Reorganization of the Brain Extracellular Matrix in Hippocampal Sclerosis
Abstract
:1. Introduction
2. Results
2.1. Changed ECM Protein Constituents Expression Pattern in HS1
2.2. Changed Glycosylation Pattern of the Diffuse and Condensed ECM in HS1
2.3. Correlation of Diagnosed Drug-Resistant MTLE-Related Clinical Data with the ECM Profile of HS1
2.4. Qualitative and Quantitative Changes in Drug-Resistant MTLE HS1 in Parvalbumin Interneurons and Astroglia
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGG | aggrecan |
CA | Ammon’s horn |
ECM | extracellular matrix |
FD | fascia dentata |
gcl | granular cell layer |
GFAP | Glial Fibrillary Acidic Protein |
HE | hematoxylin-eosin |
HS1 | hippocampal sclerosis type 1 |
IHC | immunohistochemistry |
ir | immunoreactivity |
mol | molecular layer |
MTLE | mesial temporal lobe epilepsy |
NCAN | neurocan |
PBS | Phosphate Buffered Saline |
PNN | perineuronal net |
polyml | polymorphic layer |
pyl | pyramidal layer |
ROI | region of interest |
RT | room temperature |
so | stratum oriens |
sr | stratum radiatum |
VCAN | versican |
WFA | Wisteria floribunda agglutinin |
References
- Engel, J.J.; Williamson, P.D.; Wieser, H.G. Mesial Temporal Lobe Epilepsy. In Epilepsy: A Comprehensive Textbook; Engel, J.J., Pedley, T., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1997; pp. 2417–2426. [Google Scholar]
- Mathern, G.; Babb, T.; Armstrong, D. Hippocampal Sclerosis. In Epilepsy: A Comprehensive Textbook; Engel, J.J., Pedley, T., Eds.; Lippincott-Raven: Philadelphia, PA, USA, 1997; pp. 135–155. [Google Scholar]
- Engel, J. Mesial Temporal Lobe Epilepsy: What Have We Learned? Neuroscientist 2001, 7, 340–352. [Google Scholar] [CrossRef]
- Thom, M. Review: Hippocampal Sclerosis in Epilepsy: A Neuropathology Review. Neuropathol. Appl. Neurobiol. 2014, 40, 520–543. [Google Scholar] [CrossRef]
- Dityatev, A. Remodeling of Extracellular Matrix and Epileptogenesis. Epilepsia 2010, 51 (Suppl. S3), 61–65. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Reams, R.Y.; Jordan, W.H.; Miller, M.A.; Thacker, H.L.; Snyder, P.W. Mesial Temporal Lobe Epilepsy: Pathogenesis, Induced Rodent Models and Lesions. Toxicol. Pathol. 2007, 35, 984–999. [Google Scholar] [CrossRef]
- Pitkänen, A.; Lukasiuk, K. Molecular and Cellular Basis of Epileptogenesis in Symptomatic Epilepsy. Epilepsy Behav. 2009, 14 (Suppl. S1), 16–25. [Google Scholar] [CrossRef] [PubMed]
- McRae, P.A.; Porter, B.E. The Perineuronal Net Component of the Extracellular Matrix in Plasticity and Epilepsy. Neurochem. Int. 2012, 61, 963–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, T.H.; Binder, D.K.; Ethell, I.M.; Razak, K.A. The Perineuronal ‘Safety’ Net? Perineuronal Net Abnormalities in Neurological Disorders. Front. Mol. Neurosci. 2018, 11, 270. [Google Scholar] [CrossRef]
- Soleman, S.; Filippov, M.A.; Dityatev, A.; Fawcett, J.W. Targeting the Neural Extracellular Matrix in Neurological Disorders. Neuroscience 2013, 253, 194–213. [Google Scholar] [CrossRef]
- Dityatev, A.; Schachner, M.; Sonderegger, P. The Dual Role of the Extracellular Matrix in Synaptic Plasticity and Homeostasis. Nat. Rev. Neurosci. 2010, 11, 735–746. [Google Scholar] [CrossRef]
- Novak, U.; Kaye, A.H. Extracellular Matrix and the Brain: Components and Function. J. Clin. Neurosci. 2000, 7, 280–290. [Google Scholar] [CrossRef]
- Zimmermann, D.R.; Dours-Zimmermann, M.T. Extracellular Matrix of the Central Nervous System: From Neglect to Challenge. Histochem. Cell Biol. 2008, 130, 635–653. [Google Scholar] [CrossRef] [Green Version]
- Rauch, U. Extracellular Matrix Components Associated with Remodeling Processes in Brain. Cell. Mol. Life Sci. CMLS 2004, 61, 2031–2045. [Google Scholar] [CrossRef]
- Suzuki, F.; Makiura, Y.; Guilhem, D.; Sørensen, J.-C.; Onteniente, B. Correlated Axonal Sprouting and Dendritic Spine Formation during Kainate-Induced Neuronal Morphogenesis in the Dentate Gyrus of Adult Mice. Exp. Neurol. 1997, 145, 203–213. [Google Scholar] [CrossRef]
- Fawcett, J.W.; Oohashi, T.; Pizzorusso, T. The Roles of Perineuronal Nets and the Perinodal Extracellular Matrix in Neuronal Function. Nat. Rev. Neurosci. 2019, 20, 451–465. [Google Scholar] [CrossRef]
- McRae, P.A.; Baranov, E.; Rogers, S.L.; Porter, B.E. Persistent Decrease in Multiple Components of the Perineuronal Net Following Status Epilepticus. Eur. J. Neurosci. 2012, 36, 3471–3482. [Google Scholar] [CrossRef] [Green Version]
- Pantazopoulos, H.; Berretta, S. In Sickness and in Health: Perineuronal Nets and Synaptic Plasticity in Psychiatric Disorders. Neural Plast. 2016, 2016, 9847696. [Google Scholar] [CrossRef] [Green Version]
- Dityatev, A.; Fellin, T. Extracellular Matrix in Plasticity and Epileptogenesis. Neuron Glia Biol. 2008, 4, 235–247. [Google Scholar] [CrossRef]
- Ferrer-Ferrer, M.; Dityatev, A. Shaping Synapses by the Neural Extracellular Matrix. Front. Neuroanat. 2018, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Rankin-Gee, E.K.; McRae, P.A.; Baranov, E.; Rogers, S.; Wandrey, L.; Porter, B.E. Perineuronal Net Degradation in Epilepsy. Epilepsia 2015, 56, 1124–1133. [Google Scholar] [CrossRef]
- Freeze, H.H.; Eklund, E.A.; Ng, B.G.; Patterson, M.C. Neurological Aspects of Human Glycosylation Disorders. Annu. Rev. Neurosci. 2015, 38, 105–125. [Google Scholar] [CrossRef] [Green Version]
- Carulli, D.; Verhaagen, J. An Extracellular Perspective on CNS Maturation: Perineuronal Nets and the Control of Plasticity. Int. J. Mol. Sci. 2021, 22, 2434. [Google Scholar] [CrossRef]
- Sofroniew, M.V.; Vinters, H. V Astrocytes: Biology and Pathology. Acta Neuropathol. 2010, 119, 7–35. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.M.; Sugo, E.; Barreto, D.; Hiew, C.-C.; Lawson, J.A.; Connolly, A.M.; Somerville, E.; Hasic, E.; Bye, A.M.; Cunningham, A.M. The Severity of Gliosis in Hippocampal Sclerosis Correlates with Pre-Operative Seizure Burden and Outcome After Temporal Lobectomy. Mol. Neurobiol. 2016, 53, 5446–5456. [Google Scholar] [CrossRef]
- Das, A.; Wallace, G.C., 4th; Holmes, C.; McDowell, M.L.; Smith, J.A.; Marshall, J.D.; Bonilha, L.; Edwards, J.C.; Glazier, S.S.; Ray, S.K.; et al. Hippocampal Tissue of Patients with Refractory Temporal Lobe Epilepsy Is Associated with Astrocyte Activation, Inflammation, and Altered Expression of Channels and Receptors. Neuroscience 2012, 220, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Geissler, M.; Gottschling, C.; Aguado, A.; Rauch, U.; Wetzel, C.H.; Hatt, H.; Faissner, A. Primary Hippocampal Neurons, Which Lack Four Crucial Extracellular Matrix Molecules, Display Abnormalities of Synaptic Structure and Function and Severe Deficits in Perineuronal Net Formation. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 7742–7755. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.L.; Rankin-Gee, E.; Risbud, R.M.; Porter, B.E.; Marsh, E.D. Normal Development of the Perineuronal Net in Humans; In Patients with and without Epilepsy. Neuroscience 2018, 384, 350–360. [Google Scholar] [CrossRef]
- Gross, C. Lost Inhibition-Brain Activity Temporarily Out of Control. Epilepsy Curr. 2018, 18, 53–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrioli, A.; Alonso-Nanclares, L.; Arellano, J.I.; DeFelipe, J. Quantitative Analysis of Parvalbumin-Immunoreactive Cells in the Human Epileptic Hippocampus. Neuroscience 2007, 149, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Arellano, J.I.; Muñoz, A.; Ballesteros-Yáñez, I.; Sola, R.G.; DeFelipe, J. Histopathology and Reorganization of Chandelier Cells in the Human Epileptic Sclerotic Hippocampus. Brain 2004, 127, 45–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittner, L.; Maglóczky, Z.; Borhegyi, Z.; Halász, P.; Tóth, S.; Eross, L.; Szabó, Z.; Freund, T.F. Preservation of Perisomatic Inhibitory Input of Granule Cells in the Epileptic Human Dentate Gyrus. Neuroscience 2001, 108, 587–600. [Google Scholar] [CrossRef]
- Sloviter, R.S.; Sollas, A.L.; Barbaro, N.M.; Laxer, K.D. Calcium-Binding Protein (Calbindin-D28K) and Parvalbumin Immunocytochemistry in the Normal and Epileptic Human Hippocampus. J. Comp. Neurol. 1991, 308, 381–396. [Google Scholar] [CrossRef] [PubMed]
- Celio, M.R.; Blümcke, I. Perineuronal Nets-a Specialized Form of Extracellular Matrix in the Adult Nervous System. Brain Res. Brain Res. Rev. 1994, 19, 128–145. [Google Scholar] [CrossRef]
- Tewari, B.P.; Chaunsali, L.; Campbell, S.L.; Patel, D.C.; Goode, A.E.; Sontheimer, H. Perineuronal Nets Decrease Membrane Capacitance of Peritumoral Fast Spiking Interneurons in a Model of Epilepsy. Nat. Commun. 2018, 9, 4724. [Google Scholar] [CrossRef] [Green Version]
- Petelin Gadže, Ž.; Čajić, I.; Bujan Kovač, A.; Nanković, S.; Šulentić, V.; Krbot Skorić, M.; Poljaković, Z. Dijagnostički i Terapijski Pristup Bolesniku s Epilepsijom. In Dijagnostički i Terapijski Pristup Bolesniku s Epilepsijom; Petelin Gadže, Ž., Ed.; Medicinska Naklada: Zagreb, Croatia, 2017; pp. 89–106. [Google Scholar]
- Jovanov-Milošević, N.; Petanjek, Z.; Petrović, D.; Judaš, M.; Kostović, I. Morphology, Molecular Phenotypes and Distribution of Neurons in Developing Human Corpus Callosum. Eur. J. Neurosci. 2010, 32, 1423–1432. [Google Scholar] [CrossRef]
- Culjat, M.; Milošević, N.J. Callosal Septa Express Guidance Cues and Are Paramedian Guideposts for Human Corpus Callosum Development. J. Anat. 2019, 235, 670–686. [Google Scholar] [CrossRef]
- Parichha, A.; Suresh, V.; Chatterjee, M.; Kshirsagar, A.; Ben-Reuven, L.; Olender, T.; Taketo, M.M.; Radosevic, V.; Bobic-Rasonja, M.; Trnski, S.; et al. Constitutive Activation of Canonical Wnt Signaling Disrupts Choroid Plexus Epithelial Fate. Nat. Commun. 2022, 13, 633. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
Primary Antibody | Cat No. | Host, Isotype | Dilution | Supplier | Secondary Antibody |
---|---|---|---|---|---|
Anti-Neuron specific Nuclear protein (NeuN) AB 10711153 | ab104225 | Rabbit polyclonal IgG | 1:1000 | Abcam, Cambridge, UK | IHC: Rabbit, Vectastain ABC kit, PK 4001, USA IF: Donkey Anti-Rabbit 546, A10040, Thermo Fisher Scientific, Waltham, MA, USA |
Anti-Glial Fibrillary Acidic Protein (GFAP) AB 10013382 | GFAP (Z0334) | Rabbit polyclonal, purified immunoglobulin | 1:1000 | Dako, Glostrup, Denmark | Rabbit, Vectastain ABC kit, PK 4001, USA |
Anti-Parvalbumin (PARV) AB 298032 | Ab11427 | Polyclonal rabbit | 1:3000 | Abcam, Cambridge, UK | IHC: Rabbit, Vectastain ABC kit, PK 4001, USA IF: Donkey Anti-Rabbit 546, A10040, Thermo Fisher Scientific, Waltham, MA, USA |
Biotinylated Wisteria floribunda agglutinin (WFA) AB 2620171 | L1516 | N/A | 6 µg/mL | Sigma Aldrich, Missouri, USA | N/A |
Anti-CS-56 Anti-chondroitin sulfate AB 476879 | C8035 | Monoclonal mouse IgM | 1:1000 | SIGMA, St. Louis, MO, USA | Mouse, Vectastain ABC kit, PK 4010, USA |
Anti-Fibronectin AB 476976 | FN (F3648) | Polyclonal rabbit | 1:400 | SIGMA, St. Louis, MO, USA | Rabbit, Vectastain ABC kit, PK 4001, USA |
Anti-Neurocan (NCAN) | HPA036814 | Polyclonal rabbit | 1:1000 | SIGMA, St. Louis, MO, USA | Rabbit, Vectastain ABC kit, PK 4001, USA |
Wisteria floribunda Lectin (WFA, WFL), Fluorescein AB 2336875 | FL-1351-2 | N/A | 10 µg/mL | Vector Laboratories, Burlingame, CA, USA | N/A |
Versican AB 2214378 | AF3054 | Polyclonal goat | 2.5 µg/1 mL | Biotechne R&D Systems, Minneapolis, SAD | Goat, Vectastain ABC kit, PK 4005, USA |
Aggrecan AB 90460 | SAB4500662 | Polyclonal rabbit | 1:200 | Sigma-Aldrich, Saint Louis, SAD | IHC: Rabbit, Vectastain ABC kit, PK 4001, USA IF: Donkey Anti-Rabbit 546, A10040, Thermo Fisher Scientific, Waltham, MA, USA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitaš, B.; Bobić-Rasonja, M.; Mrak, G.; Trnski, S.; Krbot Skorić, M.; Orešković, D.; Knezović, V.; Petelin Gadže, Ž.; Petanjek, Z.; Šimić, G.; et al. Reorganization of the Brain Extracellular Matrix in Hippocampal Sclerosis. Int. J. Mol. Sci. 2022, 23, 8197. https://doi.org/10.3390/ijms23158197
Sitaš B, Bobić-Rasonja M, Mrak G, Trnski S, Krbot Skorić M, Orešković D, Knezović V, Petelin Gadže Ž, Petanjek Z, Šimić G, et al. Reorganization of the Brain Extracellular Matrix in Hippocampal Sclerosis. International Journal of Molecular Sciences. 2022; 23(15):8197. https://doi.org/10.3390/ijms23158197
Chicago/Turabian StyleSitaš, Barbara, Mihaela Bobić-Rasonja, Goran Mrak, Sara Trnski, Magdalena Krbot Skorić, Darko Orešković, Vinka Knezović, Željka Petelin Gadže, Zdravko Petanjek, Goran Šimić, and et al. 2022. "Reorganization of the Brain Extracellular Matrix in Hippocampal Sclerosis" International Journal of Molecular Sciences 23, no. 15: 8197. https://doi.org/10.3390/ijms23158197
APA StyleSitaš, B., Bobić-Rasonja, M., Mrak, G., Trnski, S., Krbot Skorić, M., Orešković, D., Knezović, V., Petelin Gadže, Ž., Petanjek, Z., Šimić, G., Kolenc, D., & Jovanov Milošević, N. (2022). Reorganization of the Brain Extracellular Matrix in Hippocampal Sclerosis. International Journal of Molecular Sciences, 23(15), 8197. https://doi.org/10.3390/ijms23158197