2O3 nanothermites by thermal analysis. J. Mater. Sci. 2019, 54, 4115–4123. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, W.; Yu, C.; Zheng, Z.; Chen, Y.; Wang, J.; Liu, J.; Ma, K.; Ren, W. Electrochemical Synthesis of Al/CuO Thermite Films on Copper Substrates. Ind. Eng. Chem. Res. 2019, 58, 7131–7138. [Google Scholar] [CrossRef]
- Comet, M.; Martin, C.; Klaumünzer, M.; Schnell, F.; Spitzer, D. Energetic nanocomposites for detonation initiation in high explosives without primary explosives. Appl. Phys. Lett. 2015, 107, 243108. [Google Scholar] [CrossRef]
- Harrison, R. A Thermal Study of a Simple Al−CuO Pyrotechnic Crackle Composition. Propellants Explos. Pyrotech. 2019, 44, 733–743. [Google Scholar] [CrossRef]
- Bezmelnitsyn, A.; Thiruvengadathan, R.; Barizuddin, S.; Tappmeyer, D.; Apperson, S.; Gangopadhyay, K.; Gangopadhyay, S.; Redner, P.; Donadio, M.; Kapoor, D.; et al. Modified Nanoenergetic Composites with Tunable Combustion Characteristics for Propellant Applications. Propellants Explos. Pyrotech. 2010, 35, 384–394. [Google Scholar] [CrossRef]
- Lyu, J.-Y.; Yu, J.-H.; Tang, D.-Y.; He, W.; Tao, B.-W.; Guo, X.; Yan, Q.-L. Unexpected burning rate independence of composite propellants on the pressure by fine interfacial control of fuel/oxidizer. Chem. Eng. J. 2020, 388, 124320. [Google Scholar] [CrossRef]
- Wu, T.; Sevely, F.; Julien, B.; Sodre, F.; Cure, J.; Tenailleau, C.; Esteve, A.; Rossi, C. New coordination complexes-based gas-generating energetic composites. Combust. Flame 2020, 219, 478–487. [Google Scholar] [CrossRef]
- Wang, H.; Jian, G.; Zhou, W.; DeLisio, J.B.; Lee, V.T.; Zachariah, M.R. Metal Iodate-Based Energetic Composites and Their Combustion and Biocidal Performance. ACS Appl. Mater. Interfaces 2015, 7, 17363–17370. [Google Scholar] [CrossRef]
- Wu, T.; Zachariah, M.R. Silver ferrite: A superior oxidizer for thermite-driven biocidal nanoenergetic materials. RSC Adv. 2019, 9, 1831–1840. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zheng, B.; Qiao, Z.; Chen, J.; Zhang, L.; Zhang, L.; Li, Z.; Zhang, X.; Yang, G. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity. Appl. Surf. Sci. 2018, 442, 767–772. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, W.; Zheng, Z.; Wu, G.; Hu, B.; Chen, J.; Wang, J.; Yu, C.; Ma, K.; Zhou, X.; et al. Reactivity adjustment from the contact extent between CuO and Al phases in nanothermites. Chem. Eng. J. 2020, 402, 126288. [Google Scholar] [CrossRef]
- Tillotson, T.M.; Gash, A.E.; Simpson, R.L.; Hrubesh, L.W.; Satcher, J.H.; Poco, J.F. Nanostructured energetic materials using sol–gel methodologies. J. Non-Cryst. Solids 2001, 285, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, K.T.; Worsley, M.A.; Kuntz, J.D.; Gash, A.E. Electrophoretic deposition of binary energetic composites. Combust. Flame 2012, 159, 2210–2218. [Google Scholar] [CrossRef]
- Malchi, J.Y.; Foley, T.J.; Yetter, R.A. Electrostatically self-assembled nanocomposite reactive microspheres. ACS Appl. Mater. Interfaces 2009, 1, 2420–2423. [Google Scholar] [CrossRef]
- Séverac, F.; Alphonse, P.; Estève, A.; Bancaud, A.; Rossi, C. High-Energy Al/CuO Nanocomposites Obtained by DNA-Directed Assembly. Adv. Funct. Mater. 2012, 22, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Slocik, J.M.; Crouse, C.A.; Spowart, J.E.; Naik, R.R. Biologically tunable reactivity of energetic nanomaterials using protein cages. Nano Lett. 2013, 13, 2535–2540. [Google Scholar] [CrossRef]
- Slocik, J.M.; Drummy, L.F.; Dickerson, M.B.; Crouse, C.A.; Spowart, J.E.; Naik, R.R. Bioinspired High-Performance Energetic Materials Using Heme-Containing Crystals. Small 2015, 11, 3539–3544. [Google Scholar] [CrossRef]
- Calais, T.; Bancaud, A.; Estève, A.; Rossi, C. Correlation between DNA Self-Assembly Kinetics, Microstructure, and Thermal Properties of Tunable Highly Energetic Al–CuO Nanocomposites for Micropyrotechnic Applications. ACS Appl. Nano Mater. 2018, 1, 4716–4725. [Google Scholar] [CrossRef]
- Song, Z.; Jin, M.; Xian, M.; Wang, C. Peptide-driven assembly of Al/CuO energetic nanocomposite material. Chem. Eng. J. 2020, 388, 124225–124233. [Google Scholar] [CrossRef]
- Noor, F.; Zhang, H.; Korakianitis, T.; Wen, D. Oxidation and ignition of aluminum nanomaterials. Phys. Chem. Chem. Phys. 2013, 15, 20176–20188. [Google Scholar] [CrossRef]
- Liang, L.; Guo, X.; Liao, X.; Chang, Z. Improve the interfacial adhesion, corrosion resistance and combustion properties of aluminum powder by modification of nickel and dopamine. Appl. Surf. Sci. 2020, 508, 144790–144800. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Z.; Li, Y.; Zheng, B.; Yan, Q.; Guan, L.; Luo, G.; Li, S.; Nie, F. Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity. Chem. Eng. J. 2020, 383, 123110. [Google Scholar] [CrossRef]
- Coulet, M.-V.; Rufino, B.; Esposito, P.-H.; Neisius, T.; Isnard, O.; Denoyel, R. Oxidation Mechanism of Aluminum Nanopowders. J. Phys. Chem. C 2015, 119, 25063–25070. [Google Scholar] [CrossRef]
- Wang, J.; Hu, A.; Persic, J.; Wen, J.Z.; Zhou, Y.N. Thermal stability and reaction properties of passivated Al/CuO nano-thermite. J. Phys. Chem. Solids 2011, 72, 620–625. [Google Scholar] [CrossRef]
- Tran, V.T.; Kim, J.H.; Jeong, K.-J.; Kwon, J.; Kim, S.H.; Lee, J. Highly stable functionalized aluminum nanoparticles for magneto-energetic composite fabrication. Combust. Flame 2018, 187, 96–104. [Google Scholar] [CrossRef]
- Renard, D.; Tian, S.; Ahmadivand, A.; DeSantis, C.J.; Clark, B.D.; Nordlander, P.; Halas, N.J. Polydopamine-Stabilized Aluminum Nanocrystals: Aqueous Stability and Benzo [a] pyrene Detection. ACS Nano 2019, 13, 3117–3124. [Google Scholar] [CrossRef]
- He, W.; Tao, B.; Yang, Z.; Yang, G.; Guo, X.; Liu, P.-J.; Yan, Q.-L. Mussel-inspired polydopamine-directed crystal growth of core-shell n-Al@PDA@CuO metastable intermixed composites. Chem. Eng. J. 2019, 369, 1093–1101. [Google Scholar] [CrossRef]
- Calais, T.; Bourrier, D.; Bancaud, A.; Chabal, Y.; Esteve, A.; Rossi, C. DNA Grafting and Arrangement on Oxide Surfaces for Self-Assembly of Al and CuO Nanoparticles. Langmuir ACS J. Surf. Colloids 2017, 33, 12193–12203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, B.L.; Finch, A.S.; Hurley, M.M.; Sarkes, D.A.; Stratis-Cullum, D.N. Genetically engineered peptides for inorganics: Study of an unconstrained bacterial display technology and bulk aluminum alloy. Adv. Mater. 2013, 25, 4585–4591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | 30 min J/g | 7 d J/g |
---|---|---|
H2O/Al/CuO comixture | 1203 | - |
H2O/SH-25/Al/CuO | 1277 | 323 |
PBS/Al/CuO comixture | 1413 | - |
PBS/SH-25/Al/CuO | 1785 | 1675 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.; Song, Z.; Liu, W.; Zhou, Z.; Wang, G.; Xian, M. Peptide Assembly of Al/CuO Nanothermite for Enhanced Reactivity of Nanoaluminum Particles. Int. J. Mol. Sci. 2022, 23, 8054. https://doi.org/10.3390/ijms23148054
Jin M, Song Z, Liu W, Zhou Z, Wang G, Xian M. Peptide Assembly of Al/CuO Nanothermite for Enhanced Reactivity of Nanoaluminum Particles. International Journal of Molecular Sciences. 2022; 23(14):8054. https://doi.org/10.3390/ijms23148054
Chicago/Turabian StyleJin, Miaomiao, Zhanxin Song, Wei Liu, Zilu Zhou, Guozhen Wang, and Mo Xian. 2022. "Peptide Assembly of Al/CuO Nanothermite for Enhanced Reactivity of Nanoaluminum Particles" International Journal of Molecular Sciences 23, no. 14: 8054. https://doi.org/10.3390/ijms23148054
APA StyleJin, M., Song, Z., Liu, W., Zhou, Z., Wang, G., & Xian, M. (2022). Peptide Assembly of Al/CuO Nanothermite for Enhanced Reactivity of Nanoaluminum Particles. International Journal of Molecular Sciences, 23(14), 8054. https://doi.org/10.3390/ijms23148054