The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity
Abstract
:1. Introduction
2. Effects of UVA from Sunlight
2.1. Chromophores and Reactive Oxygen Species
2.1.1. Endogenous Sensitizers
2.1.2. Oxidative Stress: ROS Formation and the Release of Free Iron
2.1.3. Cellular Defense
2.1.4. Bystander Effects
2.2. Biological Effects of Oxidative Stress
2.2.1. Lipid Peroxidation
2.2.2. Protein Carbonylation
2.2.3. Nuclear and Mitochondrial DNA Damage
Nuclear DNA Lesions
Mitochondrial Deletions
2.2.4. Apoptosis
2.2.5. Alteration of Energy Metabolism
2.3. From UVA-Induced DNA Mutations to Skin Cancer
2.4. Impact on Immunity
2.4.1. Inflammatory Signalization and Inflammation/Erythema
2.4.2. Immunomodulation
In Vivo Immunosuppression
UVA1 Cellular Impact on Immune Cells and Signaling
- ○
- UVA1-induced immunomodulation via effects on Langerhans cells
UVA1 Impact on T Lymphocytes
UVA-Induced Immunosuppression via Urocanic Acid
UVA1-Induced Immunomodulation via Calcineurin
UVA1-Induced Immunomodulation by Other Mechanisms
Role of UVA1 in Photodermatoses
2.5. Links between Dermal Damage and Photoaging
2.5.1. Solar Elastosis
2.5.2. Contribution of UVA1 to Photoaging-Related Dermal Alterations
2.5.3. Contribution of Mitochondrial Dysfunction in Dermal Photoaging
2.6. UVA1-Induced Pigmentation and Pigmentary Disorders
2.6.1. Immediate and Persistent Pigment Darkening and Delayed Tanning
2.6.2. Pigmentary Disorders
3. Lessons Learned from UVA1 Phototherapy and the Use of Tanning Beds
3.1. Phototherapy
3.2. Tanning Beds
4. Combined Effects of UVA and Other Environmental Factors
4.1. UVA and Pollutants
4.2. UVA1 and Visible Light
5. Rationale for a Broadened Photoprotection, including UVA1
5.1. General Consideration of UV Photoprotection
5.2. Specific Attention on Long UVA Rays in Photoprotection
5.3. Photoprotection Covering the Whole UV Spectrum and beyond UV: Vis or Pollutants
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
References
- Jablonski, N.G.; Chaplin, G. Colloquium paper: Human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA 2010, 107 (Suppl. 2), 8962–8968. [Google Scholar] [CrossRef] [Green Version]
- Sabziparvar, A.A.; Shine, K.P.; Forster, P.M.D.F. A Model-Derived Global Climatology of UV Irradiation at the Earth’s Surface. Photochem. Photobiol. 1999, 69, 193–202. [Google Scholar] [CrossRef]
- Commission Internationale de L’éclairage. Solar Spectral Irradiance; Technical Report: N CIE 85; Lux Editions: Paris, France, 1989. [Google Scholar]
- Tewari, A.; Grage, M.M.L.; Harrison, G.I.; Sarkany, R.; Young, A.R. UVA1 is skin deep: Molecular and clinical implications. Photochem. Photobiol. Sci. 2013, 12, 95–103. [Google Scholar] [CrossRef]
- Diffey, B.L. Use of UV-A sunbeds for cosmetic tanning. Br. J. Dermatol. 1986, 115, 67–76. [Google Scholar] [CrossRef] [PubMed]
- York, N.R.; Jacobe, H.T. UVA1 phototherapy: A review of mechanism and therapeutic application. Int. J. Dermatol. 2010, 49, 623–630. [Google Scholar] [CrossRef]
- Lim, H.W.; Naylor, M.; Hönigsmann, H.; Gilchrest, B.A.; Cooper, K.; Morison, W.; Deleo, V.A.; Scherschun, L. American Academy of Dermatology Consensus Conference on UVA protection of sunscreens: Summary and recommendations. Washington, DC, Feb 4, 2000. J. Am. Acad. Dermatol. 2001, 44, 505–508. [Google Scholar] [CrossRef]
- Halliday, G.M.; Byrne, S.N.; Damian, D.L. Ultraviolet A radiation: Its role in immunosuppression and carcinogenesis. Semin. Cutan. Med. Surg. 2011, 30, 214–221. [Google Scholar] [CrossRef] [PubMed]
- De Laat, A.; Van Der Leun, J.C.; De Gruijl, F.R. Carcinogenesis induced by UVA (365-nm) radiation: The dose-time dependence of tumor formation in hairless mice. Carcinogenesis 1997, 18, 1013–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Smith, N.R.; Tran, B.A.P.; Kang, S.; Voorhees, J.J.; Fisher, G.J. Dermal damage promoted by repeated low-level UV-A1 exposure despite tanning response in human skin. JAMA Dermatol. 2014, 150, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krutmann, J.; Bouloc, A.; Sore, G.; Bernard, B.A.; Passeron, T. The skin aging exposome. J. Dermatol. Sci. 2017, 85, 152–161. [Google Scholar] [CrossRef] [Green Version]
- Damian, D.L.; Matthews, Y.J.; Phan, T.A.; Halliday, G.M. An action spectrum for ultraviolet radiation-induced immunosuppression in humans. Br. J. Dermatol. 2011, 164, 657–659. [Google Scholar] [CrossRef] [PubMed]
- Marionnet, C.; Nouveau, S.; Hourblin, V.; Pillai, K.; Manco, M.; Bastien, P.; Tran, C.; Tricaud, C.; de Lacharrière, O.; Bernerd, F. UVA1-Induced Skin Darkening Is Associated with Molecular Changes Even in Highly Pigmented Skin Individuals. J. Investig. Dermatol. 2017, 137, 1184–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravnbak, M.H.; Wulf, H.C. Pigmentation after single and multiple UV-exposures depending on UV-spectrum. Arch. Dermatol. Res. 2007, 299, 25–32. [Google Scholar] [CrossRef]
- Passeron, T.; Krutmann, J.; Andersen, M.L.; Katta, R.; Zouboulis, C.C. Clinical and biological impact of the exposome on the skin. J. Eur. Acad. Dermatol. Venereol. 2020, 34 (Suppl. S4), 4–25. [Google Scholar] [CrossRef]
- Wondrak, G.T.; Jacobson, M.K.; Jacobson, E.L. Endogenous UVA-photosensitizers: Mediators of skin photodamage and novel targets for skin photoprotection. Photochem. Photobiol. Sci. 2006, 5, 215–237. [Google Scholar] [CrossRef]
- Buchczyk, D.P.; Klotz, L.-O.; Lang, K.; Fritsch, C.; Sies, H. High efficiency of 5-aminolevulinate-photodynamic treatment using UVA irradiation. Carcinogenesis 2001, 22, 879–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaestner, L.; Juzeniene, A.; Moan, J. Erythrocytes—The ‘house elves’ of photodynamic therapy. Photochem. Photobiol. Sci. 2004, 3, 981–989. [Google Scholar] [CrossRef] [PubMed]
- Meyskens, F.L., Jr.; Farmer, P.; Fruehauf, J.P. Redox regulation in human melanocytes and melanoma. Pigment Cell Res. 2001, 14, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Yamashita, Y.; Umezawa, K.; Hirobe, T.; Ito, S.; Wakamatsu, K. The Pro-Oxidant Activity of Pheomelanin is Significantly Enhanced by UVA Irradiation: Benzothiazole Moieties Are More Reactive than Benzothiazine Moieties. Int. J. Mol. Sci. 2018, 19, 2889. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Taguchi, H.; Maeda, T.; Minami, H.; Asada, Y.; Watanabe, Y.; Yoshikawa, K. The primary cytotoxicity in ultraviolet-a-irradiated riboflavin solution is derived from hydrogen peroxide. J. Investig. Dermatol. 1995, 105, 608–612. [Google Scholar] [CrossRef] [Green Version]
- Mahns, A.; Melchheier, I.; Suschek, C.V.; Sies, H.; Klotz, L.-O. Irradiation of cells with ultraviolet-A (320-400 nm) in the presence of cell culture medium elicits biological effects due to extracellular generation of hydrogen peroxide. Free Radic. Res. 2003, 37, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.H.; Lorente, C.; Capparelli, A.L.; Martínez, C.G.; Braun, A.M.; Oliveros, E. Singlet oxygen (1Δg) production by pterin derivatives in aqueous solutions. Photochem. Photobiol. Sci. 2003, 2, 245–250. [Google Scholar] [CrossRef]
- Ito, K.; Kawanishi, S. Photoinduced hydroxylation of deoxyguanosine in DNA by pterins: Sequence specificity and mechanism. Biochemistry 1997, 36, 1774–1781. [Google Scholar] [CrossRef]
- Wondrak, G.T.; Roberts, M.J.; Jacobson, M.K.; Jacobson, E.L. 3-hydroxypyridine chromophores are endogenous sensitizers of photooxidative stress in human skin cells. J. Biol. Chem. 2004, 279, 30009–30020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilski, P.; Li, M.Y.; Ehrenshaft, M.; Daub, M.E.; Chignell, C.F. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochem. Photobiol. 2000, 71, 129–134. [Google Scholar] [CrossRef]
- Baptista, M.S.; Cadet, J.; Di Mascio, P.; Ghogare, A.A.; Greer, A.; Hamblin, M.R.; Lorente, C.; Nunez, S.C.; Ribeiro, M.S.; Thomas, A.H.; et al. Type I and Type II Photosensitized Oxidation Reactions: Guidelines and Mechanistic Pathways. Photochem. Photobiol. 2017, 93, 912–919. [Google Scholar] [CrossRef] [Green Version]
- Aroun, A.; Zhong, J.L.; Tyrrell, R.M.; Pourzand, C. Iron, oxidative stress and the example of solar ultraviolet A radiation. Photochem. Photobiol. Sci. 2012, 11, 118–134. [Google Scholar] [CrossRef] [Green Version]
- Pourzand, C.; Watkin, R.D.; Brown, J.E.; Tyrrell, R.M. Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: The role of ferritin. Proc. Natl. Acad. Sci. USA 1999, 96, 6751–6756. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, R.M. Modulation of gene expression by the oxidative stress generated in human skin cells by UVA radiation and the restoration of redox homeostasis. Photochem. Photobiol. Sci. 2012, 11, 135–147. [Google Scholar] [CrossRef]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef]
- Ryšavá, A.; Čížková, K.; Franková, J.; Roubalová, L.; Ulrichová, J.; Vostálová, J.; Vrba, J.; Zálešák, B.; Svobodová, A.R. Effect of UVA radiation on the Nrf2 signalling pathway in human skin cells. J. Photochem. Photobiol. B Biol. 2020, 209, 111948. [Google Scholar] [CrossRef]
- Marionnet, C.; Pierrard, C.; Golebiewski, C.; Bernerd, F. Diversity of biological effects induced by longwave UVA rays (UVA1) in reconstructed skin. PLoS ONE 2014, 9, e105263. [Google Scholar] [CrossRef] [Green Version]
- Trautinger, F. Heat shock proteins in the photobiology of human skin. J. Photochem. Photobiol. B Biol. 2001, 63, 70–77. [Google Scholar] [CrossRef]
- Redmond, R.W.; Rajadurai, A.; Udayakumar, D.; Sviderskaya, E.V.; Tsao, H. Melanocytes are selectively vulnerable to UVA-mediated bystander oxidative signaling. J. Investig. Dermatol. 2014, 134, 1083–1090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dissemond, J.; Schneider, L.A.; Brenneisen, P.; Briviba, K.; Wenk, J.; Wlaschek, M.; Scharffetter-Kochanek, K. Protective and determining factors for the overall lipid peroxidation in ultraviolet A1-irradiated fibroblasts: In vitro and in vivo investigations. Br. J. Dermatol. 2003, 149, 341–349. [Google Scholar] [CrossRef]
- Berlett, B.S.; Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 1997, 272, 20313–20316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, R.L.; Williams, J.A.; Stadtman, E.R.; Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994, 233, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Yamawaki, Y.; Mizutani, T.; Okano, Y.; Masaki, H. The impact of carbonylated proteins on the skin and potential agents to block their effects. Exp. Dermatol. 2019, 28 (Suppl. 1), 32–37. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, T.; Sumida, H.; Sagawa, Y.; Okano, Y.; Masaki, H. Carbonylated proteins exposed to UVA and to blue light generate reactive oxygen species through a type I photosensitizing reaction. J. Dermatol. Sci. 2016, 84, 314–321. [Google Scholar] [CrossRef]
- Sander, C.S.; Chang, H.; Salzmann, S.; Müller, C.S.L.; Ekanayake-Mudiyanselage, S.; Elsner, P.; Thiele, J.J. Photoaging is associated with protein oxidation in human skin in vivo. J. Investig. Dermatol. 2002, 118, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Shindo, Y.; Witt, E.; Han, D.; Epstein, W.; Packer, L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J. Investig. Dermatol. 1994, 102, 122–124. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, N.; Tajima, S.; Ishibashi, A.; Uchida, K.; Shigematsu, T. Immunohistochemical detection of lipid peroxidation products, protein-bound acrolein and 4-hydroxynonenal protein adducts, in actinic elastosis of photodamaged skin. Arch. Dermatol. Res. 2001, 293, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Larroque-Cardoso, P.; Camaré, C.; Nadal-Wollbold, F.; Grazide, M.H.; Pucelle, M.; Garoby-Salom, S.; Bogdanowicz, P.; Josse, G.; Schmitt, A.-M.; Uchida, K.; et al. Elastin Modification by 4-Hydroxynonenal in Hairless Mice Exposed to UV-A. Role in Photoaging and Actinic Elastosis. J. Investig. Dermatol. 2015, 135, 1873–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, H.-L.; Nakajima, S.; Ma, L.; Walter, B.; Yasui, A.; Ethell, D.W.; Owen, L.B. Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest. BMC Cancer 2005, 5, 135. [Google Scholar] [CrossRef] [Green Version]
- Cadet, J.; Douki, T. Formation of UV-induced DNA damage contributing to skin cancer development. Photochem. Photobiol. Sci. 2018, 17, 1816–1841. [Google Scholar] [CrossRef] [PubMed]
- Cadet, J.; Douki, T.; Ravanat, J.-L. Oxidatively generated damage to cellular DNA by UVB and UVA radiation. Photochem. Photobiol. 2015, 91, 140–155. [Google Scholar] [CrossRef]
- Cuquerella, M.C.; Lhiaubet-Vallet, V.; Bosca, F.; Miranda, M.A. Photosensitised pyrimidine dimerisation in DNA. Chem. Sci. 2011, 2, 1219–1232. [Google Scholar] [CrossRef]
- Premi, S.; Wallisch, S.; Mano, C.M.; Weiner, A.B.; Bacchiocchi, A.; Wakamatsu, K.; Bechara, E.J.; Halaban, R.; Douki, T.; Brash, D.E. Photochemistry. Chemiexcitation of melanin derivatives induces DNA photoproducts long after UV exposure. Science 2015, 347, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Brash, D.E. UV-induced Melanin Chemiexcitation: A New Mode of Melanoma Pathogenesis. Toxicol. Pathol. 2016, 44, 552–554. [Google Scholar] [CrossRef]
- Tewari, A.; Sarkany, R.P.; Young, A.R. UVA1 induces cyclobutane pyrimidine dimers but not 6-4 photoproducts in human skin in vivo. J. Investig. Dermatol. 2012, 132, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Ikehata, H.; Kawai, K.; Komura, J.-I.; Sakatsume, K.; Wang, L.; Imai, M.; Higashi, S.; Nikaido, O.; Yamamoto, K.; Hieda, K.; et al. UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine dimers in normal mouse skin. J. Investig. Dermatol. 2008, 128, 2289–2296. [Google Scholar] [CrossRef] [Green Version]
- Kielbassa, C.; Roza, L.; Epe, B. Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 1997, 18, 811–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, K.C.; Cahill, D.S.; Kasai, H.; Nishimura, S.; Loeb, L.A. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J. Biol. Chem. 1992, 267, 166–172. [Google Scholar] [CrossRef]
- Douki, T.; Perdiz, D.; Grof, P.; Kuluncsics, Z.; Moustacchi, E.; Cadet, J.; Sage, E. Oxidation of guanine in cellular DNA by solar UV radiation: Biological role. Photochem. Photobiol. 1999, 70, 184–190. [Google Scholar] [CrossRef]
- Berneburg, M.; Grether-Beck, S.; Kürten, V.; Ruzicka, T.; Briviba, K.; Sies, H.; Krutmann, J. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J. Biol. Chem. 1999, 274, 15345–15349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berneburg, M.; Plettenberg, H.; Medve-König, K.; Pfahlberg, A.; Gers-Barlag, H.; Gefeller, O.; Krutmann, J. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J. Investig. Dermatol. 2004, 122, 1277–1283. [Google Scholar] [CrossRef] [Green Version]
- Krutmann, J. Ultraviolet A radiation-induced biological effects in human skin: Relevance for photoaging and photodermatosis. J. Dermatol. Sci. 2000, 23 (Suppl. S1), S22–S26. [Google Scholar] [CrossRef]
- Clayton, D.A.; Doda, J.N.; Friedberg, E.C. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 1974, 71, 2777–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.D.; Van Remmen, H.; Conrad, C.C.; Huang, T.T.; Epstein, C.J.; Richardson, A. Increased oxidative damage is correlated to altered mitochondrial function in heterozygous manganese superoxide dismutase knockout mice. J. Biol. Chem. 1998, 273, 28510–28515. [Google Scholar] [CrossRef] [Green Version]
- Krutmann, J. The role of UVA rays in skin aging. Eur. J. Dermatol. 2001, 11, 170–171. [Google Scholar]
- Breuckmann, F.; von Kobyletzki, G.; Avermaete, A.; Radenhausen, M.; Höxtermann, S.; Pieck, C.; Schöneborn, P.; Gambichler, T.; Freitag, M.; Hoffmann, K.; et al. Mechanisms of apoptosis: UVA1-induced immediate and UVB-induced delayed apoptosis in human T cells in vitro. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 418–429. [Google Scholar] [CrossRef]
- Godar, D.E. UVA1 radiation triggers two different final apoptotic pathways. J. Investig. Dermatol. 1999, 112, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, A.; Werfel, T.; Stege, H.; Ahrens, C.; Karmann, K.; Grewe, M.; Grether-Beck, S.; Ruzicka, T.; Kapp, A.; Klotz, L.-O.; et al. Evidence that singlet oxygen-induced human T helper cell apoptosis is the basic mechanism of ultraviolet-A radiation phototherapy. J. Exp. Med. 1997, 186, 1763–1768. [Google Scholar] [CrossRef]
- Bernerd, F.; Asselineau, D. UVA exposure of human skin reconstructed in vitro induces apoptosis of dermal fibroblasts: Subsequent connective tissue repair and implications in photoaging. Cell Death Differ. 1998, 5, 792–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berneburg, M.; Gremmel, T.; Kürten, V.; Schroeder, P.; Hertel, I.; Von Mikecz, A.; Wild, S.; Chen, M.; Declercq, L.; Matsui, M.; et al. Creatine supplementation normalizes mutagenesis of mitochondrial DNA as well as functional consequences. J. Investig. Dermatol. 2005, 125, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svobodová, A.; Zdařilová, A.; Mališková, J.; Mikulková, H.; Walterová, D.; Vostalová, J. Attenuation of UVA-induced damage to human keratinocytes by silymarin. J. Dermatol. Sci. 2007, 46, 21–30. [Google Scholar] [CrossRef]
- Ung, T.P.L.; Lim, S.; Solinas, X.; Mahou, P.; Chessel, A.; Marionnet, C.; Bornschlögl, T.; Beaurepaire, E.; Bernerd, F.; Pena, A.-M.; et al. Simultaneous NAD(P)H and FAD fluorescence lifetime microscopy of long UVA-induced metabolic stress in reconstructed human skin. Sci. Rep. 2021, 11, 22171. [Google Scholar] [CrossRef]
- Brash, D.E. UV signature mutations. Photochem. Photobiol. 2015, 91, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Ikehata, H.; Ono, T. The mechanisms of UV mutagenesis. J. Radiat. Res. 2011, 52, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.; Quinn, A.G.; Angus, B.; Farr, P.M.; Rees, J.L. Wavelength specific patterns of p53 induction in human skin following exposure to UV radiation. Cancer Res. 1993, 53, 2697–2699. [Google Scholar]
- Beattie, P.E.; Finlan, L.E.; Kernohan, N.M.; Thomson, G.; Hupp, T.R.; Ibbotson, S.H. The effect of ultraviolet (UV) A1, UVB and solar-simulated radiation on p53 activation and p21Waf1/Cip. Br. J. Dermatol. 2005, 152, 1001–1008. [Google Scholar] [CrossRef]
- Burren, R.; Scaletta, C.; Frenk, E.; Panizzon, R.G.; Applegate, L.A. Sunlight and carcinogenesis: Expression of p53 and pyrimidine dimers in human skin following UVA I, UVA I + II and solar simulating radiations. Int. J. Cancer 1998, 76, 201–206. [Google Scholar] [CrossRef]
- Seité, S.; Moyal, D.; Verdier, M.-P.; Hourseau, C.; Fourtanier, A. Accumulated p53 protein and UVA protection level of sunscreens. Photodermatol. Photoimmunol. Photomed. 2000, 16, 3–9. [Google Scholar] [CrossRef]
- Liu-Smith, F.; Jia, J.; Zheng, Y. UV-Induced Molecular Signaling Differences in Melanoma and Non-melanoma Skin Cancer. Adv. Exp. Med. Biol. 2017, 996, 27–40. [Google Scholar] [CrossRef]
- Brash, D.E.; Rudolph, J.A.; Simon, J.A.; Lin, A.; McKenna, G.J.; Baden, H.P.; Halperin, A.J.; Pontén, J. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA 1991, 88, 10124–10128. [Google Scholar] [CrossRef] [Green Version]
- Kraemer, K.H. Sunlight and skin cancer: Another link revealed. Proc. Natl. Acad. Sci. USA 1997, 94, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Sarasin, A. The molecular pathways of ultraviolet-induced carcinogenesis. Mutat. Res. Mol. Mech. Mutagen. 1999, 428, 5–10. [Google Scholar] [CrossRef]
- De Gruijl, F.R.; Rebel, H. Early events in UV carcinogenesis—DNA damage, target cells and mutant p53 foci. Photochem. Photobiol. 2008, 84, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Wikonkal, N.M.; Brash, D.E. Ultraviolet radiation induced signature mutations in photocarcinogenesis. J. Investig. Dermatol. Symp. Proc. 1999, 4, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Kelfkens, G.; de Gruijl, F.R.; van der Leun, J.C. Ozone depletion and increase in annual carcinogenic ultraviolet dose. Photochem. Photobiol. 1990, 52, 819–823. [Google Scholar] [CrossRef] [PubMed]
- Rünger, T.M.; Farahvash, B.; Hatvani, Z.; Rees, A. Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: A less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones. Photochem. Photobiol. Sci. 2012, 11, 207–215. [Google Scholar] [CrossRef]
- Drobetsky, E.A.; Turcotte, J.; Châteauneuf, A. A role for ultraviolet A in solar mutagenesis. Proc. Natl. Acad. Sci. USA 1995, 92, 2350–2354. [Google Scholar] [CrossRef] [Green Version]
- van Kranen, H.J.; de Laat, A.; van de Ven, J.; Wester, P.W.; de Vries, A.; Berg, R.J.; van Kreijl, C.F.; de Gruijl, F.R. Low incidence of p53 mutations in UVA (365-nm)-induced skin tumors in hairless mice. Cancer Res. 1997, 57, 1238–1240. [Google Scholar] [PubMed]
- Sage, E.; Girard, P.-M.; Francesconi, S. Unravelling UVA-induced mutagenesis. Photochem. Photobiol. Sci. 2012, 11, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ikehata, H. Mechanistic considerations on the wavelength-dependent variations of UVR genotoxicity and mutagenesis in skin: The discrimination of UVA-signature from UV-signature mutation. Photochem. Photobiol. Sci. 2018, 17, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Persson, A.E.; Edström, D.W.; Bäckvall, H.; Lundeberg, J.; Pontén, F.; Ros, A.M.; Williams, C. The mutagenic effect of ultraviolet-A1 on human skin demonstrated by sequencing the p53 gene in single keratinocytes. Photodermatol. Photoimmunol. Photomed. 2002, 18, 287–293. [Google Scholar] [CrossRef]
- Huang, X.X.; Bernerd, F.; Halliday, G.M. Ultraviolet A within sunlight induces mutations in the epidermal basal layer of engineered human skin. Am. J. Pathol. 2009, 174, 1534–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, R.J. Keratinocyte stem cells: Targets for cutaneous carcinogens. J. Clin. Investig. 2000, 106, 3–8. [Google Scholar] [CrossRef]
- Agar, N.S.; Halliday, G.M.; Barnetson, R.S.; Ananthaswamy, H.N.; Wheeler, M.; Jones, A.M. The basal layer in human squamous tumors harbors more UVA than UVB fingerprint mutations: A role for UVA in human skin carcinogenesis. Proc. Natl. Acad. Sci. USA 2004, 101, 4954–4959. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-G. APC downregulated 1 inhibits breast cancer cell invasion by inhibiting the canonical WNT signaling pathway. Oncol. Lett. 2017, 14, 4845–4852. [Google Scholar] [CrossRef] [Green Version]
- Hayes, C.S.; DeFeo-Mattox, K.; Woster, P.M.; Gilmour, S.K. Elevated ornithine decarboxylase activity promotes skin tumorigenesis by stimulating the recruitment of bulge stem cells but not via toxic polyamine catabolic metabolites. Amino Acids 2014, 46, 543–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noonan, F.P.; Zaidi, M.R.; Wolnicka-Glubisz, A.; Anver, M.R.; Bahn, J.H.; Wielgus, A.R.; Cadet, J.L.; Douki, T.; Mouret, S.; Tucker, M.A.; et al. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat. Commun. 2012, 3, 884. [Google Scholar] [CrossRef] [Green Version]
- Noonan, F.P.; Recio, J.A.; Takayama, H.; Duray, P.; Anver, M.R.; Rush, W.L.; De Fabo, E.C.; Merlino, G. Neonatal sunburn and melanoma in mice. Nature 2001, 413, 271–272. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.A.; Hamilton, S.L.; Wester, U.G.; Cyr, W.H. An analysis of UVA emissions from sunlamps and the potential importance for melanoma. Photochem. Photobiol. 1998, 68, 63–70. [Google Scholar] [CrossRef]
- Morita, A.; Grewe, M.; Grether-Beck, S.; Olaizola-Horn, S.; Krutmann, J. Induction of proinflammatory cytokines in human epidermoid carcinoma cells by in vitro ultraviolet A1 irradiation. Photochem. Photobiol. 1997, 65, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Pernet, I.; Sagot, V.; Schmitt, D.; Viac, J. UVA1 and UVB radiation but not PGE2 stimulate IL-8 release in normal human keratinocytes. Arch. Dermatol. Res. 1999, 291, 527–529. [Google Scholar] [CrossRef]
- Schneider, L.A.; Raizner, K.; Wlaschek, M.; Brenneisen, P.; Gethöffer, K.; Scharffetter-Kochanek, K. UVA-1 exposure in vivo leads to an IL-6 surge within the skin. Exp. Dermatol. 2017, 26, 830–832. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.L.; van Weelden, H.; Bruijnzeel, P.L.B. Neutrophil infiltration in normal human skin after exposure to different ultraviolet radiation sources. Photochem. Photobiol. 2008, 84, 1528–1534. [Google Scholar] [CrossRef]
- Larsen, C.G.; Anderson, A.O.; Appella, E.; Oppenheim, J.J.; Matsushima, K. The neutrophil-activating protein (NAP-1) is also chemotactic for T lymphocytes. Science 1989, 243, 1464–1466. [Google Scholar] [CrossRef]
- Tuschil, A.; Lam, C.; Haslberger, A.; Lindley, I. Interleukin-8 stimulates calcium transients and promotes epidermal cell proliferation. J. Investig. Dermatol. 1992, 99, 294–298. [Google Scholar] [CrossRef] [Green Version]
- Krutmann, J.; Grewe, M. Involvement of cytokines, DNA damage, and reactive oxygen intermediates in ultraviolet radiation-induced modulation of intercellular adhesion molecule-1 expression. J. Investig. Dermatol. 1995, 105, 67S–70S. [Google Scholar] [CrossRef] [Green Version]
- Norris, P.G.; Barker, J.N.W.N.; Allen, M.H.; Leiferman, K.M.; MacDonald, D.M.; Haskard, D.O.; Hawk, J.L.M. Adhesion molecule expression in polymorphic light eruption. J. Investig. Dermatol. 1992, 99, 504–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grether-Beck, S.; Olaizola-Horn, S.; Schmitt, H.; Grewe, M.; Jahnke, A.; Johnson, J.P.; Briviba, K.; Sies, H.; Krutmann, J. Activation of transcription factor AP-2 mediates UVA radiation- and singlet oxygen-induced expression of the human intercellular adhesion molecule 1 gene. Proc. Natl. Acad. Sci. USA 1996, 93, 14586–14591. [Google Scholar] [CrossRef] [Green Version]
- Kelly, D.A.; Young, A.R.; McGregor, J.M.; Seed, P.T.; Potten, C.S.; Walker, S.L. Sensitivity to sunburn is associated with susceptibility to ultraviolet radiation-induced suppression of cutaneous cell-mediated immunity. J. Exp. Med. 2000, 191, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Moyal, D. Immunosuppression induced by chronic ultraviolet irradiation in humans and its prevention by sunscreens. Eur. J. Dermatol. 1998, 8, 209–211. [Google Scholar]
- Moyal, D.D.; Fourtanier, A.M. Broad-spectrum sunscreens provide better protection from the suppression of the elicitation phase of delayed-type hypersensitivity response in humans. J. Investig. Dermatol. 2001, 117, 1186–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyal, D.D.; Fourtanier, A.M. Effects of UVA radiation on an established immune response in humans and sunscreen efficacy. Exp. Dermatol. 2002, 11 (Suppl. S1), 28–32. [Google Scholar] [CrossRef]
- Matthews, Y.J.; Halliday, G.M.; Phan, T.A.; Damian, D.L. Wavelength dependency for UVA-induced suppression of recall immunity in humans. J. Dermatol. Sci. 2010, 59, 192–197. [Google Scholar] [CrossRef]
- Asahina, A.; Fujita, H.; Tada, Y. Langerhans’ cells: Unique character in dendritic cells. Expert Rev. Dermatol. 2008, 3, 293–306. [Google Scholar] [CrossRef]
- Dumay, O.; Karam, A.; Vian, L.; Moyal, D.; Hourseau, C.; Stoebner, P.; Peyron, J.L.; Meynadier, J.; Cano, J.P.; Meunier, L. Ultraviolet AI exposure of human skin results in Langerhans cell depletion and reduction of epidermal antigen-presenting cell function: Partial protection by a broad-spectrum sunscreen. Br. J. Dermatol. 2001, 144, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Seite, S.; Zucchi, H.; Moyal, D.; Tison, S.; Compan, D.; Christiaens, F.; Gueniche, A.; Fourtanier, A. Alterations in human epidermal Langerhans cells by ultraviolet radiation: Quantitative and morphological study. Br. J. Dermatol. 2003, 148, 291–299. [Google Scholar] [CrossRef]
- Gruner, S.; Hofmann, T.; Meffert, H.; Sonnichsen, N. Studies on the effects of a high dose UVA-1 radiation therapy on surface markers and function of epidermal Langerhans cells. Arch. Dermatol. Res. 1993, 285, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Dittmar, H.C.; Weiss, J.M.; Termeer, C.C.; Denfeld, R.W.; Wanner, M.B.; Skov, L.; Barker, J.N.; Schopf, E.; Baadsgaard, O.; Simon, J.C. In vivo UVA-1 and UVB irradiation differentially perturbs the antigen-presenting function of human epidermal Langerhans cells. J. Investig. Dermatol. 1999, 112, 322–325. [Google Scholar] [CrossRef]
- Godar, D.E.; Lucas, A.D. Ultraviolet-A1 (340–400 nm)-mediated receptor and cytokine changes of transformed lymphocytes. Photodermatol. Photoimmunol. Photomed. 2005, 21, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Ambach, A.; Bonnekoh, B.; Gollnick, H. UVA1 radiation (340–400nm) interferes with the perforin-granule system of CD8hi+ cytotoxic T lymphocytes in vitro. J. Photochem. Photobiol. B Biol. 2006, 82, 236–243. [Google Scholar] [CrossRef]
- Rana, S.; Rogers, L.J.; Halliday, G.M. Immunosuppressive ultraviolet-A radiation inhibits the development of skin memory CD8 T cells. Photochem. Photobiol. Sci. 2010, 9, 25–30. [Google Scholar] [CrossRef]
- Osmola-Mańkowska, A.J.; Teresiak-Mikołajczak, E.; Kowalczyk, M.J.; Żaba, R.W.; Adamski, Z.; Dańczak-Pazdrowska, A. Expression of selected genes of dendritic and Treg cells in blood and skin of morphea patients treated with UVA1 phototherapy. Arch. Med Sci. 2018, 14, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Schnopp, C.; Rad, R.; Weidinger, A.; Weidinger, S.; Ring, J.; Eberlein, B.; Ollert, M.; Mempel, M. Fox-P3-positive regulatory T cells are present in the skin of generalized atopic eczema patients and are not particularly affected by medium-dose UVA1 therapy. Photodermatol. Photoimmunol. Photomed. 2007, 23, 81–85. [Google Scholar] [CrossRef]
- Szegedi, A.; Simics, E.; Aleksza, M.; Horkay, I.; Gaál, K.; Sipka, S.; Hunyadi, J.; Kiss, E. Ultraviolet-A1 phototherapy modulates Th1/Th2 and Tc1/Tc2 balance in patients with systemic lupus erythematosus. Rheumatology 2005, 44, 925–931. [Google Scholar] [CrossRef] [Green Version]
- Finlay-Jones, J.J.; Hart, P.H. Ultraviolet irradiation, systemic immunosuppression and skin cancer: Role of urocanic acid. Australas. J. Dermatol. 1997, 38 (Suppl. 1), S7–S12. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, N.K.; Tye, J.; Norval, M. Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem. Photobiol. Sci. 2008, 7, 655–667. [Google Scholar] [CrossRef]
- Hart, P.H.; Norval, M. The Multiple Roles of Urocanic Acid in Health and Disease. J. Investig. Dermatol. 2020, 141, 496–502. [Google Scholar] [CrossRef]
- Krien, P.M.; Moyal, D. Sunscreens with broad-spectrum absorption decrease the trans to cis photoisomerization of urocanic acid in the human stratum corneum after multiple UV light exposures. Photochem. Photobiol. 1994, 60, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Kammeyer, A.; Teunissen, M.; Pavel, S.; Rie, M.; Bos, J. Photoisomerization spectrum of urocanic acid in human skin and in vitro: Effects of simulated solar and artificial ultraviolet radiation. Br. J. Dermatol. 1995, 132, 884–891. [Google Scholar] [CrossRef]
- Smit, N.; Musson, R.; Romijn, F.; van Rossum, H.; van Pelt, J. Effects of ultraviolet A-1 radiation on calcineurin activity and cytokine production in (skin) cell cultures. Photochem. Photobiol. 2010, 86, 360–366. [Google Scholar] [CrossRef]
- Musson, R.E.; Hensbergen, P.J.; Westphal, A.H.; Temmink, W.P.; Deelder, A.M.; Van Pelt, J.; Mullenders, L.H.; Smit, N.P. UVA1 radiation inhibits calcineurin through oxidative damage mediated by photosensitization. Free Radic. Biol. Med. 2011, 50, 1392–1399. [Google Scholar] [CrossRef]
- Musson, R.E.; Mullenders, L.H.; Smit, N.P. Effects of arsenite and UVA-1 radiation on calcineurin signaling. Mutat. Res. Mol. Mech. Mutagen. 2012, 735, 32–38. [Google Scholar] [CrossRef]
- Sivapirabu, G.; Yiasemides, E.; Halliday, G.M.; Park, J.; Damian, D.L. Topical nicotinamide modulates cellular energy metabolism and provides broad-spectrum protection against ultraviolet radiation-induced immunosuppression in humans. Br. J. Dermatol. 2009, 161, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Damian, D.L.; Matthews, Y.J.; Halliday, G.M. Topical riboflavin attenuates ultraviolet B- and ultraviolet A-induced immunosuppression in humans. Photodermatol. Photoimmunol. Photomed. 2010, 26, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, A.; Yanai, H. Interferon signalling network in innate defence. Cell. Microbiol. 2006, 8, 907–922. [Google Scholar] [CrossRef] [PubMed]
- Aragane, Y.; Kulms, D.; Luger, T.A.; Schwarz, T. Down-regulation of interferon γ-activated STAT1 by UV light. Proc. Natl. Acad. Sci. USA 1997, 94, 11490–11495. [Google Scholar] [CrossRef] [Green Version]
- Aragane, Y.; Schwarz, A.; Luger, T.A.; Ariizumi, K.; Takashima, A.; Schwarz, T. Ultraviolet light suppresses IFN-gamma-induced IL-7 gene expression in murine keratinocytes by interfering with IFN regulatory factors. J. Immunol. 1997, 158, 5393–5399. [Google Scholar] [PubMed]
- Kroft, E.B.; Berkhof, N.J.; van de Kerkhof, P.C.; Gerritsen, R.M.; de Jong, E.M. Ultraviolet A phototherapy for sclerotic skin diseases: A systematic review. J. Am. Acad. Dermatol. 2008, 59, 1017–1030. [Google Scholar] [CrossRef]
- Norval, M.; el-Ghorr, A.A. UV radiation and mouse models of herpes simplex virus infection. Photochem. Photobiol. 1996, 64, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Bissonnette, R. Prevention of polymorphous light eruption and solar urticaria. Ski. Ther. Lett. 2002, 7, 3–5. [Google Scholar]
- Gruber-Wackernagel, A.; Byrne, S.N.; Wolf, P. Polymorphous light eruption: Clinic aspects and pathogenesis. Dermatol. Clin. 2014, 32, 315–334. [Google Scholar] [CrossRef]
- Gambichler, T.; Terras, S.; Kampilafkos, P.; Kreuter, A.; Skrygan, M. T regulatory cells and related immunoregulatory factors in polymorphic light eruption following ultraviolet A1 challenge. Br. J. Dermatol. 2013, 169, 1288–1294. [Google Scholar] [CrossRef]
- Fourtanier, A.; Moyal, D.; Seité, S. Sunscreens containing the broad-spectrum UVA absorber, Mexoryl®SX, prevent the cutaneous detrimental effects of UV exposure: A review of clinical study results. Photodermatol. Photoimmunol. Photomed. 2008, 24, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Marini, A.; Jaenicke, T.; Grether-Beck, S.; Le Floc’H, C.; Cheniti, A.; Piccardi, N.; Krutmann, J. Prevention of polymorphic light eruption by oral administration of a nutritional supplement containing lycopene, β-carotene, and Lactobacillus johnsonii: Results from a randomized, placebo-controlled, double-blinded study. Photodermatol. Photoimmunol. Photomed. 2014, 30, 189–194. [Google Scholar] [CrossRef]
- Hönigsmann, H. Polymorphous light eruption. Photodermatol. Photoimmunol. Photomed. 2008, 24, 155–161. [Google Scholar] [CrossRef]
- Ortel, B.; Tanew, A.; Wolff, K.; Hönigsmann, H. Polymorphous light eruption: Action spectrum and photoprotection. J. Am. Acad. Dermatol. 1986, 14, 748–753. [Google Scholar] [CrossRef]
- Van Praag, M.C.; Boom, B.W.; Vermeer, B.J. Diagnosis and treatment of polymorphous light eruption. Int. J. Dermatol. 1994, 33, 233–239. [Google Scholar] [CrossRef] [PubMed]
- van de Pas, C.B.; Kelly, D.A.; Seed, P.T.; Young, A.R.; Hawk, J.L.; Walker, S.L. Ultraviolet-radiation-induced erythema and suppression of contact hypersensitivity responses in patients with polymorphic light eruption. J. Investig. Dermatol. 2004, 122, 295–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, V.L.S.; Lim, H.W. Sunscreens in the management of photodermatoses. Ski. Ther. Lett. 2010, 15, 1–3. [Google Scholar]
- Flament, F.; Bazin, R.; Laquieze, S.; Rubert, V.; Simonpietri, E.; Piot, B. Effect of the sun on visible clinical signs of aging in Caucasian skin. Clin. Cosmet. Investig. Dermatol. 2013, 6, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bissett, D.L.; Hannon, D.P.; Orr, T.V. Wavelength dependence of histological, physical, and visible changes in chronically UV-irradiated hairless mouse skin. Photochem. Photobiol. 1989, 50, 763–769. [Google Scholar] [CrossRef]
- Zheng, P.; Kligman, L.H. UVA-induced ultrastructural changes in hairless mouse skin: A comparison to UVB-induced damage. J. Investig. Dermatol. 1993, 100, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Kligman, L.H. The ultraviolet-irradiated hairless mouse: A model for photoaging. J. Am. Acad. Dermatol. 1989, 21, 623–631. [Google Scholar] [CrossRef]
- Battie, C.; Jitsukawa, S.; Bernerd, F.; Del Bino, S.; Marionnet, C.; Verschoore, M. New insights in photoaging, UVA induced damage and skin types. Exp. Dermatol. 2014, 23 (Suppl. 1), 7–12. [Google Scholar] [CrossRef]
- Kligman, L.H. Photoaging. Manifestations, prevention, and treatment. Dermatol. Clin. 1986, 4, 517–528. [Google Scholar] [CrossRef]
- Mitchell, R.E. Chronic solar dermatosis: A light and electron microscopic study of the dermis. J. Investig. Dermatol. 1967, 48, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Krutmann, J.; Schikowski, T.; Morita, A.; Berneburg, M. Environmentally-Induced (Extrinsic) Skin Aging: Exposomal Factors and Underlying Mechanisms. J. Investig. Dermatol. 2021, 141, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Ordon, J.R.; Brieva, J.C. Images in clinical medicine. Unilateral dermatoheliosis. N. Engl. J. Med. 2012, 366, e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinckmann, J.; Açil, Y.; Wolff, H.H.; Müller, P.K. Collagen synthesis in (sun-)aged human skin and in fibroblasts derived from sun-exposed and sun-protected body sites. J. Photochem. Photobiol. B Biol. 1995, 27, 33–38. [Google Scholar] [CrossRef]
- Bernstein, E.F.; Underhill, C.B.; Hahn, P.J.; Brown, D.B.; Uitto, J. Chronic sun exposure alters both the content and distribution of dermal glycosaminoglycans. Br. J. Dermatol. 1996, 135, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, Y.; Tajima, S.; Akiyama, M.; Ishibashi, A.; Kobayashi, R.; Horii, I. Expression of elastin-related proteins and matrix metalloproteinases in actinic elastosis of sun-damaged skin. Arch. Dermatol. Res. 2000, 292, 27–31. [Google Scholar] [CrossRef]
- Saarialho-Kere, U.; Kerkelä, E.; Jeskanen, L.; Hasan, T.; Pierce, R.; Starcher, B.; Raudasoja, R.; Ranki, A.; Oikarinen, A.; Vaalamo, M. Accumulation of matrilysin (MMP-7) and macrophage metalloelastase (MMP-12) in actinic damage. J. Investig. Dermatol. 1999, 113, 664–672. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.H.; Seo, J.Y.; Lee, M.K.; Eun, H.C.; Lee, J.H.; Kang, S.; Fisher, G.J.; Voorhees, J.J. Ultraviolet modulation of human macrophage metalloelastase in human skin in vivo. J. Investig. Dermatol. 2002, 119, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Imokawa, G.; Ishida, K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging I: Reduced skin elasticity, highly associated with enhanced dermal elastase activity, triggers wrinkling and sagging. Int. J. Mol. Sci. 2015, 16, 7753–7775. [Google Scholar] [CrossRef] [Green Version]
- Rijken, F.; Bruijnzeel, P.L. The pathogenesis of photoaging: The role of neutrophils and neutrophil-derived enzymes. J. Investig. Dermatol. Symp. Proc. 2009, 14, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Tzellos, T.G.; Klagas, I.; Vahtsevanos, K.; Triaridis, S.; Printza, A.; Kyrgidis, A.; Karakiulakis, G.; Zouboulis, C.C.; Papakonstantinou, E. Extrinsic ageing in the human skin is associated with alterations in the expression of hyaluronic acid and its metabolizing enzymes. Exp. Dermatol. 2009, 18, 1028–1035. [Google Scholar] [CrossRef]
- Fisher, G.J.; Wang, Z.Q.; Datta, S.C.; Varani, J.; Kang, S.; Voorhees, J.J. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 1997, 337, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
- Lavker, R.; Kaidbey, K. The spectral dependence for UVA-induced cumulative damage in human skin. J. Investig. Dermatol. 1997, 108, 17–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavker, R.M.; Gerberick, G.F.; Veres, D.; Irwin, C.J.; Kaidbey, K.H. Cumulative effects from repeated exposures to suberythemal doses of UVB and UVA in human skin. J. Am. Acad. Dermatol. 1995, 32, 53–62. [Google Scholar] [CrossRef]
- Lavker, R.M.; Veres, D.A.; Irwin, C.J.; Kaidbey, K.H. Quantitative assessment of cumulative damage from repetitive exposures to suberythemogenic doses of UVA in human skin. Photochem. Photobiol. 1995, 62, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Buechner, N.; Schroeder, P.; Jakob, S.; Kunze, K.; Maresch, T.; Calles, C.; Krutmann, J.; Haendeler, J. Changes of MMP-1 and collagen type Iα1 by UVA, UVB and IRA are differentially regulated by Trx-1. Exp. Gerontol. 2008, 43, 633–637. [Google Scholar] [CrossRef]
- Séite, S.; Moyal, D.; Richard, S.; de Rigal, J.; Lévêque, J.L.; Hourseau, C.; Fourtanier, A. Mexoryl® SX: A broad absorption UVA filter protects human skin from the effects of repeated suberythemal doses of UVA. J. Photochem. Photobiol. B Biol. 1998, 44, 69–76. [Google Scholar] [CrossRef]
- Yin, L.; Yamauchi, R.; Tsuji, T.; Krutmann, J.; Morita, A. The expression of matrix metalloproteinase-1 mRNA induced by ultraviolet A1 (340–400 nm) is phototherapy relevant to the glutathione (GSH) content in skin fibroblasts of systemic sclerosis. J. Dermatol. 2003, 30, 173–180. [Google Scholar] [CrossRef]
- Tewari, A.; Grys, K.; Kollet, J.; Sarkany, R.; Young, A.R. Upregulation of MMP12 and its activity by UVA1 in human skin: Potential implications for photoaging. J. Investig. Dermatol. 2014, 134, 2598–2609. [Google Scholar] [CrossRef] [Green Version]
- Gronski, J.T.J.; Martin, R.L.; Kobayashi, D.K.; Walsh, B.C.; Holman, M.C.; Huber, M.; Van Wart, H.E.; Shapiro, S.D. Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. J. Biol. Chem. 1997, 272, 12189–12194. [Google Scholar] [CrossRef] [Green Version]
- Franceschi, C.; Bonafe, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Khmaladze, I.; Leonardi, M.; Fabre, S.; Messaraa, C.; Mavon, A. The Skin Interactome: A Holistic “Genome-Microbiome-Exposome” Approach to Understand and Modulate Skin Health and Aging. Clin. Cosmet. Investig. Dermatol. 2020, 13, 1021–1040. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Lyga, J. Inflammaging in skin and other tissues—The roles of complement system and macrophage. Inflamm. Allergy-Drug Targets 2014, 13, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Wlaschek, M.; Heinen, G.; Poswig, A.; Schwarz, A.; Krieg, T.; Scharffetter-Kochanek, K. UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops ofinterleukin–1 andinterleukin–6. Photochem. Photobiol. 1994, 59, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Berneburg, M.; Gattermann, N.; Stege, H.; Grewe, M.; Vogelsang, K.; Ruzicka, T.; Krutmann, J. Chronically ultraviolet-exposed human skin shows a higher mutation frequency of mitochondrial DNA as compared to unexposed skin and the hematopoietic system. Photochem. Photobiol. 1997, 66, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Berneburg, M.; Krutmann, J. Mitochondrial DNA deletions in human skin reflect photo-rather than chronologic aging. J. Investig. Dermatol. 1998, 111, 709–710. [Google Scholar] [CrossRef] [Green Version]
- Birch-Machin, M.A.; Russell, E.V.; Latimer, J.A. Mitochondrial DNA damage as a biomarker for ultraviolet radiation exposure and oxidative stress. Br. J. Dermatol. 2013, 169 (Suppl. 2), 9–14. [Google Scholar] [CrossRef]
- Krutmann, J.; Schroeder, P. Role of mitochondria in photoaging of human skin: The defective powerhouse model. J. Investig. Dermatol. Symp. Proc. 2009, 14, 44–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krutmann, J. How the sun ages our skin. The dermis as the driving force. Hautarzt 2011, 62, 588–590. [Google Scholar] [CrossRef]
- Berneburg, M.; Plettenberg, H.; Krutmann, J. Photoaging of human skin. Photodermatol. Photoimmunol. Photomed. 2000, 16, 239–244. [Google Scholar] [CrossRef]
- Singh, B.; Schoeb, T.R.; Bajpai, P.; Slominski, A.; Singh, K.K. Reversing wrinkled skin and hair loss in mice by restoring mitochondrial function. Cell Death Dis. 2018, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Hönigsmann, H. Erythema and pigmentation. Photodermatol. Photoimmunol. Photomed. 2002, 18, 75–81. [Google Scholar] [CrossRef]
- Miyamura, Y.; Coelho, S.G.; Schlenz, K.; Batzer, J.; Smuda, C.; Choi, W.; Brenner, M.; Passeron, T.; Zhang, G.; Kolbe, L.; et al. The deceptive nature of UVA tanning versus the modest protective effects of UVB tanning on human skin. Pigment Cell Melanoma Res. 2011, 24, 136–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, S.G.; Yin, L.; Smuda, C.; Mahns, A.; Kolbe, L.; Hearing, V.J. Photobiological implications of melanin photoprotection after UVB-induced tanning of human skin but not UVA-induced tanning. Pigment Cell Melanoma Res. 2015, 28, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, K.; Hatao, M. Involvement of photooxidation of melanogenic precursors in prolonged pigmentation induced by ultraviolet A. J. Investig. Dermatol. 2004, 122, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Kikuta, M.; Koike, S.; Szewczyk, G.; Sarna, M.; Zadlo, A.; Sarna, T.; Wakamatsu, K. Roles of reactive oxygen species in UVA-induced oxidation of 5,6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method. Pigment. Cell Melanoma Res. 2016, 29, 340–351. [Google Scholar] [CrossRef]
- Rosen, C.F.; Seki, Y.; Farinelli, W.; Stern, R.S.; Fitzpatrick, T.B.; Pathak, M.A.; Gange, R.W. A comparison of the melanocyte response to narrow band UVA and UVB exposure in vivo. J. Investig. Dermatol. 1987, 88, 774–779. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Akita, H.; Astner, S.; Miyakawa, M.; Lerner, E.A.; Gonzalez, S. In vivo assessment of pigmentary and vascular compartments changes in UVA exposed skin by reflectance-mode confocal microscopy. Exp. Dermatol. 2007, 16, 905–911. [Google Scholar] [CrossRef]
- Dumbuya, H.; Hafez, S.Y.; Oancea, E. Cross talk between calcium and ROS regulate the UVA-induced melanin response in human melanocytes. FASEB J. 2020, 34, 11605–11623. [Google Scholar] [CrossRef]
- Yardman-Frank, J.M.; Fisher, D.E. Skin pigmentation and its control: From ultraviolet radiation to stem cells. Exp. Dermatol. 2021, 30, 560–571. [Google Scholar] [CrossRef]
- Grimes, P.E. Management of hyperpigmentation in darker racial ethnic groups. Semin. Cutan. Med. Surg. 2009, 28, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Del Bino, S.; Duval, C.; Bernerd, F. Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact. Int. J. Mol. Sci. 2018, 19, 2668. [Google Scholar] [CrossRef] [Green Version]
- Cestari, T.F.; Dantas, L.P.; Boza, J.C. Acquired hyperpigmentations. An. Bras. Dermatol. 2014, 89, 11–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.J.; Davis, S.A.; Feldman, S.R.; McMichael, A.J. Dyschromia in skin of color. J. Drugs Dermatol. 2014, 13, 401–406. [Google Scholar]
- Fatima, S.; Braunberger, T.; Mohammad, T.F.; Kohli, I.; Hamzavi, I.H. The Role of Sunscreen in Melasma and Postinflammatory Hyperpigmentation. Indian J. Dermatol. 2020, 65, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, T.F.; Hamzavi, I.H. Practice and Educational Gaps in Abnormal Pigmentation. Dermatol. Clin. 2016, 34, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Peck, G.M.; Roberson, F.A.; Feldman, S.R. Why Do Patients in the United States Seek Care from Dermatologists? Dermatol. Ther. 2022, 12, 1065–1072. [Google Scholar] [CrossRef] [PubMed]
- Bastiaens, M.; Hoefnagel, J.; Westendorp, R.; Vermeer, B.J.; Bouwes Bavinck, J.N. Solar lentigines are strongly related to sun exposure in contrast to ephelides. Pigment Cell Res. 2004, 17, 225–229. [Google Scholar] [CrossRef]
- Passeron, T.; Picardo, M. Melasma, a photoaging disorder. Pigment Cell Melanoma Res. 2018, 31, 461–465. [Google Scholar] [CrossRef] [Green Version]
- Passeron, T. Melasma pathogenesis and influencing factors—An overview of the latest research. J. Eur. Acad. Dermatol. Venereol. 2013, 27 (Suppl. 1), 5–6. [Google Scholar] [CrossRef]
- Passeron, T.; Nouveau, S.; Duval, C.; Cardot-Leccia, N.; Piffaut, V.; Bourreau, E.; Queille-Roussel, C.; Bernerd, F. Development and validation of a reproducible model for studying post-inflammatory hyperpigmentation. Pigment Cell Melanoma Res. 2018, 31, 649–652. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.G.; Chan, H.H. The Asian dermatologic patient: Review of common pigmentary disorders and cutaneous diseases. Am. J. Clin. Dermatol. 2009, 10, 153–168. [Google Scholar] [CrossRef]
- Nouveau, S.; Agrawal, D.; Kohli, M.; Bernerd, F.; Misra, N.; Nayak, C.S. Skin Hyperpigmentation in Indian Population: Insights and Best Practice. Indian J. Dermatol. 2016, 61, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Hourblin, V.; Nouveau, S.; Roy, N.; de Lacharriere, O. Skin complexion and pigmentary disorders in facial skin of 1204 women in 4 Indian cities. Indian J. Dermatol. Venereol. Leprol. 2014, 80, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Alexis, A.F.; Sergay, A.B.; Taylor, S.C. Common dermatologic disorders in skin of color: A comparative practice survey. Cutis 2007, 80, 387–394. [Google Scholar]
- Passeron, T.; Lim, H.W.; Goh, C.L.; Kang, H.Y.; Ly, F.; Morita, A.; Ocampo Candiani, J.; Puig, S.; Schalka, S.; Wei, L.; et al. Photoprotection according to skin phototype and dermatoses: Practical recommendations from an expert panel. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1460–1469. [Google Scholar] [CrossRef]
- Mutzhas, M.F.; Hölzle, E.; Hofmann, C.; Plewig, G. A new apparatus with high radiation energy between 320–460 nm: Physical description and dermatological applications. J. Investig. Dermatol. 1981, 76, 42–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, A.C.; Ferguson, J.; Attili, S.K.; Beattie, P.E.; Coleman, A.J.; Dawe, R.S.; Eberlein, B.; Goulden, V.; Ibbotson, S.H.; Menage, H.D.P.; et al. Ultraviolet A1 phototherapy: A British Photodermatology Group workshop report. Clin. Exp. Dermatol. 2012, 37, 219–226. [Google Scholar] [CrossRef]
- Prasad, S.; Coias, J.; Chen, H.; Jacobe, H. Utilizing UVA-1 Phototherapy. Dermatol. Clin. 2020, 38, 79–90. [Google Scholar] [CrossRef]
- Langan, S.M.; Irvine, A.D.; Weidinger, S. Atopic dermatitis. Lancet 2020, 396, 345–360. [Google Scholar] [CrossRef]
- Bogaczewicz, J.; Malinowska, K.; Sysa-Jedrzejowska, A.; Wozniacka, A. Medium dose ultraviolet A1 phototherapy and mRNA expression of interleukin 8, interferon γ, and chemokine receptor 4 in acute skin lesions in atopic dermatitis. Postepy. Dermatol. Allergol. 2016, 33, 170–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breuckmann, F.; Von Kobyletzki, G.; Avermaete, A.; Pieck, C.; Kreuter, A.; Brockmeyer, N.H.; Altmeyer, P.; Gambichler, T. Mononuclear cells in atopic dermatitis in vivo: Immunomodulation of the cutaneous infiltrate by medium-dose UVA1 phototherapy. Eur. J. Med Res. 2002, 7, 315–322. [Google Scholar] [PubMed]
- Gambichler, T.; Schmitz, L. Ultraviolet A1 Phototherapy for Fibrosing Conditions. Front. Med. 2018, 5, 237. [Google Scholar] [CrossRef] [PubMed]
- Zandi, S.; Kalia, S.; Lui, H. UVA1 phototherapy: A concise and practical review. Ski. Ther. Lett. 2012, 17, 1–4. [Google Scholar]
- Madigan, L.M.; Lim, H.W. Tanning beds: Impact on health, and recent regulations. Clin. Dermatol. 2016, 34, 640–648. [Google Scholar] [CrossRef]
- Buckel, T.B.H.; Goldstein, A.M.; Fraser, M.C.; Rogers, B.; Tucker, M.A. Recent tanning bed use: A risk factor for melanoma. Arch. Dermatol. 2006, 142, 485–488. [Google Scholar] [CrossRef]
- Boniol, M.; Autier, P.; Boyle, P.; Gandini, S. Cutaneous melanoma attributable to sunbed use: Systematic review and meta-analysis. BMJ 2012, 345, e4757. [Google Scholar] [CrossRef] [Green Version]
- De Giorgi, V.; Gori, A.; Grazzini, M.; Rossari, S.; Oranges, T.; Longo, A.S.; Lotti, T.; Gandini, S. Epidemiology of melanoma: Is it still epidemic? What is the role of the sun, sunbeds, Vit D, betablocks, and others? Dermatol. Ther. 2012, 25, 392–396. [Google Scholar] [CrossRef]
- Reimann, V.; Krämer, U.; Sugiri, D.; Schroeder, P.; Hoffmann, B.; Medve-Koenigs, K.; Jöckel, K.-H.; Ranft, U.; Krutmann, J. Sunbed use induces the photoaging-associated mitochondrial common deletion. J. Investig. Dermatol. 2008, 128, 1294–1297. [Google Scholar] [CrossRef] [Green Version]
- Ortonne, J.P. The effects of ultraviolet exposure on skin melanin pigmentation. J. Int. Med. Res. 1990, 18 (Suppl. 3), 8C–17C. [Google Scholar]
- Quatresooz, P.; Piérard-Franchimont, C.; Piérard, G.E. The skin ivory spot. a possible indicator for skinfield photo-carcinogenesis in recreational sunbed addicts. Int. J. Environ. Res. Public Health 2012, 9, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Piérard, G.E. Ageing in the sun parlour. Int. J. Cosmet. Sci. 1998, 20, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Quatresooz, P.; Henry, F.; Paquet, P.; Piérard, G.E. Photoaging under recreational sunbeds. Ski. Res. Technol. 2011, 17, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Passeron, T.; Zouboulis, C.C.; Tan, J.; Andersen, M.L.; Katta, R.; Lyu, X.; Aguilar, L.; Kerob, D.; Morita, A.; Krutmann, J.; et al. Adult skin acute stress responses to short-term environmental and internal aggression from exposome factors. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 1963–1975. [Google Scholar] [CrossRef]
- Marrot, L. Pollution and Sun Exposure: A Deleterious Synergy. Mechanisms and Opportunities for Skin Protection. Curr. Med. Chem. 2019, 25, 5469–5486. [Google Scholar] [CrossRef]
- Krutmann, J.; Liu, W.; Li, L.; Pan, X.; Crawford, M.; Sore, G.; Seite, S. Pollution and skin: From epidemiological and mechanistic studies to clinical implications. J. Dermatol. Sci. 2014, 76, 163–168. [Google Scholar] [CrossRef]
- Flament, F.; Bourokba, N.; Nouveau, S.; Li, J.; Charbonneau, A. A severe chronic outdoor urban pollution alters some facial aging signs in Chinese women. A tale of two cities. Int. J. Cosmet. Sci. 2018, 40, 467–481. [Google Scholar] [CrossRef]
- Yu, H.; Xia, Q.; Yan, J.; Herreno-Saenz, D.; Wu, Y.-S.; Tang, I.-W.; Fu, P.P. Photoirradiation of polycyclic aromatic hydrocarbons with UVA light—A pathway leading to the generation of reactive oxygen species, lipid peroxidation, and DNA damage. Int. J. Environ. Res. Public Health 2006, 3, 348–354. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Huo, X.; Wu, K.; Liu, J.; Zhang, Y.; Xu, X. Carcinogenic polycyclic aromatic hydrocarbons in umbilical cord blood of human neonates from Guiyu, China. Sci. Total Environ. 2012, 427–428, 35–40. [Google Scholar] [CrossRef]
- Palazzi, P.; Mezzache, S.; Bourokba, N.; Hardy, E.M.; Schritz, A.; Bastien, P.; Emond, C.; Li, J.; Soeur, J.; Appenzeller, B.M.R. Exposure to polycyclic aromatic hydrocarbons in women living in the Chinese cities of BaoDing and Dalian revealed by hair analysis. Environ. Int. 2018, 121, 1341–1354. [Google Scholar] [CrossRef]
- Neal, M.S.; Zhu, J.; Foster, W.G. Quantification of benzo[a]pyrene and other PAHs in the serum and follicular fluid of smokers versus non-smokers. Reprod. Toxicol. 2008, 25, 100–106. [Google Scholar] [CrossRef]
- Soeur, J.; Belaïdi, J.-P.; Chollet, C.; Denat, L.; Dimitrov, A.; Jones, C.; Perez, P.; Zanini, M.; Zobiri, O.; Mezzache, S.; et al. Photo-pollution stress in skin: Traces of pollutants (PAH and particulate matter) impair redox homeostasis in keratinocytes exposed to UVA1. J. Dermatol. Sci. 2017, 86, 162–169. [Google Scholar] [CrossRef]
- Von Koschembahr, A.; Youssef, A.; Béal, D.; Gudimard, L.; Giot, J.-P.; Douki, T. Toxicity and DNA repair in normal human keratinocytes co-exposed to benzo[a]pyrene and sunlight. Toxicol. In Vitro 2020, 63, 104744. [Google Scholar] [CrossRef] [PubMed]
- Misra, N.; Marrot, L. In Vitro Methods to Simulate Pollution and Photo-Pollution Exposure in Human Skin Epidermis. Methods Mol. Biol. 2020, 2150, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.; Rashdan, E.; Bonn, C.A.; Chavan, B.; Rawlings, D.; Birch-Machin, M.A. Individual and combined effects of the infrared, visible, and ultraviolet light components of solar radiation on damage biomarkers in human skin cells. FASEB J. 2020, 34, 3874–3883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasubramaniam, R.; Roy, A.; Sharma, B.; Nagalakshmi, S. Are there mechanistic differences between ultraviolet and visible radiation induced skin pigmentation? Photochem. Photobiol. Sci. 2011, 10, 1887–1893. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, B.H.; Ruvolo, E.; Hexsel, C.L.; Liu, Y.; Owen, M.R.; Kollias, N.; Lim, H.W.; Hamzavi, I.H. Impact of long-wavelength UVA and visible light on melanocompetent skin. J. Investig. Dermatol. 2010, 130, 2092–2097. [Google Scholar] [CrossRef] [Green Version]
- Duteil, L.; Esdaile, J.; Maubert, Y.; Cathelineau, A.-C.; Bouloc, A.; Queille-Roussel, C.; Passeron, T. A method to assess the protective efficacy of sunscreens against visible light-induced pigmentation. Photodermatol. Photoimmunol. Photomed. 2017, 33, 260–266. [Google Scholar] [CrossRef]
- Kohli, I.; Chaowattanapanit, S.; Mohammad, T.F.; Nicholson, C.L.; Fatima, S.; Jacobsen, G.; Kollias, N.; Lim, H.W.; Hamzavi, I.H. Synergistic effects of long-wavelength ultraviolet A1 and visible light on pigmentation and erythema. Br. J. Dermatol. 2018, 178, 1173–1180. [Google Scholar] [CrossRef]
- Kohli, I.; Zubair, R.; Lyons, A.B.; Nahhas, A.F.; Braunberger, T.L.; Mokhtari, M.; Ruvolo, E.; Lim, H.W.; Hamzavi, I.H. Impact of Long-Wavelength Ultraviolet A1 and Visible Light on Light-Skinned Individuals. Photochem. Photobiol. 2019, 95, 1285–1287. [Google Scholar] [CrossRef]
- Duteil, L.; Cardot-Leccia, N.; Queille-Roussel, C.; Maubert, Y.; Harmelin, Y.; Boukari, F.; Ambrosetti, D.; Lacour, J.-P.; Passeron, T. Differences in visible light-induced pigmentation according to wavelengths: A clinical and histological study in comparison with UVB exposure. Pigment Cell Melanoma Res. 2014, 27, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Regazzetti, C.; Sormani, L.; Debayle, D.; Bernerd, F.; Tulic, M.K.; De Donatis, G.M.; Chignon-Sicard, B.; Rocchi, S.; Passeron, T. Melanocytes Sense Blue Light and Regulate Pigmentation through Opsin-3. J. Investig. Dermatol. 2018, 138, 171–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boukari, F.; Jourdan, E.; Fontas, E.; Montaudié, H.; Castela, E.; Lacour, J.-P.; Passeron, T. Prevention of melasma relapses with sunscreen combining protection against UV and short wavelengths of visible light: A prospective randomized comparative trial. J. Am. Acad. Dermatol. 2015, 72, 189–190.e181. [Google Scholar] [CrossRef]
- Martini, A.P.M.; Campos, P.M.B.G.M. Influence of visible light on cutaneous hyperchromias: Clinical efficacy of broad-spectrum sunscreens. Photodermatol. Photoimmunol. Photomed. 2018, 34, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Narla, S.; Kohli, I.; Hamzavi, I.H.; Lim, H.W. Visible light in photodermatology. Photochem. Photobiol. Sci. 2020, 19, 99–104. [Google Scholar] [CrossRef]
- Marionnet, C.; Tricaud, C.; Bernerd, F. Exposure to Non-Extreme Solar UV Daylight: Spectral Characterization, Effects on Skin and Photoprotection. Int. J. Mol. Sci. 2014, 16, 68–90. [Google Scholar] [CrossRef]
- Burnett, M.E.; Wang, S.Q. Current sunscreen controversies: A critical review. Photodermatol. Photoimmunol. Photomed. 2011, 27, 58–67. [Google Scholar] [CrossRef]
- Green, A.C.; Williams, G.M.; Logan, V.; Strutton, G.M. Reduced melanoma after regular sunscreen use: Randomized trial follow-up. J. Clin. Oncol. 2011, 29, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.C.; Williams, G.M.; Baker, P.; Green, A.C. Sunscreen and prevention of skin aging: A randomized trial. Ann. Intern. Med. 2013, 158, 781–790. [Google Scholar] [CrossRef]
- Iannacone, M.R.; Hughes, M.C.; Green, A.C. Effects of sunscreen on skin cancer and photoaging. Photodermatol. Photoimmunol. Photomed. 2014, 30, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Randhawa, M.; Wang, S.; Leyden, J.J.; Cula, G.O.; Pagnoni, A.; Southall, M.D. Daily Use of a Facial Broad Spectrum Sunscreen Over One-Year Significantly Improves Clinical Evaluation of Photoaging. Dermatol. Surg. 2016, 42, 1354–1361. [Google Scholar] [CrossRef] [Green Version]
- Commission, T.E. European Commission Recommendation on the efficacy of sunscreen products and the claims made relating thereto. Br. J. Dermatol. 2006, 647, 39–43. [Google Scholar]
- Marionnet, C.; Grether-Beck, S.; Seité, S.; Marini, A.; Jaenicke, T.; Lejeune, F.; Bastien, P.; Rougier, A.; Bernerd, F.; Krutmann, J. A broad-spectrum sunscreen prevents UVA radiation-induced gene expression in reconstructed skin in vitro and in human skin in vivo. Exp. Dermatol. 2011, 20, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Bernerd, F.; Vioux, C.; Lejeune, F.; Asselineau, D. The sun protection factor (SPF) inadequately defines broad spectrum photoprotection: Demonstration using skin reconstructed in vitro exposed to UVA, UVBor UV-solar simulated radiation. Eur. J. Dermatol. 2003, 13, 242–249. [Google Scholar] [PubMed]
- Moyal, D. Need for a well-balanced sunscreen to protect human skin from both Ultraviolet A and Ultraviolet B damage. Indian J. Dermatol. Venereol. Leprol. 2012, 78 (Suppl. S1), S24–S30. [Google Scholar] [CrossRef] [PubMed]
- Seite, S.; Christiaens, F.; Bredoux, C.; Compan, D.; Zucchi, H.; Lombard, D.; Fourtanier, A.; Young, A.R. A broad-spectrum sunscreen prevents cumulative damage from repeated exposure to sub-erythemal solar ultraviolet radiation representative of temperate latitudes. J. Eur. Acad. Dermatol. Venereol. 2010, 24, 219–222. [Google Scholar] [CrossRef]
- Fourtanier, A.; Gueniche, A.; Compan, D.; Walker, S.L.; Young, A.R. Improved protection against solar-simulated radiation-induced immunosuppression by a sunscreen with enhanced ultraviolet A protection. J. Investig. Dermatol. 2000, 114, 620–627. [Google Scholar] [CrossRef] [Green Version]
- Moyal, D.D.; Fourtanier, A.M. Efficacy of broad-spectrum sunscreens against the suppression of elicitation of delayed-type hypersensitivity responses in humans depends on the level of ultraviolet A protection. Exp. Dermatol. 2003, 12, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Young, A.R.; Morgan, K.A.; Harrison, G.I.; Lawrence, K.P.; Petersen, B.; Wulf, H.C.; Philipsen, P.A. A revised action spectrum for vitamin D synthesis by suberythemal UV radiation exposure in humans in vivo. Proc. Natl. Acad. Sci. USA 2021, 118, e2015867118. [Google Scholar] [CrossRef]
- Vielhaber, G.; Grether-Beck, S.; Koch, O.; Johncock, W.; Krutmann, J. Sunscreens with an absorption maximum of ≥360 nm provide optimal protection against UVA1-induced expression of matrix metalloproteinase-1, interleukin-1, and interleukin-6 in human dermal fibroblasts. Photochem. Photobiol. Sci. 2006, 5, 275–282. [Google Scholar] [CrossRef]
- Marionnet, C.; Tran, C.; Bastien, P.; Bielicki, A.; Golebiewski, C.; Vieu, D.-L.; Suida-Batista, A.; Candau, D.; Bernerd, F. A broader filtration of UVA1 wavelengths improves skin photoprotection. J. Dermatol. Sci. 2018, 91, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Winkler, B.; Hoeffken, H.W.; Eichin, K.; Houy, W. A cyclic merocyanine UV-A absorber: Mechanism of formation and crystal structure. Tetrahedron Lett. 2014, 55, 1749–1751. [Google Scholar] [CrossRef]
- Marionnet, C.; de Dormael, R.; Marat, X.; Roudot, A.; Gizard, J.; Planel, E.; Tornier, C.; Golebiewski, C.; Bastien, P.; Candau, D.; et al. Sunscreens with the New MCE Filter Cover the Whole UV Spectrum: Improved UVA1 Photoprotection In Vitro and in a Randomized Controlled Trial. J. Investig. Dermatol. Innov. 2022, 2, 100070. [Google Scholar] [CrossRef] [PubMed]
- De Dormael, R.; Bernerd, F.; Bastien, P.; Candau, D.; Roudot, A.; Tricaud, C. Improvement of photoprotection with sunscreen formulas containing the cyclic merocyanine UVA1 absorber MCE: In vivo demonstration under simulated and real sun exposure conditions in three randomized controlled trials. J. Eur. Acad. Dermatol. Venereol. Clin. Pract. (in revision). 2022. [Google Scholar] [CrossRef]
- Bacqueville, D.; Jacques-Jamin, C.; Dromigny, H.; Boyer, F.; Brunel, Y.; Ferret, P.J.; Redoulès, D.; Douki, T.; Bessou-Touya, S.; Duplan, H. Phenylene Bis-Diphenyltriazine (TriAsorB), a new sunfilter protecting the skin against both UVB + UVA and blue light radiations. Photochem. Photobiol. Sci. 2021, 20, 1475–1486. [Google Scholar] [CrossRef]
- Lawrence, K.P.; Sarkany, R.P.E.; Acker, S.; Herzog, B.; Young, A.R. A new visible light absorbing organic filter offers superior protection against pigmentation by wavelengths at the UVR-visible boundary region. J. Photochem. Photobiol. B Biol. 2021, 227, 112372. [Google Scholar] [CrossRef]
- Kohli, I.; Braunberger, T.L.; Nahhas, A.F.; Mirza, F.N.; Mokhtari, M.; Lyons, A.B.; Kollias, N.; Ruvolo, E.; Lim, H.W.; Hamzavi, I.H. Long-wavelength Ultraviolet A1 and Visible Light Photoprotection: A Multimodality Assessment of Dose and Response. Photochem. Photobiol. 2020, 96, 208–214. [Google Scholar] [CrossRef]
- Lim, H.W.; Kohli, I.; Granger, C.; Trullàs, C.; Piquero-Casals, J.; Narda, M.; Masson, P.; Krutmann, J.; Passeron, T. Photoprotection of the Skin from Visible Light—Induced Pigmentation: Current Testing Methods and Proposed Harmonization. J. Investig. Dermatol. 2021, 141, 2569–2576. [Google Scholar] [CrossRef]
- Schalka, S.; de Paula Corrêa, M.; Sawada, L.Y.; Canale, C.C.; de Andrade, T.N. A novel method for evaluating sun visible light protection factor and pigmentation protection factor of sunscreens. Clin. Cosmet. Investig. Dermatol. 2019, 12, 605–616. [Google Scholar] [CrossRef] [Green Version]
- Duteil, L.; Cadars, B.; Queille-Roussel, C.; Giraud, I.; Drulhon, F.; Graizeau, C.; Guyoux, A.; Passeron, T. A new in vitro method to predict in vivo photoprotection of skin hyperpigmentation induced by visible light. J. Eur. Acad. Dermatol. Venereol. 2022, 36, 922–926. [Google Scholar] [CrossRef]
- Alcantara, G.P.; Esposito, A.C.C.; Olivatti, T.O.F.; Yoshida, M.M.; Miot, H.A. Evaluation of ex vivo melanogenic response to UVB, UVA, and visible light in facial melasma and unaffected adjacent skin. An. Bras. Dermatol. 2020, 95, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Krutmann, J.; Schalka, S.; Watson, R.E.B.; Wei, L.; Morita, A. Daily photoprotection to prevent photoaging. Photodermatol. Photoimmunol. Photomed. 2021, 37, 482–489. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernerd, F.; Passeron, T.; Castiel, I.; Marionnet, C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. Int. J. Mol. Sci. 2022, 23, 8243. https://doi.org/10.3390/ijms23158243
Bernerd F, Passeron T, Castiel I, Marionnet C. The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. International Journal of Molecular Sciences. 2022; 23(15):8243. https://doi.org/10.3390/ijms23158243
Chicago/Turabian StyleBernerd, Françoise, Thierry Passeron, Isabelle Castiel, and Claire Marionnet. 2022. "The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity" International Journal of Molecular Sciences 23, no. 15: 8243. https://doi.org/10.3390/ijms23158243
APA StyleBernerd, F., Passeron, T., Castiel, I., & Marionnet, C. (2022). The Damaging Effects of Long UVA (UVA1) Rays: A Major Challenge to Preserve Skin Health and Integrity. International Journal of Molecular Sciences, 23(15), 8243. https://doi.org/10.3390/ijms23158243