Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation
Abstract
:1. Introduction
2. Results
2.1. Laser Microscopy Observation and Immunohistochemical Analyses
2.2. Scaffolds and Their Raman Spectroscopic Evaluations
2.3. Raman Spectroscopic Evaluations of PDLSC-Grown Cartilage Tissues
2.4. Raman Imaging of Cartilage Tissue Grown onto Different Scaffolds
2.5. FTIR and SR-FTIR Results
3. Discussion
4. Materials and Methods
4.1. Preparation of Fibronectin-Coated NanoCliP-FD Gel
4.2. Cell Culture
4.3. Histochemical Analyses by Safranin O and Picrosirius Red Staining
4.4. Immunohistochemical Analysis for Hyaluronan and Collagen Type 2
4.5. Enzyme-Linked Immunosorbent Assay (ELISA) Kit
4.6. Raman Analyses
4.7. Raman Imaging
4.8. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
4.9. Synchrotron Radiation-Based FTIR
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huey, D.J.; Hu, J.C.; Athanasiou, K.A. Unlike bone, cartilage regeneration remains elusive. Science 2012, 338, 917–921. [Google Scholar] [CrossRef] [Green Version]
- Isogai, N.; Kusuhara, H.; Ikada, Y.; Ohtani, H.; Jacquet, R.; Hillyer, J.; Lowder, E.; Landis, W.J. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng. 2006, 12, 691–703. [Google Scholar] [CrossRef]
- Holtzer, H.; Abbott, J.; Lash, J.; Holtzer, S. The loss of phenotypic traits by differentiated cells in vitro, I. Dedifferentiation of cartilage cells. Proc. Natl. Acad. Sci. USA 1960, 46, 1533–1542. [Google Scholar] [CrossRef] [Green Version]
- Hubka, K.M.; Dahlin, R.L.; Meretoja, V.V.; Kasper, F.K.; Mikos, A.G. Enhancing chondrogenic phenotype for cartilage tissue engineering: Monoculture and coculture of articular chondrocytes and mesenchymal stemm cells. Tissue Eng. Part B 2014, 20, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Vapniarsky, N.; Huwe, L.W.; Arzi, B.; Houghton, M.K.; Wong, M.E.; Wilson, J.W.; Hatcher, D.C.; Hu, J.C.; Athanasiou, K.A. Tissue engineering toward temporomandibular joint disc regeneration. Sci. Transl. Med. 2018, 10, eaaq1802. [Google Scholar] [CrossRef] [Green Version]
- Homicz, M.R.; Chia, S.H.; Schumacher, B.L.; Masuda, K.; Thonar, E.J.; Sah, R.L.; Watson, D. Human septal chondrocyte redifferentiation in alginate, polyglycolic acid scaffold, and monolayer culture. Laryngoscope 2003, 113, 25–32. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Mukai, S.; Sawada, S.; Sasaki, Y.; Akiyoshi, K. Nanogel tectonic porous gel loading biologics, nanocarriers, and cells for advanced scaffold. Biomaterials 2015, 37, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Yamamoto, K.; Horiguchi, S.; Tahara, Y.; Nakai, K.; Kotani, S.; Oseko, F.; Pezzotti, G.; Yamamoto, T.; Kishida, T.; et al. Nanogel tectonic porous 3D scaffold for direct reprogramming fibroblasts into osteoblasts and bone regeneration. Sci. Rep. 2018, 8, 15824. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, Y.; Mukai, S.A.; Sasaki, Y.; Akiyoshi, K. Nanogel Tectonics for Tissue Engineering: Protein Delivery Systems with Nanogel Chaperones. Adv. Healthc. Mater. 2018, 7, e1800729. [Google Scholar] [CrossRef]
- Horiguchi, S.; Adachi, T.; Rondinella, A.; Boschetto, F.; Marin, E.; Zhu, W.; Tahara, Y.; Yamamoto, T.; Kanamura, N.; Akiyoshi, K.; et al. Osteogenic response of mesenchymal progenitor cells to natural polysaccharide nanogel and atelocollagen scaffolds: A spectroscopic study. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 1325–1340. [Google Scholar] [CrossRef]
- Adachi, T.; Boschetto, F.; Miyamoto, N.; Yamamoto, T.; Marin, E.; Zhu, W.; Kanamura, N.; Tahara, Y.; Akiyoshi, K.; Mazda, O.; et al. In vivo regeneration of large bone defect by cross-linked porous hydrogel: A pilot study in mice combining micro tomography, histological analyses, Raman spectroscopy and synchrotron infrared imaging. Materials 2020, 13, 4275. [Google Scholar] [CrossRef]
- Pezzotti, G.; Zhu, W.; Terai, Y.; Marin, E.; Boschetto, F.; Kawamoto, K.; Itaka, K. Raman spectroscopic insight into osteoarthritic cartilage regeneration by mRNA therapeutics encoding cartilage-anabolic transcription factor Runx1. Mater. Today Bio 2022, 13, 100210. [Google Scholar] [CrossRef]
- Takahashi, Y.; Sugano, N.; Takao, M.; Sakai, T.; Nishii, T.; Pezzotti, G. Raman spectroscopy investigation of load-assisted microstructural alterations in human knee cartilage: Preliminary study into diagnostic potential for osteoarthritis. J. Mech. Behav. Biomed. Mater. 2014, 31, 77–85. [Google Scholar] [CrossRef]
- Pezzotti, G.; Sugano, N. Cartilage regeneration and the role of vibrational spectroscopy in future joint arthroplasty. Key Eng. Mater. 2013, 541, 121–133. [Google Scholar]
- Ye, G.; Li, C.; Xiang, X.; Chen, C.; Zhang, R.; Yang, X.; Yu, X.; Wang, J.; Wang, L.; Shi, Q.; et al. Bone Morphogenetic Protein-9 Induces PDLSCs Osteogenic Differentiation through the ERK and p38 Signal Pathways. Int. J. Med. Sci. 2014, 11, 1065–1072. [Google Scholar] [CrossRef] [Green Version]
- Park, J.C.; Kim, J.M.; Jung, I.H.; Kim, J.C.; Choi, S.H.; Cho, K.S.; Kim, C.S. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: In vitro and in vivo evaluations. J. Clin. Periodontol. 2011, 38, 721–731. [Google Scholar] [CrossRef]
- Mrozik, K.; Gronthos, S.; Shi, S.; Bartold, P.M. A method to isolate, purify, and characterize human periodontal ligament stem cells. Methods Mol. Biol. 2010, 666, 269–284. [Google Scholar]
- Li, B.; Jung, H.J.; Kim, S.M.; Kim, M.J.; Jahng, J.W.; Lee, J.H. Human periodontal ligament stem cells repair mental nerve injury. Neural Regen. Res. 2013, 25, 2827–2837. [Google Scholar]
- Choi, S.; Cho, T.J.; Kwon, S.K.; Lee, G.; Cho, J. Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar. Int. J. Oral Sci 2013, 5, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Izadifar, Z.; Chen, X.; Kulyk, W. Strategic design and fabrication of engineered scaffolds for articular cartilage repair. J. Funct. Biomater. 2012, 3, 799–838. [Google Scholar] [CrossRef] [Green Version]
- Vasko, P.D.; Blackwell, J.; Koenig, J.L. Infrared and Raman spectroscopy of carbohydrates: Part II: Normal coordinate analysis of α-D-glucose. Carbohydr. Res. 1972, 23, 407–416. [Google Scholar] [CrossRef]
- Zhbankov, R.G.; Andrianov, V.M.; Marchewka, M.K. Fourier transform IR and Raman spectroscopy and structure of carbohydrates. J. Mol. Struct. 1997, 436/437, 637–654. [Google Scholar] [CrossRef]
- Goral, J. Fourier-transform Raman spectroscopy of carbohydrates. Curr. Top. Biophys. 1990, 16, 33–47. [Google Scholar]
- Tao, X.; Xie, Y.; Zhang, Q.; Qiu, X.; Yuan, L.; Wen, Y.; Li, M.; Yang, X.; Tao, T.; Xie, M.; et al. Cholesterol-modified amino-pullulan nanoparticles as a drug carrier: Comparative study of cholesterol-modified carboxyethyl pullulan and pullulan nanoparticles. Nanomaterials 2016, 6, 165. [Google Scholar] [CrossRef]
- Borel, J.P. Les collagens. L’Eurobiologiste 1991, 25, 247–271. [Google Scholar]
- Frushour, B.G.; Koenig, J.L. Raman-scattering of collagen, gelatin, and elastin. Biopolymer 1975, 14, 379–391. [Google Scholar] [CrossRef]
- De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Shurvell, H.F.; Bergin, F.J. Raman spectra of L(+)-glutamic acid and related compounds. J. Raman Spectrosc. 1989, 20, 163–168. [Google Scholar] [CrossRef]
- Hernandez, B.; Coic, Y.-M.; Pfluger, F.; Kruglik, S.G.; Ghomi, M. All characteristic Raman markers of tyrosine and tyrosinate originate from phenol ring fundamental vibrations. J. Raman Spectrosc. 2016, 47, 210–220. [Google Scholar] [CrossRef]
- Rygula; Majzner, K.; Marzec, K.M.; Kaczor, A.; Pilarczyk, M.; Baranska, M. Raman spectroscopy of proteins: A review. J. Raman Spectrosc. 2013, 44, 1061–1076. [Google Scholar]
- Rodriguez-Almazan, C.; Arreola, R.; Rodriguez-Larrea, D.; Aguirre-Lopez, B.; de Gomez-Puyou, M.T.; Perez-Monfort, R.; Costas, M.; Gomez-Puyou, A.; Torres-Larios, A. Structural basis of human triosephosphate isomerase deficiency—Mutation E104D is related to alterations of a conserved water network at the dimer interface. J. Biol. Chem. 2008, 283, 23254–23263. [Google Scholar] [PubMed] [Green Version]
- Zuo, J.; Tang, J.; Lu, M.; Zhou, Z.; Li, Y.; Tian, H.; Liu, E.; Gao, B.; Liu, T.; Shao, P. Glycolysis rate-limiting enzymes: Novel potential regulators of rheumatoid arthritis pathogenesis. Front. Immunol. 2021, 12, 779787. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Summer, R. Cellular metabolism in lung health and disease. Annu. Rev. Physiol. 2019, 81, 403–428. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Terauchi, K.; Yui, N.; Yatabe, K.; Kamada, T.; Fujiya, H.; Niki, H.; Musha, H.; Yudoh, K. Yje nicotinamide adenine dinucleoside (NAD)-dependent deacetylase sirtuin-1 regulates chondrocyte energy metabolism through the modulation of adenosine monophosphate-activated protein kinase (AMPK) in osteoarthritis (OA). J. Arthritis 2017, 6, 1000238. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Zhu, X.; Fan, Q.; Wan, X. Raman spectra of amino acids and their aqueous solutions. Spectrochim. Acta Part A 2011, 78, 1187–1195. [Google Scholar] [CrossRef]
- Krafft, C.; Neudert, L.; Simat, T.; Salzer, R. Near infrared Raman spectra of human brain lipids. Spectrochim. Acta Part A 2005, 61, 1529–1535. [Google Scholar] [CrossRef]
- Kotzianova, A.; Rebicek, J.; Zidek, O.; Pokorny, M.; Hrbac, J.; Velebny, V. Raman spectroscopy based method for the evaluation of compositional consistency of nanofibrous layers. Anal. Method. 2015, 7, 9900–9905. [Google Scholar] [CrossRef]
- Brezillon, S.; Untereiner, V.; Mohamed, H.T.; Hodin, J.; Chatron-Colliet, A.; Maquart, F.X.; Sockalingum, G.D. Probing glycosa minoglycan spectral signatures in live cells and their conditioned media by Raman microspectroscopy. Analyst 2017, 142, 1333–1341. [Google Scholar] [CrossRef] [Green Version]
- Kopec, M.; Imiela, A.; Abramczyk, H. Monitoring glycosylation metabolism in brain and breast cancer by Raman imaging. Sci. Rep. 2019, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Anastassopoulou, J.; Kyriakidou, M.; Malesiou, E.; Rallis, M.; Theophanides, T. Infrared and Raman spectroscopic studies of molecular disorders in skin cancer. In Vivo 2019, 33, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Kamilari, E.; Kontoyannis, C.; Lamari, F.; Orkoula, M. Discrimination and quantification of glycosaminoglycans in pharmaceutical formulations using micro-Raman spectroscopy. In Proceedings of the 10th PanHellenic Scientific Conference in Chemical Engineering, Patras, Greece, 4–6 June 2015; p. 344. [Google Scholar]
- Edwards, H.G.M.; Farwell, D.W.; Holder, J.M.; Lawson, E.E. Fourier-transform Raman spectroscopy of ivory, II. Spectroscopic analysis and assignments. J. Mol. Struct. 1997, 435, 49–58. [Google Scholar] [CrossRef]
- Janko, M.; Davidovskaya, P.; Bauer, M.; Zink, A.; Stark, R.W. Anisotropic Raman scattering in collagen bundles. Opt. Lett. 2010, 35, 2765–2767. [Google Scholar] [CrossRef] [PubMed]
- Mensch, C.; Bultinck, P.; Johannessen, C. The effect of protein backbone hydration on the amide vibrations in Raman and Raman optical activity spectra. Phys. Chem. Chem. Phys. 2019, 21, 1988–2005. [Google Scholar] [CrossRef] [Green Version]
- Mikhonin, V.; Ahmed, Z.; Ianoul, A.; Asher, S.A. Assignments and conformational dependencies of the Amide III peptide backbone UV resonance Raman band. J. Phys. Chem. B 2004, 108, 19020–19028. [Google Scholar] [CrossRef]
- Mikhonin, V.; Bykov, S.V.; Myshakina, N.S.; Asher, S.A. Peptide secondary structure folding reaction coordinate, correlation between UV Raman Amide III frequency, Ψ Ramachandran angle, and hydrogen bonding. J. Phys. Chem. B 2006, 110, 1928–1943. [Google Scholar] [CrossRef]
- Leikin, S.; Parsegian, V.A.; Yang, W.-H.; Walrafen, G.E. Raman spectral evidence for hydration forces between collagen triple helices. Proc. Natl. Acad. Sci. USA 1997, 94, 11312–11317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergholt, M.S.; St-Pierre, J.-P.; Offeddu, G.S.; Parmar, P.A.; Albro, M.B.; Puetzer, J.L.; Oyen, M.L.; Stevens, M.M. Raman spectroscopy reveals new insight into the zonal organization of native and tissue-engineered articular cartilage. ACS Cent. Sci. 2016, 2, 885–895. [Google Scholar] [CrossRef] [Green Version]
- Naka, M.H.; Morita, Y.; Ikeuchi, K. Influence of proteoglycan contents and of tissue hydration on the frictional characteristics of articular cartilage. Proc. Inst. Mech. Eng. H 2005, 219, 175–182. [Google Scholar] [CrossRef]
- McNary, S.M.; Athanasiou, A.K.; Reddi, A.H.; Reddi, A.H. Engineering lubrication in articular cartilage. Tissue Eng. Part B Rev. 2012, 18, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Barth, A.; Zscherp, C. What vibrations tell us about proteins. Q. Rev. Biophys. 2002, 35, 369–430. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 2007, 39, 540–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Campos Vidal, B.; Mello, M.L.S. FT-IR microspectroscopy of rat ear cartilage. PLoS ONE 2016, 11, e0151989. [Google Scholar]
- Ishida, K.P.; Griffiths, P.R. Comparison of the amide-I/II intensity ratio of solution and solid-state proteins sampled by transmission, attenuated total reflectance, and diffuse reflectance spectrometry. Appl. Spectrosc. 1993, 47, 584–589. [Google Scholar] [CrossRef]
- Huang, Y.B.; Wang, X.F.; Wang, H.Y.; Liu, Y.; Chen, Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Mol. Cancer Ther. 2011, 10, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.F.; Xu, Y.M.; Hao, D.M.; Huang, Y.B.; Liu, Y.; Chen, Y.X. Structure-guided de novo design of alpha-helical antimicrobial peptide with enhanced specificity. Pure Appl. Chem. 2010, 2, 243–257. [Google Scholar] [CrossRef]
- Sadat, A.; Joye, I.J. Peak fitting to Fourier transform infrared and Raman spectroscopic analysis of proteins. Appl. Sci. 2020, 10, 5918. [Google Scholar] [CrossRef]
- Aboul-Enein, Y.; Bunaciu, A.A.; Fleschin, S. Evaluation of the protein secondary structures using Fourier transform infrared spectroscopy. Gazi Univ. J. Sci. 2014, 27, 637–644. [Google Scholar]
- Camacho, N.P.; West, P.; Torzilli, P.A.; Mendelsohn, R. FTIR microscopic imaging of collagen and proteoglycan in bovine cartilage. Biopolymers 2001, 62, 1–8. [Google Scholar] [CrossRef]
- Potter, K.; Kidder, L.H.; Levin, I.W.; Lewis, E.N.; Spencer, R.G. Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging. Arthritis Rheumatol. 2001, 44, 846–855. [Google Scholar] [CrossRef]
- Croxford, M.; Crombie, D.; McNaughton, D.; Holmdahl, R.; Nandakumar, K.S.; Rowley, M.J. Specific antibody protection of the extracellular cartilage matrix against collagen antibody-induced damage. Arthritis Rheumatol. 2010, 62, 3374–3384. [Google Scholar] [CrossRef]
- Croxford, M.; Nandakumar, K.S.; Holmdahl, R.; Tobin, M.J.; McNaughton, D.; Rowley, M.J. Chemical changes demonstrated in cartilage by synchrotron infrared microspectroscopy in an antibody-induced murine model of rheumatoid arthritis. J. Biomed. Opt. 2011, 16, 066004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazarev, Y.A.; Grishkovsky, B.A.; Khromova, T.B. Amide I band of IR spectrum and structure of collagen and related polypeptides. Biopolymers 1985, 24, 1449–1478. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Bay-Jensen, A.-C.; Pap, T.; Dvir-Ginzberg, M.; Quasnichka, H.; Barrett-Jolley, R.; Mobasheri, A.; Henrotin, Y. Chondrocyte secretome: A source of novel insight and exploratory biomarkers of osteoarthritis. Osteoarthr. Cartil. 2017, 25, 1199–1209. [Google Scholar] [CrossRef] [Green Version]
- Carney, S.L.; Muir, H. The structure and function of cartilage proteoglycans. Physiol. Rev. 1988, 68, 858–910. [Google Scholar] [CrossRef] [PubMed]
- Bay-Jensen, C.; Hoegh-Madsen, S.; Dam, E.; Henriksen, K.; Sondergaard, B.C.; Pastoureau, P.; Qvist, P.; Karsdal, M.A. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis? Rheumatol. Int. 2010, 30, 435–442. [Google Scholar] [CrossRef]
- Sopasakis, V.R.; Wickelgren, R.; Sukonina, V.; Brantsing, C.; Svala, E.; Hansson, E.; Enerbäck, S.; Lindhal, A.; Skiöldebrand, E. Elevated glucosa levels preserve glucose uptake, Hyaluronan production, and low glutamate release following Interleukin-lβ stimulation of differentiated chondrocytes. Cartilage 2019, 10, 491–503. [Google Scholar] [CrossRef]
- Matsumoto, K.; Shionyu, M.; Go, M.; Shimizu, K.; Shinomura, T.; Kimata, K.; Watanabe, H. Distinct interaction of versican/PG-M with hyaluronan and link protein. J. Biol. Chem. 2003, 278, 41205–41212. [Google Scholar] [CrossRef] [Green Version]
- Tengblad, A comparative study of the binding of cartilage link protein and the hyaluronate-binding region of the cartilage proteoglycan to hyaluronate-substituted Sepharose gel. Biochem. J. 1981, 199, 297–305. [CrossRef] [Green Version]
- Nanashima, N.; Horie, K.; Maeda, H.; Tomisawa, T.; Kitajima, M.; Nakamura, T. Blackcurrant Anthocyanins Increase the Levels of Collagen, Elastin, and Hyaluronic Acid in Human Skin Fibroblasts and Ovariectomized Rats. Nutrients 2018, 10, 495. [Google Scholar] [CrossRef] [Green Version]
- Shibata, S.; Fujimori, T.; Yamashita, Y. An in situ hybridization and histochemical study of development and postnatal changes of mouse mandibular angular cartilage compared with condylar cartilage. J. Med. Dent. Sci. 2006, 53, 41–50. [Google Scholar]
- Bosserhoff, K.; Buettner, R. Establishing the protein MIA (melanoma inhibitory activity) as a marker for chondrocyte differentiation. Biomaterials 2003, 24, 3229–3234. [Google Scholar] [CrossRef]
- Zhou, Y. SR-FTIR as a tool for quantitative mapping of the content and distribution of extracellular matrix in decellularized book-shape bioscaffolds. BMC Musculoskel. Disord. 2018, 19, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mata-Miranda, M.M.; Martinez-Cuazitl, A.; Guerrero-Robles, C.I.; Noriega-Gonzalez, J.E.; Garcia-Hernandez, J.S.; Vazquez-Zapien, G.J. Biochemical similarity between cultured chondrocytes and in situ chondrocytes by chemometric analysis from FTIR microspectroscopy. Biotechnol. Rep. 2019, 24, e00391. [Google Scholar] [CrossRef] [PubMed]
Band Label | Wavenumber (cm−1) | Assignment | Ref. |
---|---|---|---|
1 | 234 | Glucose C-O torsion | [15] |
2 | 276 | Glucose C-O torsion | [15] |
3 | 359 | Glucose C-C-O bending | [15] |
4 | 429 | Glucose ring C-C-O bending | [15] |
5 | 534 | Glucose C-C and C-O stretching | [16] |
6 | 580 | Glucose C-O stretching | [15] |
7 | 843 | Glucose anomeric C-H bending | [17] |
8 | 921 | C-C-O bending | [17] |
9 | 1060 | Glucose C-C-H bending | [17] |
10 | 1125 | C-O-C stretching in ester | [18] |
11 | 1141 | Glucose C-O stretching | [18] |
12 | 1234 | Amide III | [18] |
13 | 1278 | CH2 deformation | [18] |
14 | 1455 | C-H and C-H2 bending | [18] |
15 | 1476 | C-H and C-H2 bending | [18] |
Band Label | Wavenumber (cm−1) | Assignment | Ref. |
---|---|---|---|
1 | 307 | Pro-Pro-Gly (tripeptide) | [7,19,20,21,22] |
2 | 402 | Pro-Pro-Gly (tripeptide) | [7,19,20,21,22] |
3 | 561 | Amide VI (-CO-NH-) | [19] |
4 | 763 | Amide VI (-CO-NH-) | [19] |
5 | 816 | C-C backbone | [19] |
6 | 858 | C-C (Pro) | [7] |
7 | 874 | C-C (Pro) | [7] |
8 | 921 | C-C (Pro) | [7] |
9 | 938 | C-C α-helix | [7] |
10 | 1004 | C-C stretch (Phe) | [7] |
11 | 1034 | C-OH bending | [21] |
12 | 1106 | C-H2 wag (glutamic acid) | [20] |
13 | 1177 | C-C-H bending (Tyr) | [22] |
14 | 1247 | Amide III | [21] |
15 | 1268 | Amide III | [21] |
16 | 1324 | Amide III | [21] |
17 | 1420 | COO- stretching | [7] |
18 | 1455 | CH2, CH3 bending | [22] |
19 | 1655 | Amide I | [20] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adachi, T.; Miyamoto, N.; Imamura, H.; Yamamoto, T.; Marin, E.; Zhu, W.; Kobara, M.; Sowa, Y.; Tahara, Y.; Kanamura, N.; et al. Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation. Int. J. Mol. Sci. 2022, 23, 8099. https://doi.org/10.3390/ijms23158099
Adachi T, Miyamoto N, Imamura H, Yamamoto T, Marin E, Zhu W, Kobara M, Sowa Y, Tahara Y, Kanamura N, et al. Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation. International Journal of Molecular Sciences. 2022; 23(15):8099. https://doi.org/10.3390/ijms23158099
Chicago/Turabian StyleAdachi, Tetsuya, Nao Miyamoto, Hayata Imamura, Toshiro Yamamoto, Elia Marin, Wenliang Zhu, Miyuki Kobara, Yoshihiro Sowa, Yoshiro Tahara, Narisato Kanamura, and et al. 2022. "Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation" International Journal of Molecular Sciences 23, no. 15: 8099. https://doi.org/10.3390/ijms23158099
APA StyleAdachi, T., Miyamoto, N., Imamura, H., Yamamoto, T., Marin, E., Zhu, W., Kobara, M., Sowa, Y., Tahara, Y., Kanamura, N., Akiyoshi, K., Mazda, O., Nishimura, I., & Pezzotti, G. (2022). Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation. International Journal of Molecular Sciences, 23(15), 8099. https://doi.org/10.3390/ijms23158099