Diacylglycerol Kinases in Signal Transduction
Funding
Conflicts of Interest
References
- Meng, D.; He, W.; Zhang, Y.; Liang, Z.; Zheng, J.; Zhang, X.; Zheng, X.; Zhan, P.; Chen, H.; Li, W.; et al. Development of PI3K inhibitors: Advances in clinical trials and new strategies (Review). Pharmacol. Res. 2021, 173, 105900. [Google Scholar] [CrossRef] [PubMed]
- Sakane, F.; Mizuno, S.; Komenoi, S. Diacylglycerol Kinases as Emerging Potential Drug Targets for a Variety of Diseases: An Update. Front. Cell Dev. Biol. 2016, 4, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazio, A.; Owusu Obeng, E.; Rusciano, I.; Marvi, M.V.; Zoli, M.; Mongiorgi, S.; Ramazzotti, G.; Follo, M.Y.; McCubrey, J.A.; Cocco, L.; et al. Subcellular Localization Relevance and Cancer-Associated Mechanisms of Diacylglycerol Kinases. Int. J. Mol. Sci. 2020, 21, 5297. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.A.; Kim, J.; Yang, D. Beyond Lipid Signaling: Pleiotropic Effects of Diacylglycerol Kinases in Cellular Signaling. Int. J. Mol. Sci. 2020, 21, 6861. [Google Scholar] [CrossRef] [PubMed]
- Sakane, F.; Hoshino, F.; Murakami, C. New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int. J. Mol. Sci. 2020, 21, 6794. [Google Scholar] [CrossRef] [PubMed]
- Velnati, S.; Centonze, S.; Girivetto, F.; Baldanzi, G. Diacylglycerol Kinase alpha in X Linked Lymphoproliferative Disease Type 1. Int. J. Mol. Sci. 2021, 22, 5816. [Google Scholar] [CrossRef] [PubMed]
- Habbas, K.; Cakil, O.; Zámbó, B.; Tabet, R.; Riet, F.; Dembele, D.; Mandel, J.L.; Hocquemiller, M.; Laufer, R.; Piguet, F.; et al. AAV-delivered diacylglycerol kinase DGKk achieves long-term rescue of fragile X syndrome mouse model. EMBO Mol. Med. 2022, 14, e14649. [Google Scholar] [CrossRef] [PubMed]
- Raina, R.; Vijayvargiya, N.; Khooblall, A.; Melachuri, M.; Deshpande, S.; Sharma, D.; Mathur, K.; Arora, M.; Sethi, S.K.; Sandhu, S. Pediatric Atypical Hemolytic Uremic Syndrome Advances. Cells 2021, 10, 3580. [Google Scholar] [CrossRef] [PubMed]
- Tsumagari, R.; Maruo, K.; Kakizawa, S.; Ueda, S.; Yamanoue, M.; Saito, H.; Suzuki, N.; Shirai, Y. Precise Regulation of the Basal PKCγ Activity by DGKγ Is Crucial for Motor Coordination. Int. J. Mol. Sci. 2020, 21, 7866. [Google Scholar] [CrossRef] [PubMed]
- Baldanzi, G.; Ragnoli, B.; Malerba, M. Potential role of diacylglycerol kinases in immune-mediated diseases. Clin. Sci. 2020, 134, 1637–1658. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Centonze, S.; Baldanzi, G. Diacylglycerol Kinases in Signal Transduction. Int. J. Mol. Sci. 2022, 23, 8423. https://doi.org/10.3390/ijms23158423
Centonze S, Baldanzi G. Diacylglycerol Kinases in Signal Transduction. International Journal of Molecular Sciences. 2022; 23(15):8423. https://doi.org/10.3390/ijms23158423
Chicago/Turabian StyleCentonze, Sara, and Gianluca Baldanzi. 2022. "Diacylglycerol Kinases in Signal Transduction" International Journal of Molecular Sciences 23, no. 15: 8423. https://doi.org/10.3390/ijms23158423
APA StyleCentonze, S., & Baldanzi, G. (2022). Diacylglycerol Kinases in Signal Transduction. International Journal of Molecular Sciences, 23(15), 8423. https://doi.org/10.3390/ijms23158423