Analysis of the Biological Properties of Blood Plasma Protein with GcMAF Functional Activity
Abstract
:1. Introduction
- Discovery of a feature that is universal for poorly differentiated tumorigenic cancer cells (CSCs), namely the ability to internalize fragments of extracellular double-stranded DNA (dsDNA) through the natural mechanism, and the discovery of the TAMRA-labeled DNA probe that is used as a specific molecular marker of CSCs [30,31].
- Discovery of the ability of these DNA fragments to interfere with interstrand crosslink repair when delivered to intracellular compartments, leading to either CSC death or loss of their tumorigenic properties. Once having lost its basis for infinite existence, the tumor is eliminated by the defense systems [30,32].
- Discovery of the mechanism of CSC synchronization in a specific tumor at the treatment-sensitive phase of the cell cycle and application of identified time profile to eradicate the tumorigenic origin, namely, CSCs [32].
- Detection of poorly differentiated CSCs in a tumor based on their capability to internalize the TAMRA-labeled dsDNA probe.
- Identification of the time profile of interstrand crosslink repair cycle induced by a crosslinking cytostatic agent.
- Triple cell cycle arrest of committed and cancer stem cells in the G2/M phase based on identified parameters of the time profile of the repair cycle followed by determination of the day of synchronous exit of TAMRA+ CSCs and their accumulation in the therapy-sensitive G1 phase.
- Injection of a composite dsDNA preparation at the point of demarcation between the phases of nucleotide excision repair (NER) and homologous recombination (HR) in such a way that each component of a therapeutic agent interferes with either NER or HR. This completely deprives a tumor-initiating stem cell of its ability to survive the therapeutic “assault” leading to either cell death or loss of its tumorigenic potential. In addition, the simultaneous administration of the composite dsDNA preparation induces massive apoptosis of committed cancer cells.
- A composite dsDNA preparation developed in the laboratory is used as a therapeutic agent. The development of the approach is described in detail in [33].
2. Results
2.1. GcMAF-RF Preparation
2.2. Assessment of Phagocytic Activity and Ability of PMs Treated with GcMAF-RF to Secrete Nitric Oxide
2.3. Ex Vivo Effects on Human Immunocompetent Cells
2.3.1. Activation of Functional Properties of Dendritic Cells by GcMAF-RF
2.3.2. M1 Polarization of M0 Macrophages by GcMAF-RF
2.3.3. Cytokine Production by Whole Blood Cells of Healthy Donors in Response to GcMAF-RF Stimulation
2.4. Evaluation of the Antitumor Effect of GcMAF-RF
Assessment of the Direct and Macrophage-Mediated Cytotoxic Effects of GcMAF-RF on U87 and MCF-7 Tumor Cells Ex Vivo
2.5. Evaluation of the Antitumor Effect of GcMAF-RF In Vivo
2.6. Combining Two Approaches, In Situ Vaccination with GcMAF-RF and Karanahan Therapy, in One Therapeutic Procedure
Searching for the Conditions Enabling GcMAF-RF Antitumor Activity and Their Characterization
2.7. Evaluation of the Immune Response Induced by Karanahan Monotherapy and Karanahan Therapy in Combination with In Situ Vaccination with GcMAF-RF in Mice with Lewis Carcinoma
- MDSCs. There were significant differences in the primary immunograms. For both analyzed populations (monocyte and granulocyte fractions), a statistically significant reduction in the population of CD11b + LycC + and CD11b + LycG + cells, characteristic of MDSCs, was detected in the Karanahan + GcMAF Group (Figure 7A,B).
- T helper cells. The pattern of cell distribution did not differ from that in the primary immunogram recorded on day 17 of the experiment (Figure 7C).
- Regulatory T lymphocytes. The data obtained in the repeated experiment coincided with the results of the primary immunogram (Figure 7D).
- CD8 + Perf + cytotoxic T lymphocytes. The results of the repeated experiment for MNC samples were consistent with the results of the primary immunogram, which showed that GcMAF stimulates an increase in the number of cytotoxic lymphocytes in peripheral blood (Figure 7E,F). In addition, almost all CD3 + CD8 + cells were cytotoxic lymphocytes in the mononuclear fraction of treated groups (Figure 7G).
- Natural killer cells. An increase in the number of NK cells in the mononuclear fraction compared to the control was observed in the repeated experiment (Figure 7H). A significant rise in the number of NK cells was also noted in the spleen. The primary analysis showed a similar increase in the number of NK cells on day 15 of the experiment.
- DCs. The DC population was also assessed (Figure 7I). The number of functional antigen-presenting cells decreased in both experimental groups.
Evaluation of PM Cytolytic Activity
3. Discussion
4. Materials and Methods
4.1. Mouse Lines
4.2. Tumor Models
4.3. GcMAF-RF Preparation
4.4. Analysis of Activation of Phagocytic Activity of Peritoneal Macrophages in Mice
4.5. Assessment of NO Secretion by PMs in Mice
4.6. Activation of Functional Properties of Dendritic Cells by GcMAF-RF
4.7. Macrophage Isolation to Analyze M0 to M1 Polarization of Macrophages by GcMAF-RF
4.8. Assessment of the Allostimulatory Activity of Macrophages and DCs
4.9. Cytokine Production by Whole Blood Cells
4.10. MTT Assay
4.11. Subcutaneous Grafting of U87 Cells and Assessment of GcMAF-RF Antitumor Effect
4.12. Exposure of Mice to GcMAF-RF Using the Karanahan Approach
4.13. Effects of Intact Lewis Carcinoma Lysates and Tumor Lysates Obtained after Karanahan Therapy on Murine PMs Activated by GcMAF-RF
4.14. Analysis of Changes in the Number of Immune Cell Populations in the Tumor, Spleen, and among Blood MNCs and PMs
4.15. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamamoto, N.; Kumashiro, R. Conversion of Vitamin D, Binding Protein (Group-Specific Component) to a Macrophage Activating Factor by the Stepwise Action of P-Galactosidase of B Cells and Sialidase of T Cells. J. Immunol. 1993, 151, 2794–2802. [Google Scholar] [PubMed]
- Yamamoto, N.; Homma, S. Vitamin D3 Binding Protein (Group-Specific Component) Is a Precursor for the Macrophage-Activating Signal Factor from Lysophosphatidylcholine-Treated Lymphocytes. Proc. Natl. Acad. Sci. USA 1991, 88, 8539–8543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delanghe, J.R.; Speeckaert, R.; Speeckaert, M.M. Behind the Scenes of Vitamin D Binding Protein: More than Vitamin D Binding. Best Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Fu, L.; Juras, D.J.; Karmali, M.; Wong, B.Y.L.; Gozdzik, A.; Cole, D.E.C. Common Variants of the Vitamin D Binding Protein Gene and Adverse Health Outcomes. Crit. Rev. Clin. Lab. Sci. 2013, 50, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamad, S.B.; Nagasawa, H.; Uto, Y.; Hori, H. Tumor Cell Alpha-N-Acetylgalactosaminidase Activity and Its Involvement in GcMAF-Related Macrophage Activation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002, 132, 1–8. [Google Scholar] [CrossRef]
- Naraparaju, V.R.; Yamamoto, N. Roles of β-Galactosidase of B Lymphocytes and Sialidase of T Lymphocytes in Inflammation-Primed Activation of Macrophages. Immunol. Lett. 1994, 43, 143–148. [Google Scholar] [CrossRef]
- Saburi, E.; Saburi, A.; Ghanei, M. Promising Role for Gc-MAF in Cancer Immunotherapy: From Bench to Bedside. Casp. J. Intern. Med. 2017, 8, 228–238. [Google Scholar] [CrossRef]
- Cassetta, L.; Cassol, E.; Poli, G. Macrophage Polarization in Health and Disease. Sci. World J. 2011, 11, 2391–2402. [Google Scholar] [CrossRef] [Green Version]
- Gordon, S. Alternative Activation of Macrophages. Nat. Rev. Immunol. 2003, 3, 23–35. [Google Scholar] [CrossRef]
- Korbelik, M.; Naraparaju, V.R.; Yamamoto, N. The Value of Serum α-N-Acetylgalactosaminidase Measurement for the Assessment of Tumour Response to Radio- and Photodynamic Therapy. Br. J. Cancer 1998, 77, 1009–1014. [Google Scholar] [CrossRef] [Green Version]
- Mosser, D.M. The Many Faces of Macrophage Activation. J. Leukoc. Biol. 2003, 73, 209–212. [Google Scholar] [CrossRef]
- Lamagna, C.; Aurrand-Lions, M.; Imhof, B.A. Dual Role of Macrophages in Tumor Growth and Angiogenesis. J. Leukoc. Biol. 2006, 80, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.J.; Wynn, T.A. Obstacles and Opportunities for Understanding Macrophage Polarization. J. Leukoc. Biol. 2011, 89, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Sica, A.; Bronte, V. Altered Macrophage Differentiation and Immune Dysfunction in Tumor Development. J. Clin. Investig. 2007, 117, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Spadera, L.; Spadera, M. Potential Role of GcMAF in Suppressing the Severity of COVID-19-Induced Immune Responses: Lesson Learned from HIV. Med. Hypotheses 2020, 144, 110293. [Google Scholar] [CrossRef] [PubMed]
- Spadera, L. Phase II Clinical Trial Evaluating Efficacy and Safety of Oral Immunotherapy with Third Generation Gc Protein Derived Macrophage Activating Factor (Gc MAF) in Hospitalized Patients with COVID-19 Pneumonia: Study Code: COral-MAF1. Available online: https://clinicaltrials.gov/ct2/show/study/NCT04845971 (accessed on 1 July 2022).
- Bando, H. Some Measures for COVID-19 Including Deep Ultraviolet Light-Emitting Diode (DUV-LED), Gc Protein-Derived Macrophage-Activating Factor (Gcmaf), and 5-Aminolevulinic Acid (5-ALA). Asploro J. Biomed. Clin. Case Rep. 2021, 4, 110–113. [Google Scholar] [CrossRef]
- Inui, T.; Kuchiike, D.; Kubo, K.; Mette, M.; Uto, Y.; Hori, H.; Sakamoto, N. Clinical Experience of Integrative Cancer Immunotherapy with GcMAF. Anticancer Res. 2013, 33, 2917–2920. [Google Scholar]
- Kisker, O.; Onizuka, S.; Becker, C.M.; Fannon, M.; Flynn, E.; d’Amato, R.; Zetter, B.; Folkman, J.; Ray, R.; Swamy, N.; et al. Vitamin D Binding Protein-Macrophage Activating Factor (DBP-Maf) Inhibits Angiogenesis and Tumor Growth in Mice. Neoplasia 2003, 5, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Korbelik, M.; Naraparaju, V.R.; Yamamoto, N. Macrophage-Directed Immunotherapy as Adjuvant to Photodynamic Therapy of Cancer. Br. J. Cancer 1997, 75, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Pacini, S.; Punzi, T.; Morucci, G.; Gulisano, M.; Ruggiero, M. Effects of Vitamin D-Binding Protein-Derived Macrophage-Activating Factor on Human Breast Cancer Cells. Anticancer Res. 2012, 32, 45–52. [Google Scholar]
- Thyer, L.; Ward, E.; Smith, R.; Branca, J.J.V.; Morucci, G.; Gulisano, M.; Noakes, D.; Eslinger, R.; Pacini, S. GC Protein-Derived Macrophage-Activating Factor Decreases α-N-Acetylgalactosaminidase Levels in Advanced Cancer Patients. Oncoimmunology 2013, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thyer, L.; Ward, E.; Smith, R.; Fiore, M.; Magherini, S.; Branca, J.; Morucci, G.; Gulisano, M.; Ruggiero, M.; Pacini, S. A Novel Role for a Major Component of the Vitamin D Axis: Vitamin D Binding Protein-Derived Macrophage Activating Factor Induces Human Breast Cancer Cell Apoptosis through Stimulation of Macrophages. Nutrients 2013, 5, 2577–2589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toyohara, Y.; Hashitani, S.; Kishimoto, H.; Noguchi, K.; Yamamoto, N.; Urade, M. Inhibitory Effect of Vitamin D-Binding Protein-Derived Macrophage Activating Factor on DMBA-Induced Hamster Cheek Pouch Carcinogenesis and Its Derived Carcinoma Cell Line. Oncol. Lett. 2011, 2, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, N.; Suyama, H.; Yamamoto, N. Immunotherapy for Prostate Cancer with Gc Protein-Derived Macrophage-Activating Factor, GcMAF. Transl. Oncol. 2008, 1, 65–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehder, D.S.; Nelson, R.W.; Borges, C.R. Glycosylation Status of Vitamin D Binding Protein in Cancer Patients. Protein Sci. 2009, 18, 2036–2042. [Google Scholar] [CrossRef] [Green Version]
- Borges, C.R.; Rehder, D.S. Glycan Structure of Gc Protein-Derived Macrophage Activating Factor as Revealed by Mass Spectrometry. Arch. Biochem. Biophys. 2016, 606, 167–179. [Google Scholar] [CrossRef]
- Ruggiero, M.; Reinwald, H.; Pacini, S. Is Chondroitin Sulfate Responsible for the Biological Effects Attributed to the GC Protein-Derived Macrophage Activating Factor (GcMAF)? Med. Hypotheses 2016, 94, 126–131. [Google Scholar] [CrossRef]
- Ugarte, A.; Bouche, G.; Meheus, L. Inconsistencies and Questionable Reliability of the Publication “Immunotherapy of Metastatic Colorectal Cancer with Vitamin D-Binding Protein-Derived Macrophages-Activating, GcMAF” by Yamamoto; et al. Cancer Immunol. Immunother. 2014, 63, 1347–1348. [Google Scholar] [CrossRef] [Green Version]
- Dolgova, E.V.; Alyamkina, E.A.; Efremov, Y.R.; Nikolin, V.P.; Popova, N.A.; Tyrinova, T.V.; Kozel, A.V.; Minkevich, A.M.; Andrushkevich, O.M.; Zavyalov, E.L.; et al. Identification of Cancer Stem Cells and a Strategy for Their Elimination. Cancer Biol. Ther. 2014, 15, 1378–1394. [Google Scholar] [CrossRef] [Green Version]
- Ritter, G.S.; Petrova, D.D.; Efremov, Y.R.; Proskurina, A.S.; Potter, E.A.; Ruzanova, V.S.; Dolgova, E.V.; Kirikovich, S.S.; Levites, E.V.; Taranov, O.S.; et al. The New General Biological Property of Stem-like Tumor Cells. Part, I. Peculiarities of the Process of Double-Stranded DNA Fragments Internalization into Stem-like Tumor Cells of Ascites Carcinoma Krebs-2 and Epstein-Barr Virus-Induced B-Lymphoma. Int. J. Mol. Sci. 2022; submitted. [Google Scholar]
- Potter, E.A.; Dolgova, E.V.; Proskurina, A.S.; Minkevich, A.M.; Efremov, Y.R.; Taranov, O.S.; Omigov, V.V.; Nikolin, V.P.; Popova, N.A.; Bayborodin, S.I.; et al. A Strategy to Eradicate Well-Developed Krebs-2 Ascites in Mice. Oncotarget 2016, 7, 11580–11594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzanova, V.; Proskurina, A.; Efremov, Y.; Kirikovich, S.; Ritter, G.; Levites, E.; Dolgova, E.; Potter, E.; Babaeva, O.; Sidorov, S.; et al. Chronometric Administration of Cyclophosphamide and a Double-Stranded DNA-Mix at Interstrand Crosslinks Repair Timing, Called “Karanahan” Therapy, Is Highly Efficient in a Weakly Immunogenic Lewis Carcinoma Model. Pathol. Oncol. Res. 2022, 28, 1610180. [Google Scholar] [CrossRef]
- Kisaretova, P.E.; Kirikovich, S.S.; Ritter, G.S.; Efremov, Y.R.; Taranov, O.S.; Dubatolova, T.D.; Proskurina, A.S.; Potter, E.A.; Dolgova, E.V.; Sidorov, S.V.; et al. Approbation of the Cancer Treatment Approach Based on the Eradication of TAMRA+ Cancer Stem Cells in a Model of Murine Cyclophosphamide Resistant Lymphosarcoma. Anticancer Res. 2020, 40, 795–805. [Google Scholar] [CrossRef]
- Dolgova, E.V.; Andrushkevich, O.M.; Kisaretova, P.E.; Proskurina, A.S.; Ritter, G.S.; Dubatolova, T.D.; Romanenko, M.V.; Taranov, O.S.; Efremov, Y.R.; Zavyalov, E.L.; et al. Efficacy of the New Therapeutic Approach in Curing Malignant Neoplasms on the Model of Human Glioblastoma. Cancer Biol. Med. 2021, 18, 910–930. [Google Scholar] [CrossRef] [PubMed]
- Proskurina, A.S.; Kupina, V.V.; Efremov, Y.R.; Dolgova, E.V.; Ruzanova, V.S.; Ritter, G.S.; Potter, E.A.; Kirikovich, S.S.; Levites, E.V.; Ostanin, A.A.; et al. Karanahan: A Potential New Treatment Option for Human Breast Cancer and Its Validation in a Clinical Setting. Breast Cancer Basic Clin. Res. 2022, 16, 11782234211059931. [Google Scholar] [CrossRef] [PubMed]
- Link, R.P.; Perlman, K.L.; Pierce, E.A.; Schnoes, H.K.; DeLuca, H.F. Purification of Human Serum Vitamin D-Binding Protein by 25-Hydroxyvitamin D3-Sepharose Chromatography. Anal. Biochem. 1986, 157, 262–269. [Google Scholar] [CrossRef]
- Swamy, N.; Ray, R. 25-Hydroxy(26, 27-Methyl-3H)Vitamin D3-3β-(1, 2-Epoxypropyl)Ether an Affinity Labeling Reagent for Human Vitamin D-Binding Protein. Arch. Biochem. Biophys. 1995, 319, 504–507. [Google Scholar] [CrossRef]
- Hammarström, S.; Rabat, E.A. Studies on Specificity and Binding Properties of the Blood Group A Reactive Hemagglutinin from Helix Pomatia. Biochemistry 1971, 10, 1684–1692. [Google Scholar] [CrossRef]
- Ishikawa, M.; Inoue, T.; Inui, T.; Kuchiike, D.; Kubo, K.; Uto, Y.; Nishikata, T. A Novel Assay System for Macrophage-Activating Factor Activity Using a Human U937 Cell Line. Anticancer Res. 2014, 34, 4577–4582. [Google Scholar]
- Nan, X.; Carubelli, I.; Stamatos, N.M. Sialidase Expression in Activated Human T Lymphocytes Influences Production of IFN-γ. J. Leukoc. Biol. 2007, 81, 284–296. [Google Scholar] [CrossRef]
- Martinez, F.O.; Helming, L.; Gordon, S. Alternative Activation of Macrophages: An Immunologic Functional Perspective. Annu. Rev. Immunol. 2009, 27, 451–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostanin, A.A.; Kirikovich, S.S.; Dolgova, E.V.; Proskurina, A.S.; Chernykh, E.R.; Bogachev, S.S. A Thorny Pathway of Macrophage Activating Factor (GcMAF): From Bench to Bedside. Vavilov J. Genet. Breed. 2019, 23, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.W.C.; Weagel, E.; Liu, P.G.; Robison, R.; O’Neill, K.; Smith, C. Macrophage Polarization and Its Role in Cancer. J. Clin. Cell. Immunol. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Ruzanova, V.S.; Proskurina, A.S.; Ritter, G.S.; Efremov, Y.R.; Nikolin, V.P.; Popova, N.A.; Naprimerov, V.A.; Dolgova, E.V.; Potter, E.A.; Kirikovich, S.S.; et al. Experimental Comparison of the In Vivo Efficacy of Two Novel Anticancer Therapies. Anticancer Res. 2021, 41, 3371–3387. [Google Scholar] [CrossRef]
- Proskurina, A.S.; Ruzanova, V.S.; Ostanin, A.A.; Chernykh, E.R.; Bogachev, S.S. Theoretical Premises of a “Three in One” Therapeutic Approach to Treat Immunogenic and Nonimmunogenic Cancers: A Narrative Review. Transl. Cancer Res. 2021, 10, 4958–4972. [Google Scholar] [CrossRef]
- Nabeshima, Y.; Abe, C.; Kawauchi, T.; Hiroi, T.; Uto, Y.; Nabeshima, Y.-I. Simple Method for Large-Scale Production of Macrophage Activating Factor GcMAF. Sci. Rep. 2020, 10, 19122. [Google Scholar] [CrossRef] [PubMed]
- Nagasawa, H.; Uto, Y.; Sasaki, H.; Okamura, N.; Murakami, A.; Kubo, S.; Kirk, K.L.; Hori, H. Gc Protein (Vitamin D-Binding Protein): Gc Genotyping and GcMAF Precursor Activity. Anticancer Res. 2005, 25, 3689–3695. [Google Scholar]
- Homma, S.; Yamamoto, M.; Yamamoto, N. Vitamin D-Binding Protein (Group-Specific Component) Is the Sole Serum Protein Required for Macrophage Activation after Treatment of Peritoneal Cells with Lysophosphatidylcholine. Immunol. Cell Biol. 1993, 71, 249–257. [Google Scholar] [CrossRef]
- Haddad, J.G.; Kowalski, M.A.; Sanger, J.W. Actin Affinity Chromatography in the Purification of Human, Avian and Other Mammalian Plasma Proteins Binding Vitamin D and Its Metabolites (Gc Globulins). Biochem. J. 1984, 218, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Otterbein, L.R.; Cosio, C.; Graceffa, P.; Dominguez, R. Crystal Structures of the Vitamin D-Binding Protein and Its Complex with Actin: Structural Basis of the Actin-Scavenger System. Proc. Natl. Acad. Sci. USA 2002, 99, 8003–8008. [Google Scholar] [CrossRef] [Green Version]
- Verboven, C.; Rabijns, A.; de Maeyer, M.; van Baelen, H.; Bouillon, R.; de Ranter, C. A Structural Basis for the Unique Binding Features of the Human Vitamin D-Binding Protein. Nat. Genet. 2002, 9, 131–136. [Google Scholar] [CrossRef]
- Albracht, S.P. Immunotherapy with GcMAF Revisited—A Critical Overview of the Research of Nobuto Yamamoto. Cancer Treat. Res. Commun. 2022, 31, 100537. [Google Scholar] [CrossRef] [PubMed]
- Paduraru, D.N.; Bouariu, A.; Ion, D.; Andronic, O.; Dumitrașcu, M.C.; Bolocan, A. Considerations Regarding GCMAF Treatement in Breast Cancer. Romanian Biotechnol. Lett. 2019, 24, 851–855. [Google Scholar] [CrossRef]
- Law, A.M.K.; Valdes-Mora, F.; Gallego-Ortega, D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020, 9, 561. [Google Scholar] [CrossRef] [Green Version]
- Potter, E.A.; Proskurina, A.S.; Ritter, G.S.; Dolgova, E.V.; Nikolin, V.P.; Popova, N.A.; Taranov, O.S.; Efremov, Y.R.; Bayborodin, S.I.; Ostanin, A.A.; et al. Efficacy of a New Cancer Treatment Strategy Based on Eradication of Tumor-Initiating Stem Cells in a Mouse Model of Krebs-2 Solid Adenocarcinoma. Oncotarget 2018, 9, 28486–28499. [Google Scholar] [CrossRef] [Green Version]
- Simsek, C.; Esin, E.; Yalcin, S. Metronomic Chemotherapy: A Systematic Review of the Literature and Clinical Experience. J. Oncol. 2019, 2019, 5483791. [Google Scholar] [CrossRef] [Green Version]
- Dolgova, E.V.; Petrova, D.D.; Proskurina, A.S.; Ritter, G.S.; Kisaretova, P.E.; Potter, E.A.; Efremov, Y.R.; Bayborodin, S.I.; Karamysheva, T.V.; Romanenko, M.V.; et al. Identification of the Xenograft and Its Ascendant Sphere-Forming Cell Line as Belonging to EBV-Induced Lymphoma, and Characterization of the Status of Sphere-Forming Cells. Cancer Cell Int. 2019, 19, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Spudich, J.A.; Watt, S. The Regulation of Rabbit Skeletal Muscle Contraction. I. Biochemical Studies of the Interaction of the Tropomyosin-Troponin Complex with Actin and the Proteolytic Fragments of Myosin. J. Biol. Chem. 1971, 246, 4866–4871. [Google Scholar] [CrossRef]
- De Souza, M.G.; Grossi, A.L.; Pereira, E.L.B.; Da Cruz, C.O.; Mendes, F.M.; Cameron, L.C.; Paiva, C.L.A. Actin Immobilization on Chitin for Purifying Myosin II. Biochem. Mol. Biol. Educ. 2008, 36, 55–60. [Google Scholar] [CrossRef]
- Asaoka, Y.; Oka, M.; Yoshida, K.; Sasaki, Y.; Nishizuka, Y. Role of Lysophosphatidylcholine in T-Lymphocyte Activation: Involvement of Phospholipase A2 in Signal Transduction through Protein Kinase C. Proc. Natl. Acad. Sci. USA 1992, 89, 6447–6451. [Google Scholar] [CrossRef] [Green Version]
- Ngwenya, B.; Yamamoto, N. Effects of Inflammation Products on Immune Systems. Cancer Immunol. Immunother. 1986, 21, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of Nitrate, Nitrite, and [15N] Nitrate in Biological Fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Yu, Z.; Li, S.; Brader, P.; Chen, N.; Yu, Y.A.; Zhang, Q.; Szalay, A.A.; Fong, Y.; Wong, R.J. Oncolytic vaccinia therapy of squamous cell carcinoma. Mol. Cancer 2009, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrand-Rosenberg, S.; Fenselau, C. Myeloid-Derived Suppressor Cells: Immune-Suppressive Cells That Impair Antitumor Immunity and Are Sculpted by Their Environment. J. Immunol. 2018, 200, 422–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabrilovich, D. Myeloid-Derived Suppressor Cells. Cancer Immunol. Res. 2017, 5, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Turkowski, K.; Mora, J.; Brüne, B.; Seeger, W.; Weigert, A.; Savai, R. Redirecting Tumor-Associated Macrophages to Become Tumoricidal Effectors as a Novel Strategy for Cancer Therapy. Oncotarget 2017, 8, 48436–48452. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.U.I.; Shi, G.; Li, M.; Fan, H.; Ma, H.; Sheng, L.I. Correlation of Il-1 and Hb-Egf with Endometrial Receptivity. Exp. Ther. Med. 2018, 16, 5130–5136. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Pasare, C. Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm. J. Immunol. 2017, 198, 3791–3800. [Google Scholar] [CrossRef] [Green Version]
- Sonnenberg, G.F.; Hepworth, M.R. Functional Interactions between Innate Lymphoid Cells and Adaptive Immunity. Nat. Rev. Immunol. 2019, 19, 599–613. [Google Scholar] [CrossRef]
- Proskurina, A.S.; Ruzanova, V.S.; Tyrinova, T.V.; Strunkin, D.N.; Kirikovich, S.S.; Ritter, G.S.; Efremov, Y.R.; Bogachev, S.S. The Basis of Anticancer Immunity Mechanism Induced by In Situ Vaccination. J. Sib. Fed. Univ. Biol. 2020, 13, 235–269. [Google Scholar] [CrossRef]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Rudra, D. Emerging Functions of Regulatory T Cells in Tissue Homeostasis. Front. Immunol. 2018, 9, 1–26. [Google Scholar] [CrossRef] [PubMed]
Cytokine (pg/mL) | Conditioned Medium of B Lymphoma Cells | |||
---|---|---|---|---|
Day 3 | Day 14 | Day 17 | ||
Pro-inflammatory | IL-1β | 0.9 | 2.2 | 0.0 |
INF-α | 38 | 40 | 20 | |
IL-17 | 1 | 1 | 2 | |
IL-18 | 2 | 2 | 1 | |
IL-12 | 6 | 6 | 5 | |
sTNF | 236 | 247 | 298 | |
IFN-γ | 1 | 1 | 1 | |
IL-6 | 30 | 38 | 31 | |
TNF-α | 152 | 110 | 56 | |
Anti-inflammatory | IL-4 | 1.4 | 1.5 | 1.3 |
IL-10 | 27 | 32 | 62 | |
Growth factors | GM-CSF | 138 | 126 | 86 |
G-CSF | 31 | 24 | 9 | |
VEGF | 1.436 | 1.353 | 460 | |
IL-2 | 5 | 5 | 5 | |
Chemokines | IL-8 | 1.199 | 1.241 | 1.560 |
MCP | 3.078 | 3.149 | 2.567 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolgova, E.V.; Kirikovich, S.S.; Levites, E.V.; Ruzanova, V.S.; Proskurina, A.S.; Ritter, G.S.; Taranov, O.S.; Varaksin, N.A.; Ryabicheva, T.G.; Leplina, O.Y.; et al. Analysis of the Biological Properties of Blood Plasma Protein with GcMAF Functional Activity. Int. J. Mol. Sci. 2022, 23, 8075. https://doi.org/10.3390/ijms23158075
Dolgova EV, Kirikovich SS, Levites EV, Ruzanova VS, Proskurina AS, Ritter GS, Taranov OS, Varaksin NA, Ryabicheva TG, Leplina OY, et al. Analysis of the Biological Properties of Blood Plasma Protein with GcMAF Functional Activity. International Journal of Molecular Sciences. 2022; 23(15):8075. https://doi.org/10.3390/ijms23158075
Chicago/Turabian StyleDolgova, Evgeniya V., Svetlana S. Kirikovich, Evgeniy V. Levites, Vera S. Ruzanova, Anastasia S. Proskurina, Genrikh S. Ritter, Oleg S. Taranov, Nikolay A. Varaksin, Tatiana G. Ryabicheva, Olga Yu. Leplina, and et al. 2022. "Analysis of the Biological Properties of Blood Plasma Protein with GcMAF Functional Activity" International Journal of Molecular Sciences 23, no. 15: 8075. https://doi.org/10.3390/ijms23158075
APA StyleDolgova, E. V., Kirikovich, S. S., Levites, E. V., Ruzanova, V. S., Proskurina, A. S., Ritter, G. S., Taranov, O. S., Varaksin, N. A., Ryabicheva, T. G., Leplina, O. Y., Ostanin, A. A., Chernykh, E. R., & Bogachev, S. S. (2022). Analysis of the Biological Properties of Blood Plasma Protein with GcMAF Functional Activity. International Journal of Molecular Sciences, 23(15), 8075. https://doi.org/10.3390/ijms23158075