Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Evaluation of Traits Related to Flowering Time
2.2. QTLs for Flowering Time-Related Traits in the RIL Population under Multiple Environments
2.2.1. DTA
2.2.2. DTS
2.2.3. ASI
2.2.4. ASI-Delay
2.3. Clusters of Colocalized Flowering Time QTLs
2.4. Clusters of Colocalized QTLs for Abiotic Stresses
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Field Trials and Phenotyping
4.3. Linkage Mapping Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuleshov, N.N. World’s diversity of phenotypes of maize. J. Am. Soc. Agron. 1933, 25, 688–700. [Google Scholar] [CrossRef]
- Buckler, E.S.; Holland, J.B.; Bradbury, P.J.; Acharya, C.B.; Brown, P.J.; Browne, C.; Ersoz, E.; Flint-Garcia, S.; Garcia, A.; Glaubitz, J.C.; et al. The genetic architecture of maize flowering time. Science 2009, 325, 714–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hufford, M.B.; Xu, X.; van Heerwaarden, J.; Pyhajarvi, T.; Chia, J.M.; Cartwright, R.A.; Elshire, R.J.; Glaubitz, J.C.; Guill, K.E.; Kaeppler, S.M.; et al. Comparative population genomics of maize domestication and improvement. Nat. Genet. 2012, 44, 808–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C. Genome engineering for crop improvement and future agriculture. Cell 2021, 184, 1621–1635. [Google Scholar] [CrossRef]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Leng, P.; Ouzunova, M.; Landbeck, M.; Wenzel, G.; Eder, J.; Darnhofer, B.; Lübberstedt, T. Quantitative trait loci mapping of forage agronomic traits in six mapping populations derived from European elite maize germplasm. Plant Breed. 2018, 137, 370–378. [Google Scholar] [CrossRef]
- Chen, Y.; Zein, I.; Brenner, E.A.; Andersen, J.R.; Landbeck, M.; Ouzunova, M.; Lübberstedt, T. Polymorphisms in monolignol biosynthetic genes are associated with biomass yield and agronomic traits in European maize (Zea mays L.). BMC Plant Biol. 2010, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Frascaroli, E.; Cane, M.A.; Pe, M.E.; Pea, G.; Morgante, M.; Landi, P. QTL detection in maize testcross progenies as affected by related and unrelated testers. Theor. Appl. Genet. 2009, 118, 993–1004. [Google Scholar] [CrossRef]
- Turc, O.; Bouteille, M.; Fuad-Hassan, A.; Welcker, C.; Tardieu, F. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. New Phytol. 2016, 212, 377–388. [Google Scholar] [CrossRef] [Green Version]
- Turc, O.; Tardieu, F. Drought affects abortion of reproductive organs by exacerbating developmentally driven processes via expansive growth and hydraulics. J. Exp. Bot. 2018, 69, 3245–3254. [Google Scholar] [CrossRef] [Green Version]
- Fuad-Hassan, A.; Tardieu, F.; Turc, O. Drought-induced changes in anthesis-silking interval are related to silk expansion: A spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell Environ. 2008, 31, 1349–1360. [Google Scholar] [CrossRef]
- Dong, Z.; Xu, Z.; Xu, L.; Galli, M.; Gallavotti, A.; Dooner, H.K.; Chuck, G. Necrotic upper tips1 mimics heat and drought stress and encodes a protoxylem-specific transcription factor in maize. Proc. Natl. Acad. Sci. USA 2020, 117, 20908–20919. [Google Scholar] [CrossRef]
- Casal, J.J.; Deregibus, V.A.; Sanchez, R.A. Variations in Tiller Dynamics and Morphology in Lolium multiflorum Lam. Vegetative and Reproductive Plants as affected by Differences in Red/Far-Red Irradiation. Ann. Bot. 1985, 56, 553–559. [Google Scholar] [CrossRef]
- Dolferus, R. To grow or not to grow: A stressful decision for plants. Plant Sci. 2014, 229, 247–261. [Google Scholar] [CrossRef]
- Sangoi, L. Understanding plant density effects on maize growth and development: An important issue to maximize grain yield. Ciência Rural 2001, 31, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Edmeades, G.O. Progress in Achieving and Delivering Drought Tolerance in Maize—An Update; ISAAA: Ithaca, NY, USA, 2013; Volume 130, pp. 1–44. [Google Scholar]
- Uribelarrea, M.; Cárcova, J.; Borrás, L.; Otegui, M.E. Enhanced kernel set promoted by synchronous pollination determines a tradeoff between kernel number and kernel weight in temperate maize hybrids. Field Crop Res. 2008, 105, 172–181. [Google Scholar] [CrossRef]
- Sher, A.; Khan, A.; Cai, L.J.; Ahmad, M.I.; Asharf, U.; Jamoro, S.A. Response of maize grown under high plant density; performance, issues and management—A critical review. Adv. Crop Sci. Technol. 2017, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Assefa, Y.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Smith, S.; Ciampitti, I.A. Analysis of Long Term Study Indicates Both Agronomic Optimal Plant Density and Increase Maize Yield per Plant Contributed to Yield Gain. Sci. Rep. 2018, 8, 4937. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.; Zhang, L.; Liang, X.G.; Zhao, X.; Lin, S.; Qu, L.H.; Liu, Y.P.; Gao, Z.; Ruan, Y.L.; Zhou, S.L. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. J. Exp. Bot. 2018, 69, 1599–1613. [Google Scholar] [CrossRef]
- Yuan, Y.; Cairns, J.E.; Babu, R.; Gowda, M.; Makumbi, D.; Magorokosho, C.; Zhang, A.; Liu, Y.; Wang, N.; Hao, Z. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and flowering time under drought and heat stress conditions in maize. Front. Plant Sci. 2019, 9, 1919. [Google Scholar] [CrossRef] [Green Version]
- Bruce, W.B.; Edmeades, G.O.; Barker, T.C. Molecular and physiological approaches to maize improvement for drought tolerance. J. Exp. Bot. 2002, 53, 13–25. [Google Scholar] [CrossRef]
- Welcker, C.; Boussuge, B.; Bencivenni, C.; Ribaut, J.M.; Tardieu, F. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of Anthesis-Silking Interval to water deficit. J. Exp. Bot. 2007, 58, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Koester, R.P.; Sisco, P.H.; Stuber, C.W. Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize. Crop Sci. 1993, 33, 1209–1216. [Google Scholar] [CrossRef]
- Beavis, W.D.; Smith, O.S.; Grant, D.; Fincher, R. Identification of Quantitative Trait Loci Using a Small Sample of Topcrossed and F4 Progeny from Maize. Crop Sci. 1994, 34, 882–896. [Google Scholar] [CrossRef]
- Ribaut, J.M.; Hoisington, D.A.; Deutsch, J.A.; Jiang, C.; Gonzalez-De-Leon, D. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 1996, 92, 905–914. [Google Scholar] [CrossRef]
- Veldboom, L.R.; Lee, M. Genetic Mapping of Qunatitative Trait Loci in Maize in Stress and Nonstress Environments: II. Plant Height and Flowering. Crop Sci. 1996, 36, 1320–1327. [Google Scholar] [CrossRef]
- Moutiq, R.; Ribaut, J.M.; Edmeades, G.O.; Krakowsky, M.D.; Lee, M. Elements of genotype–environment interaction: Genetic components of the photoperiod response in maize. In Quantitative Genetics, Genomics, and Plant Breeding; CABI: New York, NY, USA, 2002; pp. 257–267. [Google Scholar]
- Salvi, S.; Tuberosa, R.; Chiapparino, E.; Maccaferri, M.; Veillet, S.; van Beuningen, L.; Isaac, P.; Edwards, K.; Phillips, R.L. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol. Biol. 2002, 48, 601–613. [Google Scholar] [CrossRef]
- Balint-Kurti, P.J.; Zwonitzer, J.C.; Wisser, R.J.; Carson, M.L.; Oropeza-Rosas, M.A.; Holland, J.B.; Szalma, S.J. Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 2007, 176, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Briggs, W.H.; Mcmullen, M.D.; Gaut, B.S.; Doebley, J. Linkage Mapping of Domestication Loci in a Large Maize–Teosinte Backcross Resource. Genetics 2007, 177, 1915–1928. [Google Scholar] [CrossRef] [Green Version]
- Szalma, S.J.; Hostert, B.M.; Ledeaux, J.R.; Stuber, C.W.; Holland, J.B. QTL mapping with near-isogenic lines in maize. Theor. Appl. Genet. 2007, 114, 1211–1228. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.L.; Cheng, F.F.; Sun, Z.H.; Tang, J.H.; Wu, L.C.; Ku, L.X.; Chen, Y.H. Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor. Appl. Genet. 2008, 117, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Chardon, F.; Virlon, B.; Moreau, L.; Falque, M.; Joets, J.; Decousset, L.; Murigneux, A.; Charcosset, A. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 2004, 168, 2169–2185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coles, N.D.; Mcmullen, M.D.; Balint-Kurti, P.J.; Pratt, R.C.; Holland, J.B. Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 2010, 184, 799–812. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, Y.; Liu, J.; Cao, M.; Wang, J.; Lan, H.; Xu, Y.; Lu, Y.; Pan, G.; Rong, T. The genetic architecture of flowering time and photoperiod sensitivity in maize as revealed by QTL review and meta-analysis. J. Integr. Plant Biol. 2012, 54, 358–373. [Google Scholar] [CrossRef]
- Liu, H.J.; Wang, X.; Xiao, Y.; Luo, J.; Qiao, F.; Yang, W.; Zhang, R.; Meng, Y.; Sun, J.; Yan, S.; et al. CUBIC: An atlas of genetic architecture promises directed maize improvement. Genome Biol. 2020, 21, 20. [Google Scholar] [CrossRef]
- Hung, H.Y.; Shannon, L.M.; Tian, F.; Bradbury, P.J.; Chen, C.; Flint-Garcia, S.A.; Mcmullen, M.D.; Ware, D.; Buckler, E.S.; Doebley, J.F.; et al. ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc. Natl. Acad. Sci. USA 2012, 109, E1913–E1921. [Google Scholar] [CrossRef] [Green Version]
- Steinhoff, J.; Liu, W.; Reif, J.C.; Porta, G.D.; Ranc, N.; Würschum, T. Detection of QTL for flowering time in multiple families of elite maize. Theor. Appl. Genet. 2012, 125, 1539–1551. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Z.; Li, R.; Weng, J.; Zhang, Q.; Li, X.; Wang, B.; Zhang, W.; Song, W.; Li, X. Mapping QTL for flowering time-related traits under three plant densities in maize. Crop J. 2021, 9, 372–379. [Google Scholar] [CrossRef]
- Hu, X.; Wang, G.; Du, X.; Zhang, H.; Xu, Z.; Wang, J.; Chen, G.; Wang, B.; Li, X.; Chen, X. QTL analysis across multiple environments reveals promising chromosome regions associated with yield-related traits in maize under drought conditions. Crop J. 2021, 9, 759–766. [Google Scholar] [CrossRef]
- Khan, S.U.; Zheng, Y.; Chachar, Z.; Zhang, X.; Zhou, G.; Zong, N.; Leng, P.; Zhao, J. Dissection of Maize Drought Tolerance at the Flowering Stage Using Genome-Wide Association Studies. Genes 2022, 13, 364. [Google Scholar] [CrossRef]
- Li, C.; Li, Y.; Bradbury, P.J.; Wu, X.; Shi, Y.; Song, Y.; Zhang, D.; Rodgers-Melnick, E.; Buckler, E.S.; Zhang, Z.; et al. Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize. BMC Biol. 2015, 13, 78. [Google Scholar] [CrossRef] [Green Version]
- Bouchet, S.; Servin, B.; Bertin, P.; Madur, D.; Combes, V.; Dumas, F.; Brunel, D.; Laborde, J.; Charcosset, A.; Nicolas, S. Adaptation of maize to temperate climates: Mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus. PLoS ONE 2013, 8, e71377. [Google Scholar] [CrossRef] [Green Version]
- Romay, M.C.; Millard, M.J.; Glaubitz, J.C.; Peiffer, J.A.; Swarts, K.L.; Casstevens, T.M.; Elshire, R.J.; Acharya, C.B.; Mitchell, S.E.; Flint-Garcia, S.A.; et al. Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol. 2013, 14, R55. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.; Lu, Y.; Yang, X.; Huang, J.; Zhou, Y.; Ali, F.; Wen, W.; Liu, J.; Li, J.; Yan, J. Genome wide association studies using a new nonparametric model reveal the genetic architecture of 17 agronomic traits in an enlarged maize association panel. PLoS Genet. 2014, 10, e1004573. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Beissinger, T.M.; Lorant, A.; Ross-Ibarra, C.; Ross-Ibarra, J.; Hufford, M.B. The interplay of demography and selection during maize domestication and expansion. Genome Biol. 2017, 18, 215. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Sun, H.; Xu, D.; Chen, Q.; Liang, Y.; Wang, X.; Xu, G.; Tian, J.; Wang, C.; Li, D.; et al. ZmCCT9 enhances maize adaptation to higher latitudes. Proc. Natl. Acad. Sci. USA 2018, 115, E334–E341. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Wang, X.; Zhao, M.; Huang, C.; Li, C.; Li, D.; Yang, C.J.; York, A.M.; Xue, W.; Xu, G.; et al. Stepwise cis-Regulatory Changes in ZCN8 Contribute to Maize Flowering-Time Adaptation. Curr. Biol. 2018, 28, 3005–3015. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Liu, Q.; Wang, X.; Huang, C.; Xu, G.; Hey, S.; Lin, H.Y.; Li, C.; Xu, D.; Wu, L.; et al. ZmMADS69 functions as a flowering activator through the ZmRap2.7-ZCN8 regulatory module and contributes to maize flowering time adaptation. New Phytol. 2019, 221, 2335–2347. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, C.J.; York, A.M.; Xue, W.; Daskalska, L.L.; Devalk, C.A.; Krueger, K.W.; Lawton, S.B.; Spiegelberg, B.G.; Schnell, J.M.; et al. TeoNAM: A Nested Association Mapping Population for Domestication and Agronomic Trait Analysis in Maize. Genetics 2019, 213, 1065–1078. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.A.R.; Willcox, M.; Burgueño, J.; Romay, C.; Swarts, K.; Trachsel, S.; Preciado, E.; Terron, A.; Delgado, H.V.; Vidal, V.; et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 2017, 49, 476–480. [Google Scholar] [CrossRef]
- Jung, C.; Muller, A.E. Flowering time control and applications in plant breeding. Trends Plant Sci. 2009, 14, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Bendix, C.; Marshall, C.M.; Harmon, F.G. Circadian Clock Genes Universally Control Key Agricultural Traits. Mol. Plant 2015, 8, 1135–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semagn, K.; Beyene, Y.; Warburton, M.L.; Tarekegne, A.; Mugo, S.; Meisel, B.; Sehabiague, P.; Prasanna, B.M. Meta-analyses of QTL for grain yield and anthesis silking interval in 18 maize populations evaluated under water-stressed and well-watered environments. BMC Genom. 2013, 14, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Zhang, S.; Shah, T.; Xie, C.; Hao, Z.; Li, X.; Farkhari, M.; Ribaut, J.M.; Cao, M.; Rong, T.; et al. Joint linkage-linkage disequilibrium mapping is a powerful approach to detecting quantitative trait loci underlying drought tolerance in maize. Proc. Natl. Acad. Sci. USA 2010, 107, 19585–19590. [Google Scholar] [CrossRef] [Green Version]
- Thirunavukkarasu, N.; Hossain, F.; Arora, K.; Sharma, R.; Shiriga, K.; Mittal, S.; Mohan, S.; Namratha, P.M.; Dogga, S.; Rani, T.S.; et al. Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping. BMC Genom. 2014, 15, 1182. [Google Scholar] [CrossRef] [Green Version]
- Edmeades, G.O.; Fairey, N.A.; Daynard, T.B. Influence of plant density on the distribution of 14C-labelled assimilate in maize at flowering. Can. J. Plant Sci. 1979, 59, 577–584. [Google Scholar] [CrossRef]
- Hokmalipour, S.; Seyedsharifi, R.; Jamaati-E-Somarin, S.H.; Hassanzadeh, M.; Shiri-E-Janagard, M.; Zabihi-E-Mahmoodabad, R. Evaluation of plant density and nitrogen fertilizer on yield, yield components and growth of maize. World Appl. Sci. J. 2010, 8, 1157–1162. [Google Scholar]
- Li, C.; Sun, B.; Li, Y.; Liu, C.; Wu, X.; Zhang, D.; Shi, Y.; Song, Y.; Buckler, E.S.; Zhang, Z.; et al. Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genom. 2016, 17, 894. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.A.; Seetharam, K.; Zaidi, P.H.; Dinesh, A.; Vinayan, M.T.; Nath, U.K. Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crop. Res. 2017, 204, 110–119. [Google Scholar] [CrossRef]
- Swarts, K.; Li, H.; Navarro, J.; Dong, A.; Bradbury, P.J. Novel Methods to Optimize Genotypic Imputation for Low-Coverage, Next-Generation Sequence Data in Crop Plants. Plant Genome 2014, 7, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Ning, Y.Q.; Ma, Z.Y.; Huang, H.W.; Mo, H.; Zhao, T.T.; Li, L.; Cai, T.; Chen, S.; Ma, L.; He, X.J. Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. 2015, 43, 1469–1484. [Google Scholar] [CrossRef] [Green Version]
- Pepper, A.E.; Chory, J. Extragenic suppressors of the Arabidopsis det1 mutant identify elements of flowering-time and light-response regulatory pathways. Genetics 1997, 145, 1125–1137. [Google Scholar] [CrossRef]
- Brautigam, C.A.; Smith, B.S.; Ma, Z.; Palnitkar, M.; Tomchick, D.R.; Machius, M.; Deisenhofer, J. Structure of the photolyase-like domain of cryptochrome 1 from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2004, 101, 12142–12147. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, S.; Dunford, R.P.; Coupland, G.; Laurie, D.A. The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol. 2003, 131, 1855–1867. [Google Scholar] [CrossRef] [Green Version]
- Haase, N.J.; Beissinger, T.; Hirsch, C.N.; Vaillancourt, B.; Deshpande, S.; Barry, K.; Buell, C.R.; Kaeppler, S.M.; de Leon, N. Shared genomic regions between derivatives of a large segregating population of maize identified using bulked segregant analysis sequencing and traditional linkage analysis. G3 2015, 5, 1593–1602. [Google Scholar] [CrossRef] [Green Version]
- Chardon, F.; Hourcade, D.; Combes, V.; Charcosset, A. Mapping of a spontaneous mutation for early flowering time in maize highlights contrasting allelic series at two-linked QTL on chromosome 8. Theor. Appl. Genet. 2005, 112, 1–11. [Google Scholar] [CrossRef]
- Odell, S.G.; Hudson, A.I.; Praud, S.; Dubreuil, P.; Tixier, M.H.; Ross-Ibarra, J.; Runcie, D.E. Modeling allelic diversity of multiparent mapping populations affects detection of quantitative trait loci. G3 2022, 12, jkac011. [Google Scholar] [CrossRef]
- Veldboom, L.R.; Lee, M.; Woodman, W.L. Molecular marker-facilitated studies in an elite maize population: I. Linkage analysis and determination of QTL for morphological traits. Theor. Appl. Genet. 1994, 88, 7–16. [Google Scholar] [CrossRef]
- Ajnone-Marsan, P.; Monfredini, G.; Ludwig, W.F.; Melchinger, A.E.; Franceschini, P.; Pagnotto, G.; Motto, M. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor. Appl. Genet. 1995, 90, 415–424. [Google Scholar] [CrossRef]
- Austin, D.F.; Lee, M. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome 1996, 39, 957–968. [Google Scholar] [CrossRef]
- Veldboom, L.R.; Lee, M. Genetic Mapping of Quantitative Trait Loci in Maize in Stress and Nonstress Environments: I. Grain Yield and Yield Components. Crop Sci. 1996, 36, 1310–1319. [Google Scholar] [CrossRef]
- Austin, D.F.; Lee, M. Comparative mapping in F2ratio3 and F 6ratio7 generations of quantitative trait loci for grain yield and yield components in maize. Theor. Appl. Genet. 1996, 92, 817–826. [Google Scholar] [CrossRef]
- Zhang, X.H.; Liu, H.; Ma, X.H.; Zhou, G.Y.; Ruan, H.Q.; Cui, H.W.; Pang, J.L.; Khan, S.U.; Zong, N.; Wang, R.Z.; et al. Genome-wide association study and metabolic pathway prediction of barrenness in maize as a response to high planting density. J. Integr. Agric. 2021, in press. [Google Scholar]
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Cartographer 2.5. 2012. Department of Statistics, North Carolina State University, Raleigh, NC. Available online: http://statgen.ncsu.edu/qtlcart/WQTLCart.html (accessed on 12 September 2021).
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar] [CrossRef]
- Meng, L.; Li, H.; Zhang, L.; Wang, J. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J. 2015, 3, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.B.; Nyquist, W.E.; Cervantes-Martínez, C.T.; Janick, J. Estimating and interpreting heritability for plant breeding: An update. Plant Breed. Rev. 2003, 22, 9–111. [Google Scholar]
Traits | Treatments | Huangzaosi | Mo17 | RIL-Population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Range | Skewness | Kurtosis | CV (%) | H2 (%) | σ2G | σ2GE | σ2e | ||||
DTA | WW | 74.3 | 74.7 | 93.4 ± 2.8 | 88.7–102.0 | 0.41 | 0.49 | 3.0 | 86.94 | 23.08 *** | 5.68 *** | 0.76 |
WS | 74.3 | 75.0 | 93.6 ± 2.8 | 89.0–102.0 | 0.35 | 0.49 | 3.0 | 83.82 | 23.32 *** | 6.75 *** | 0.75 | |
ND | 66.3 | 67.0 | 69.7 ± 3.1 | 61.7–76.0 | −0.18 | −0.36 | 4.43 | 84.25 | 27.03 *** | 4.10 *** | 12.01 | |
HD | 66.7 | 66.0 | 69.8 ± 2.9 | 61.7–76.7 | 0.06 | −0.27 | 4.14 | 80.68 | 33.71 ** | 7.26 ** | 20.64 | |
DTS | WW | 76.3 | 81.3 | 97.9 ± 2.9 | 92.0–105.0 | −0.21 | 0.20 | 3.0 | 84.61 | 25.55 *** | 7.84 *** | 1.35 |
WS | 77.7 | 86.7 | 99.8 ± 2.9 | 93.3–107 | 0.29 | 0.17 | 2.9 | 81.28 | 25.61 *** | 9.36 *** | 1.30 | |
ND | 67.7 | 71.0 | 72.6 ± 3.6 | 64.0–81.0 | −0.48 | 0.01 | 5.02 | 83.12 | 38.96 *** | 8.67 *** | 15.47 | |
HD | 69.3 | 74.3 | 73.3 ± 3.3 | 65.7–79.7 | −0.67 | −0.08 | 4.57 | 79.34 | 50.04 *** | 16.13 *** | 23.8 | |
ASI | WW | 2 | 6.6 | 4.4 ± 1.4 | 2.0–7.0 | −0.36 | 0.33 | 32.0 | 80.58 | 6.31 *** | 1.83 *** | 0.64 |
WS | 3.7 | 11.7 | 6.2 ± 1.6 | 3.3–10.3 | −0.42 | 0.36 | 26.5 | 76.84 | 8.42 *** | 3.90 *** | 0.54 | |
ND | 1.4 | 4.0 | 3.0 ± 2.2 | −1.0–11.0 | 3.31 | 1.37 | 73.08 | 65.98 | 8.01 *** | 6.43 *** | 2.49 | |
HD | 2.3 | 8.3 | 3.5 ± 2.0 | −0.3–8.7 | 0.22 | 0.69 | 57.46 | 64.33 | 9.99 *** | 8.28 *** | 2.40 |
Treatment | QTLs | Chr. | Interval (Mb) | LOD | R2 (%) | Add Range | Phy-Dis (Mb) |
---|---|---|---|---|---|---|---|
WW-19 | qDTA3-1 | 3 | 9.78–11.63 | 2.98 | 8.40–9.51 | −0.83 to −0.89 | 1.85 |
qDTA5 | 5 | 171.88–168.86 | 3.44 | 13.0–15.7 | 1.01–1.11 | 3.02 | |
WS-19 | qDTA2-1 | 2 | 23.74–26.98 | 2.81 | 7.9–13.3 | −1.46 to −1.14 | 3.24 |
qDTA3-2 | 3 | 199.27–199.62 | 2.81 | 10.1–10.7 | 1.11–1.14 | 0.35 | |
qDTA3-3 | 3 | 189.53–196.14 | 3.34 | 9.7–12.4 | 1.04–1.20 | 6.61 | |
qDTA4-1 | 4 | 17.23–22.98 | 3.91 | 11.1–15.0 | 1.22–1.43 | 5.75 | |
qDTA10 | 10 | 137.49–139.00 | 3.01 | 10.4–11.1 | 1.13–1.17 | 1.51 | |
ND-19 | qDTA4-2 | 4 | 194.30–211.05 | 4.12 | 15.0–21.3 | −2.53 to −1.66 | 16.74 |
HD-19 | qDTA2-2 | 2 | 180.83–186.27 | 4.05 | 15.7–20.8 | −1.98 to −1.65 | 5.43 |
qDTA7-1 | 7 | 9.53–13.98 | 4.61 | 18.7–27.2 | −2.05 to −1.72 | 4.45 | |
WW-20 | qDTA2-3 | 2 | 62.10–69.71 | 3.75 | 14.8–15.3 | 2.70–3.28 | 7.61 |
WS-20 | qDTA2-3 | 2 | 62.10–69.71 | 3.25 | 12.0–14.4 | 2.47–3.33 | 7.61 |
qDTA8-1 | 8 | 118.89–125.31 | 3.88 | 12.9–18.3 | 1.03–1.23 | 6.42 | |
ND-20 | qDTA3-4 | 3 | 4.68–6.74 | 3.28 | 10.1–13.3 | −1.15 to −1.01 | 2.06 |
qDTA4-1 | 4 | 21.69–22.98 | 2.65 | 9.5–9.8 | 1.04–1.07 | 1.29 | |
qDTA8-1 | 8 | 123.81–124.65 | 2.87 | 10.3–10.8 | 1.05–1.07 | 0.84 | |
qDTA8-2 | 8 | 118.89–119.37 | 3.46 | 10.4–12.8 | 1.04–1.16 | 0.48 | |
HD-20 | qDTA7-2 | 7 | 147.89–151.25 | 3.00 | 8.8–10.2 | −0.98 to −0.90 | 3.36 |
qDTA7-3 | 7 | 153.85–155.25 | 3.26 | 9.3–11.0 | −1.04 to −0.95 | 1.40 | |
qDTA8-1 | 8 | 118.13–124.65 | 7.79 | 14.3–31.1 | 1.46–2.14 | 6.52 | |
qDTA8-3 | 8 | 52.08–71.29 | 2.73 | 8.6–9.2 | −1.22 to −1.10 | 19.20 | |
qDTA9 | 9 | 8.43–11.74 | 3.19 | 9.0–11.0 | −1.01 to −0.91 | 3.31 |
Treatment | QTLs | Chr. | Interval (Mb) | LOD | R2 (%) | Add Range | Phy-Dis (Mb) |
---|---|---|---|---|---|---|---|
WW-19 | qDTS3-1 | 3 | 9.78–11.63 | 6.05 | 19.4–25.0 | −1.56 to −1.40 | 1.85 |
qDTS5-1 | 5 | 167.01–171.88 | 6.84 | 13.9–24.2 | 1.20–1.56 | 4.87 | |
WS-19 | qDTS2 | 2 | 10.48–12.10 | 4.72 | 12.9–16.8 | −1.60 to −1.44 | 1.63 |
qDTS3-2 | 3 | 34.55–108.14 | 4.17 | 10.5–14.4 | −1.46 to−1.24 | 73.59 | |
qDTS6-1 | 6 | 3.68–6.26 | 6.16 | 12.3–23.2 | −1.78 to −1.32 | 2.58 | |
qDTS8-1 | 8 | 170.22–171.75 | 3.25 | 9.0–11.0 | −1.25 to −1.14 | 1.53 | |
ND-19 | qDTS3-2 | 3 | 37.16–50.10 | 3.94 | 15.9–16.8 | −1.68 to −1.66 | 12.94 |
qDTS6-2 | 6 | 150.02–151.03 | 3.02 | 12.1–12.2 | −1.46 to −1.47 | 1.01 | |
qDTS7 | 7 | 26.00–79.64 | 5.32 | 15.4–25.0 | −2.12 to −1.75 | 53.65 | |
qDTS10 | 10 | 136.09–139.00 | 5.66 | 20.3–27.5 | 1.76–4.35 | 2.92 | |
WW-20 | qDTS8-2 | 8 | 118.13–126.48 | 4.73 | 11.1–17.5 | 0.98–1.27 | 8.35 |
WS-20 | qDTS1 | 1 | 3.02–3.28 | 2.89 | 9.4–10.0 | −0.98 to −0.95 | 0.26 |
qDTS8-2 | 8 | 122.42–123.54 | 2.77 | 10.1–10.5 | 1.33–1.38 | 1.12 | |
ND-20 | qDTS5-2 | 5 | 65.94–81.3 | 3.15 | 11.2–12.2 | 1.25–1.32 | 15.10 |
qDTS9 | 9 | 8.43–11.74 | 4.22 | 11.9–17.0 | −1.49 to −1.26 | 3.31 | |
HD-20 | qDTS8-2 | 8 | 118.13–124.65 | 5.83 | 12.8–25.6 | 1.45–2.08 | 6.52 |
qDTS9 | 9 | 8.43–11.73 | 3.87 | 10.9–15.9 | −1.40 to −1.18 | 3.30 |
Treatment | QTLs | Chr. | Interval (Mb) | LOD | R2 (%) | Add Range | Phy-Dis (Mb) |
---|---|---|---|---|---|---|---|
WW-19 | qASI2-1 | 2 | 133.15–154.59 | 5.48 | 14.2–27.8 | 0.80–1.54 | 21.34 |
qASI3 | 3 | 198.39–199.62 | 4.50 | 11.7–18.7 | −1.36 to −0.94 | 1.23 | |
qASI8-1 | 8 | 174.37–175.59 | 2.76 | 10.1–11.0 | −0.62 to −0.60 | 1.22 | |
WS-19 | qASI3 | 3 | 196.14–199.89 | 3.82 | 9.8–13.8 | −1.09 to −0.90 | 3.74 |
qASI8-1 | 8 | 174.40–175.59 | 3.33 | 10.7–11.9 | −1.04 to −0.98 | 1.19 | |
ND-19 | qASI2-2 | 2 | 26.98–40.00 | 3.49 | 17.0–18.7 | −1.35 to −1.29 | 13.02 |
qASI2-1 | 2 | 113.08–143.39 | 5.80 | 21.2–36.1 | 1.33–1.71 | 30.31 | |
qASI4-1 | 4 | 188.52–191.77 | 3.89 | 16.4–18.7 | −1.28 to −1.13 | 3.25 | |
qASI4-2 | 4 | 180.25–185.64 | 6.77 | 24.2–43.2 | 1.49–1.81 | 5.40 | |
HD-19 | qASI2-2 | 2 | 24.37–31.00 | 3.11 | 3.0–3.3 | 1.81–2.46 | 6.63 |
qASI2-3 | 2 | 41.89–45.76 | 7.99 | 39.6–62.2 | −7.65 to −5.133 | 3.87 | |
qASI2-4 | 2 | 50.82–54.36 | 3.03 | 30.2–34.0 | −5.33 to −4.72 | 3.55 | |
qASI4-3 | 4 | 14.63–17.52 | 2.65 | 2.7–2.8 | 0.82–0.83 | 2.89 | |
WW-20 | qASI5 | 5 | 160.17–165.16 | 5.00 | 9.8–18.3 | 0.46–0.62 | 4.98 |
qASI10 | 10 | 120.82–127.94 | 9.78 | 22.0–39.6 | −0.96 to −0.70 | 7.11 | |
WS-20 | qASI5 | 5 | 160.17–165.16 | 4.78 | 11.6–18.0 | 0.59–0.72 | 4.98 |
qASI8-2 | 8 | 171.40–171.65 | 2.70 | 8.8–9.3 | 0.53–0.55 | 0.24 | |
qASI10 | 10 | 120.82–127.08 | 3.62 | 9.9–13.6 | −0.66 to −0.56 | 6.26 | |
ND-20 | qASI8-3 | 8 | 169.02–171.40 | 4.47 | 12.5–20.0 | 0.70–0.91 | 2.39 |
HD-20 | qASI8-3 | 8 | 170.21–171.40 | 3.05 | 10.2–12.0 | 0.61–0.65 | 1.20 |
qASI9 | 9 | 128.12–137.26 | 3.96 | 10.8–16.5 | 0.64–0.78 | 9.14 |
Treatment | QTLs | Chr. | Interval (Mb) | LOD | R2 (%) | Add Range | Phy-Dis (Mb) |
---|---|---|---|---|---|---|---|
19-HD | qASI-Delay3 | 3 | 212.11–212.84 | 3.20 | 11.7–14.2 | −0.94 to −0.86 | 0.72 |
qASI-Delay6 | 6 | 157.38–158.59 | 2.78 | 12.0–13.0 | −0.87 to −0.84 | 1.21 | |
qASI-Delay8-1 | 8 | 170.22–172.46 | 3.74 | 11.5–16.0 | −1.02 to −0.83 | 2.23 | |
20-HD | qASI-Delay2-1 | 2 | 210.00–216.61 | 3.07 | 12.6–13.8 | −0.46 to−3.40 | 6.61 |
qASI-Delay9-1 | 9 | 11.72–13.46 | 4.71 | 12.8–22.4 | 27.6–35.9 | 1.73 | |
19-WS | qASI-Delay2-1 | 2 | 214.61–216.61 | 4.57 | 19.4–30.0 | −3.18 to −2.50 | 2.00 |
qASI-Delay8-2 | 8 | 124.65–140.01 | 4.57 | 19.7–31.1 | 2.48–3.58 | 15.36 | |
qASI-Delay8-3 | 8 | 99.28–101.83 | 4.75 | 21.7–31.5 | −3.43 to −3.14 | 2.55 | |
20-WS | qASI-Delay2-2 | 2 | 234.26–234.80 | 2.61 | 11.2 | −0.43 | 0.54 |
qASI-Delay8-4 | 8 | 25.01–52.08 | 3.45 | 11.3–14.7 | −0.49 to −0.42 | 27.08 | |
qASI-Delay9-2 | 9 | 14.63–17.52 | 4.61 | 15.3–22.7 | 0.50–0.60 | 9.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, P.; Khan, S.U.; Zhang, D.; Zhou, G.; Zhang, X.; Zheng, Y.; Wang, T.; Zhao, J. Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize. Int. J. Mol. Sci. 2022, 23, 8410. https://doi.org/10.3390/ijms23158410
Leng P, Khan SU, Zhang D, Zhou G, Zhang X, Zheng Y, Wang T, Zhao J. Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize. International Journal of Molecular Sciences. 2022; 23(15):8410. https://doi.org/10.3390/ijms23158410
Chicago/Turabian StyleLeng, Pengfei, Siffat Ullah Khan, Dengfeng Zhang, Guyi Zhou, Xuhuan Zhang, Yanxiao Zheng, Tianyu Wang, and Jun Zhao. 2022. "Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize" International Journal of Molecular Sciences 23, no. 15: 8410. https://doi.org/10.3390/ijms23158410
APA StyleLeng, P., Khan, S. U., Zhang, D., Zhou, G., Zhang, X., Zheng, Y., Wang, T., & Zhao, J. (2022). Linkage Mapping Reveals QTL for Flowering Time-Related Traits under Multiple Abiotic Stress Conditions in Maize. International Journal of Molecular Sciences, 23(15), 8410. https://doi.org/10.3390/ijms23158410