The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens
Abstract
:1. Introduction
2. Results
2.1. Design of γ-Core Peptides
2.1.1. Defensin-like Peptides
8-Cys DEFLs
4-Cys DEFLs
2.1.2. Other AMPs
2.2. Physicochemical Properties of Synthetic Peptides
2.3. 3D Structure Simulation
2.4. Antimicrobial Activity of Synthetic Peptides
2.4.1. γ-Cores of Classical Defensins
2.4.2. Peptide Fragments of 4-Cys-Containing DEFLs
2.4.3. Peptide Fragments of Other Wheat AMPs
2.5. Dynamics of Pathogen Inhibition by γ-Core Motif Peptides
2.6. Staining with Propidium Iodide
3. Discussion
3.1. Discovery of Antimicrobial Activity in 4-Cys DEFLs and Conservation of the γ-Core Motifs
3.2. Discovery of Antimicrobial Activity in the Knottin-like Peptide Tk-AMP-K210-23 and the C-Terminal Prodomain of the Thionin-like Protein TkThi196-109
3.3. Antimicrobial Potency and Activity Spectrum of the γ-Core Peptides
3.4. Structure–Function Relationships
3.5. Mode of Action
4. Materials and Methods
4.1. Chemical Synthesis of Peptide Fragments Derived from AMP-like Peptides
4.2. 3D Structure Modeling
4.3. Antimicrobial Assays
4.4. Statistical Analysis
4.5. Staining of Yeast Cells with Propidium Iodide
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kannan, V.R.; Bastas, K.K.; Rajendran., S. Scientific and economic impact of plant pathogenic bacteria. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria, 1st ed.; Kannan, V.R., Bastas, K.K., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 369–392. [Google Scholar] [CrossRef]
- Doehlemann, G.; Ökmen, B.; Zhu, W.; Sharon, A. Plant pathogenic fungi. Microbiol. Spectr. 2017, 5, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Summerell, B.A. Resolving Fusarium: Current status of the genus. Annu. Rev. Phytopathol. 2019, 57, 323–339. [Google Scholar] [CrossRef] [PubMed]
- Tupaki-Sreepurna, A.; Kindo, A.J. Fusarium: The versatile pathogen. Indian J. Med. Microbiol. 2018, 36, 8–17. [Google Scholar] [CrossRef]
- Kannan, V.R.; Bastas, K.K.; Antony, R. Plant pathogenic bacteria: An overview. In Sustainable Approaches to Controlling Plant Pathogenic Bacteria, 1st ed.; Kannan, V.R., Bastas, K.K., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–16. [Google Scholar] [CrossRef]
- Mansfield, J.; Genin, S.; Magori, S.; Citovsky, V.; Sriariyanum, M.; Ronald, P.; Dow, M.; Verdier, V.; Beer, S.V.; Machado, M.A.; et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 614–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and virulence of Candida albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef] [PubMed]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Dyląg, M. A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. J. Appl. Microbiol. 2021, 131, 2095–2113. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.L.; Kronstad, J.W. Cryptococcus neoformans. Trends Microbiol. 2020, 28, 163–164. [Google Scholar] [CrossRef]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef]
- van der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell. Mol. Life Sci. 2013, 70, 3545–3570. [Google Scholar] [CrossRef]
- Struyfs, C.; Cammue, B.P.A.; Thevissen, K. Membrane-interacting antifungal peptides. Front. Cell Dev. Biol. 2021, 9, 649875. [Google Scholar] [CrossRef] [PubMed]
- Tam, J.P.; Wang, S.; Wong, K.H.; Tan, W.L. Antimicrobial peptides from plants. Pharmaceuticals 2015, 8, 711–757. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Dashora, K.; Ameta, K.L.; Singh, N.P.; El-Enshasy, H.A.; Pagano, M.C.; Hesham, A.E.; Sharma, G.D.; Sharma, M.; Bhargava, A. Cysteine-rich antimicrobial peptides from plants: The future of antimicrobial therapy. Phytother. Res. 2021, 35, 256–277. [Google Scholar] [CrossRef]
- Li, J.; Hu, S.; Jian, W.; Xie, C.; Yang, X. Plant antimicrobial peptides: Structures, functions, and applications. Bot. Stud. 2021, 62, 5. [Google Scholar] [CrossRef] [PubMed]
- Yount, N.Y.; Yeaman, M.R. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. USA 2004, 101, 7363–7368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slezina, M.P.; Istomina, E.A.; Kulakovskaya, E.V.; Abashina, T.N.; Odintsova, T.I. Synthetic oligopeptides mimicking γ-core regions of cysteine-rich peptides of Solanum lycopersicum possess antimicrobial activity against human and plant pathogens. Curr. Issues Mol. Biol. 2021, 43, 1226–1242. [Google Scholar] [CrossRef]
- Odintsova, T.I.; Slezina, M.P.; Istomina, E.A.; Korostyleva, T.V.; Kasianov, A.S.; Kovtun, A.S.; Makeev, V.J.; Shcherbakova, L.A.; Kudryavtsev, A.M. Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance. PeerJ 2019, 7, e6125. [Google Scholar] [CrossRef]
- Slezina, M.P.; Istomina, E.A.; Korostyleva, T.V.; Odintsova, T.I. AMPs revealed in wheat by transcriptome sequencing. Vavilov Institute of General Genetics RAS, 119333 Moscow, Russia. 2022; to be submitted. [Google Scholar]
- Odintsova, T.I.; Slezina, M.P.; Istomina, E.A.; Korostyleva, T.V.; Kovtun, A.S.; Kasianov, A.S.; Shcherbakova, L.A.; Kudryavtsev, A.M. Non-specific lipid transfer proteins in Triticum kiharae Dorof. et Migush.: Identification, characterization and expression profiling in response to pathogens and resistance inducers. Pathogens 2019, 8, 221. [Google Scholar] [CrossRef] [Green Version]
- Egorov, T.A.; Odintsova, T.I.; Pukhalsky, V.A.; Grishin, E.V. Diversity of wheat anti-microbial peptides. Peptides 2005, 26, 2064–2073. [Google Scholar] [CrossRef] [PubMed]
- Odintsova, T.I.; Slezina, M.P.; Istomina, E.A. Defensins of grasses: A systematic review. Biomolecules 2020, 10, 1029. [Google Scholar] [CrossRef]
- Jiang, Z.; Vasil, A.I.; Hale, J.D.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α-helical cationic antimicrobial peptides. Pept. Sci. 2008, 90, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P. PEP-FOLD3: Faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 2016, 44, W449–W454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Baky, N.A.; Amara, A.A.A.F. Recent approaches towards control of fungal diseases in plants: An updated review. J. Fungi 2021, 7, 900. [Google Scholar] [CrossRef]
- Avery, S.V.; Singleton, I.; Magan, N.; Goldman, G.H. The fungal threat to global food security. Fungal Biol. 2019, 123, 555–557. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slezina, M.P.; Istomina, E.A.; Korostyleva, T.V.; Kovtun, A.S.; Kasianov, A.S.; Konopkin, A.A.; Shcherbakova, L.A.; Odintsova, T.I. Molecular insights into the role of cysteine-rich peptides in induced resistance to Fusarium oxysporum infection in tomato based on transcriptome profiling. Int. J. Mol. Sci. 2021, 22, 5741. [Google Scholar] [CrossRef] [PubMed]
- Fernández, A.; Colombo, M.L.; Curto, L.M.; Gómez, G.E.; Delfino, J.M.; Guzmán, F.; Bakás, L.; Malbrán, I.; Vairo-Cavalli, S.E. Peptides derived from the α-core and γ-core regions of a putative Silybum marianum flower defensin show antifungal activity against Fusarium graminearum. Front. Microbiol. 2021, 12, 632008. [Google Scholar] [CrossRef] [PubMed]
- Slavokhotova, A.A.; Rogozhin, E.A. Defense peptides from the α-hairpinin family are components of plant innate immunity. Front. Plant Sci. 2020, 11, 465. [Google Scholar] [CrossRef]
- Maróti, G.; Downie, J.A.; Kondorosi, É. Plant cysteine-rich peptides that inhibit pathogen growth and control rhizobial differentiation in legume nodules. Curr. Opin. Plant Biol. 2015, 26, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Velivelli, S.L.S.; Czymmek, K.J.; Li, H.; Shaw, J.B.; Buchko, G.W.; Shah, D.M. Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. Proc. Natl. Acad. Sci. USA 2020, 117, 16043–16054. [Google Scholar] [CrossRef]
- Isozumi, N.; Masubuchi, Y.; Imamura, T.; Mori, M.; Koga, H.; Ohki, S. Structure and antimicrobial activity of NCR169, a nodule-specific cysteine-rich peptide of Medicago truncatula. Sci. Rep. 2021, 11, 9923. [Google Scholar] [CrossRef]
- Lima, R.M.; Kylarová, S.; Mergaert, P.; Kondorosi, É. Unexplored arsenals of legume peptides with potential for their applications in medicine and agriculture. Front. Microbiol. 2020, 11, 1307. [Google Scholar] [CrossRef] [PubMed]
- Epple, P.; Apel, K.; Bohlmann, H. An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins. Plant Physiol. 1995, 109, 813–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrader-Fischer, G.; Apel, K. cDNA-derived identification of novel thionin precursors in Viscum album that contain highly divergent thionin domains but conserved signal and acidic polypeptide domains. Plant Mol. Biol. 1993, 23, 1233–1242. [Google Scholar] [CrossRef] [PubMed]
- Bohlmann, H.; Broekaert, W. The role of thionins in plant protection. Crit. Rev. Plant Sci. 1994, 13, 1–16. [Google Scholar] [CrossRef]
- Zelezetsky, I.; Tossi, A. Alpha-helical antimicrobial peptides--using a sequence template to guide structure-activity relationship studies. Biochim. Biophys. Acta 2006, 1758, 1436–1449. [Google Scholar] [CrossRef] [Green Version]
- Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 2003, 55, 27–55. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific α-helical properties. Bioinformatics 2008, 24, 2101–2102. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [Green Version]
- Waghu, F.H.; Barai, R.S.; Gurung, P.; Idicula-Thomas, S. CAMPR3: A database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. 2015, 44, D1094–D1097. [Google Scholar] [CrossRef] [Green Version]
- All-Russian Collection of Microorganisms—VKM. Available online: http://www.vkm.ru (accessed on 20 June 2022).
- Broekaert, W.F.; Terras, F.R.G.; Cammue, B.P.A.; Vanderleyden, J. An automated quantitative assay for fungal growth inhibition. FEMS Microbiol. Lett. 1990, 69, 55–59. [Google Scholar] [CrossRef]
Peptide | Length, aa | Molecular Weight, Da | Net Charge at pH 7 | pI | GRAVY Index | μH | Aliphatic Index | Boman Index | Ratio of Hydrophobic Residues, % | AMP Prediction |
---|---|---|---|---|---|---|---|---|---|---|
DEFL1-1155-68 | 14 | 1649.95 | +2 | 8.53 | −0.614 | 0.177 | 27.86 | 3.06 | 14 | AMP |
DEFL1-1262-77 | 16 | 1856.20 | +3 | 8.98 | −0.812 | 0.317 | 24.38 | 3.51 | 31 | AMP |
DEFL1-1665-82 | 18 | 2205.59 | +8 | 9.89 | −1.006 | 0.180 | 0 | 3.96 | 22 | AMP |
DEFL1-2065-82 | 18 | 2143.51 | +3 | 8.52 | −0.867 | 0.227 | 37.78 | 3.11 | 17 | AMP |
DEFL1-2365-82 | 18 | 2186.53 | +4 | 8.92 | −1.356 | 0.086 | 21.67 | 4.21 | 11 | AMP |
DEFL1-3255-68 | 14 | 1753.07 | +3 | 8.94 | −1.000 | 0.109 | 0 | 4.02 | 14 | AMP |
DEFL1-3665-82 | 18 | 2111.47 | +5 | 8.94 | −0.672 | 0.047 | 11.11 | 2.81 | 28 | AMP |
DEFL1-4065-82 | 18 | 2170.53 | +4 | 8.94 | −1.128 | 0.080 | 21.67 | 4.04 | 17 | AMP |
DEFL4-446-57 | 12 | 1310.48 | +3 | 11.00 | −0.975 | 0.109 | 16.67 | 2.75 | 50 | Non-AMP |
DEFL4-883-93 | 11 | 1050.10 | +1 | 8.79 | −1.109 | 0.223 | 7.69 | 1.9 | 55 | Non-AMP |
DEFL4-882-94 | 13 | 1256.37 | +1 | 8.06 | −0.554 | 0.039 | 7.69 | 1.41 | 40 | Non-AMP |
DEFL4-2092-102 | 11 | 1076.13 | +1 | 9.18 | −1.218 | 0.151 | 9.09 | 2.09 | 55 | Non-AMP |
DEFL4-2086-110 | 25 | 2616.99 | +4 | 9.21 | −0.896 | 0.148 | 12.00 | 2.02 | 46 | AMP |
DEFL4-3791-101 | 11 | 1201.35 | +3 | 11.71 | −1.445 | 0.130 | 18.18 | 3.81 | 55 | Non-AMP |
DEFL4-3790-102 | 13 | 1407.63 | +3 | 9.69 | −0.838 | 0.123 | 15.38 | 3.03 | 46 | Non-AMP |
HvDEFL4-167-77 | 11 | 1159.27 | +4 | 11.00 | −1.627 | 0.222 | 9.09 | 3.38 | 45 | Non-AMP |
Tk-AMP-K210-23 | 14 | 1530.86 | +3 | 9.98 | 0.021 | 0.315 | 20.71 | 1.89 | 36 | AMP |
TkLTP2.2550-62 | 13 | 1404.70 | +3 | 9.36 | −0.177 | 0.102 | 53.08 | 2.7 | 38 | Non-AMP |
TkLTPd5.659-75 | 17 | 1720.01 | +3 | 8.66 | −0.112 | 0.372 | 45.88 | 0.98 | 35 | AMP |
TkThi196-109 | 14 | 1474.69 | +1 | 7.93 | 0.050 | 0.534 | 35.00 | 1.8 | 36 | Non-AMP |
TkSN139-57 | 19 | 2052.53 | +7 | 10.96 | −0.553 | 0.198 | 36.32 | 3.17 | 42 | AMP |
Peptide | IC50, μM | ||||||||
---|---|---|---|---|---|---|---|---|---|
F. culmorum | F. oxysporum | F. solani | F. verticillioides | Cr. neoformans | C. albicans | Cl. michiganensis | Ps. savastanoi | P. carotovorum | |
DEFL1-1262-77 | >100 | >100 | >100 | − | 37.3 ± 1.6 | − | 69.1 ± 1.2 | − | − |
DEFL1-1665-82 | 20.7 ± 1.7 | 12.1 ± 2.4 | 52.5 ± 6.2 | 48.4 ± 5.2 | 4.4 ± 1.0 | 14.6 ± 0.8 | 14.6 ± 1.0 | 56.2 ± 1.1 | 70.7 ± 1,0 |
DEFL1-2065-82 | >100 | >100 | − | − | − | − | − | − | − |
DEFL1-2365-82 | 46 ± 2.7 | 56.7 ± 7.1 | − | − | 39.8 ± 3.2 | − | 57.1 ± 1.2 | − | − |
DEFL1-3255-68 | 97.8 ± 11.2 | 89.3 ± 7.2 | − | − | 42.9 ± 3.5 | >100 | 38.5 ± 1.1 | − | − |
DEFL1-3665-82 | 38.3 ± 3.5 | 52.4 ± 4.3 | >100 | >100 | 16.8 ± 3.0 | >100 | 48.6 ± 2.1 | − | − |
DEFL1-4065-82 | 59.3 ±5.1 | 49.9 ± 9.4 | − | − | 39.0 ± 1.2 | − | 51.6 ± 1.2 | − | − |
DEFL4-882-94 | − | − | − | >100 | − | − | − | − | >100 |
DEFL4-2086-110 | >100 | >100 | − | − | >100 | − | >100 | − | − |
DEFL4-3790-102 | − | − | − | >100 | >100 | >100 | − | >100 | − |
HvDEFL4-167-77 | >100 | − | − | >100 | >100 | >100 | − | − | − |
Tk-AMP-K210-23 | >100 | − | >100 | >100 | >100 | >100 | >100 | >100 | >100 |
LTP2.2550-62 | >100 | − | − | − | 45.0 ± 1.6 | − | 94.6 ± 3.7 | − | − |
TkSN139-57 | 27.5 ± 1.2 | 93.6 ± 3.1 | − | − | 6.0 ± 1.5 | 164.7 ± 5.4 | 12.0 ± 2.3 | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slezina, M.P.; Istomina, E.A.; Kulakovskaya, E.V.; Korostyleva, T.V.; Odintsova, T.I. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens. Int. J. Mol. Sci. 2022, 23, 8383. https://doi.org/10.3390/ijms23158383
Slezina MP, Istomina EA, Kulakovskaya EV, Korostyleva TV, Odintsova TI. The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens. International Journal of Molecular Sciences. 2022; 23(15):8383. https://doi.org/10.3390/ijms23158383
Chicago/Turabian StyleSlezina, Marina P., Ekaterina A. Istomina, Ekaterina V. Kulakovskaya, Tatyana V. Korostyleva, and Tatyana I. Odintsova. 2022. "The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens" International Journal of Molecular Sciences 23, no. 15: 8383. https://doi.org/10.3390/ijms23158383
APA StyleSlezina, M. P., Istomina, E. A., Kulakovskaya, E. V., Korostyleva, T. V., & Odintsova, T. I. (2022). The γ-Core Motif Peptides of AMPs from Grasses Display Inhibitory Activity against Human and Plant Pathogens. International Journal of Molecular Sciences, 23(15), 8383. https://doi.org/10.3390/ijms23158383