Aggregated Genomic Data as Cohort-Specific Allelic Frequencies can Boost Variants and Genes Prioritization in Non-Solved Cases of Inherited Retinal Dystrophies
Abstract
:1. Introduction
2. Results
2.1. A Multi-Disease Cohort Database of Variant Frequencies to Study the Aggregated Signal in Ird Genomic Landscape
2.2. IRD-Specific Highly Frequent Variants
2.3. Prioritization of Candidate Genes Based on Weighted Cohort-Specific Frequency of Pathogenic and Benign Variants in Non-Solved Ird Cases
2.4. Carrier’s Frequency of Recessive Diseases from a Multi-Disease Cohort
3. Discussion
4. Materials and Methods
4.1. Ethics Approval and Consent to Participate
4.2. Cohort Description
4.3. Sequencing Tests
4.4. Bioinformatics Reanalysis
4.5. Detection and Removal of Sample Duplicates and Cryptic Relatedness
4.6. Variant Frequency Calculation for IRD Patients and Pseudocontrols
4.7. Definition of Genes Associated with IRD, OERD, and NRD
4.8. Variants Discarded for Analysis
4.9. Determination of Differentially Frequent Variants in IRD Subcohorts Compared to Pseudocontrols
4.10. VUS Reclassification
4.11. Gene Prioritization for IRD Association
4.12. Carrier Frequency Calculation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, T.; Nestler-Parr, S.; Babela, R.; Khan, Z.M.; Tesoro, T.; Molsen, E.; Hughes, D.A. Rare Disease Terminology and Definitions—A Systematic Global Review: Report of the ISPOR Rare Disease Special Interest Group. Value Health 2015, 18, 906–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayuso, C.; Millan, J.M. Retinitis pigmentosa and allied conditions today: A paradigm of translational research. Genome Med. 2010, 2, 34. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.F.; Chakarova, C.F.; Abd El-Aziz, M.M.; Bhattacharya, S.S. Photoreceptor degeneration: Genetic and mechanistic dissection of a complex trait. Nat. Rev. Genet. 2010, 11, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Navarro, I.; Da Silva, L.R.J.R.J.; Blanco-Kelly, F.; Zurita, O.; Sanchez-Bolivar, N.; Villaverde, C.; Lopez-Molina, M.I.I.; Garcia-Sandoval, B.; Tahsin-Swafiri, S.; Minguez, P.; et al. Combining targeted panel-based resequencing and copy-number variation analysis for the diagnosis of inherited syndromic retinopathies and associated ciliopathies. Sci. Rep. 2018, 8, 5285. [Google Scholar] [CrossRef] [PubMed]
- Mockel, A.; Perdomo, Y.; Stutzmann, F.; Letsch, J.; Marion, V.; Dollfus, H. Retinal dystrophy in Bardet–Biedl syndrome and related syndromic ciliopathies. Prog. Retin. Eye Res. 2011, 30, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Gana, S.; Serpieri, V.; Valente, E.M. Genotype-phenotype correlates in Joubert syndrome: A review. Am. J. Med. Genet. C Semin. Med. Genet. 2022, 90, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Del Pozo-Valero, M.; Riveiro-Alvarez, R.; Martin-Merida, I.; Blanco-Kelly, F.; Swafiri, S.; Lorda-Sanchez, I.; Trujillo-Tiebas, M.J.; Carreño, E.; Jimenez-Rolando, B.; Garcia-Sandoval, B.; et al. Impact of Next Generation Sequencing in Unraveling the Genetics of 1036 Spanish Families With Inherited Macular Dystrophies. Investig. Ophthalmol. Vis. Sci. 2022, 63, 11. [Google Scholar] [CrossRef] [PubMed]
- Martin-Merida, I.; Aguilera-Garcia, D.; Fernandez-San Jose, P.; Blanco-Kelly, F.; Zurita, O.; Almoguera, B.; Garcia-Sandoval, B.; Avila-Fernandez, A.; Arteche, A.; Minguez, P.; et al. Toward the mutational landscape of autosomal dominant retinitis pigmentosa: A comprehensive analysis of 258 Spanish families. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2345–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin-Merida, I.; Avila-Fernandez, A.; Del Pozo-Valero, M.; Blanco-Kelly, F.; Zurita, O.; Perez-Carro, R.; Aguilera-Garcia, D.; Riveiro-Alvarez, R.; Arteche, A.; Trujillo-Tiebas, M.J.; et al. Genomic Landscape of Sporadic Retinitis Pigmentosa: Findings from 877 Spanish Cases. Ophthalmology 2019, 126, 1181–1188. [Google Scholar] [CrossRef]
- Iancu, I.F.F.; Avila-Fernandez, A.; Arteche, A.; Trujillo-Tiebas, M.J.J.; Riveiro-Alvarez, R.; Almoguera, B.; Martin-Merida, I.; Del Pozo-Valero, M.; Perea-Romero, I.; Corton, M.; et al. Prioritizing variants of uncertain significance for reclassification using a rule-based algorithm in inherited retinal dystrophies. NPJ Genom. Med. 2021, 6, 18. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lek, M.; Karczewski, K.J.; Minikel, E.V.; Samocha, K.E.; Banks, E.; Fennell, T.; O’Donnell-Luria, A.H.; Ware, J.S.; Hill, A.J.; Cummings, B.B.; et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016, 536, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [PubMed] [Green Version]
- Mathieson, I.; Reich, D. Differences in the rare variant spectrum among human populations. PLoS Genet. 2017, 13, e1006581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dopazo, J.; Amadoz, A.; Bleda, M.; Garcia-Alonso, L.; Aleman, A.; Garcia-Garcia, F.; Rodríguez, J.A.; Daub, J.; Muntane, G.; Rueda, A.; et al. 267 Spanish Exomes Reveal Population-Specific Differences in Disease-Related Genetic Variation. Mol. Biol. Evol. 2016, 33, 1205–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fridman, H.; Yntema, H.G.G.; Mägi, R.; Andreson, R.; Metspalu, A.; Mezzavila, M.; Tyler-Smith, C.; Xue, Y.; Carmi, S.; Levy-Lahad, E.; et al. The landscape of autosomal-recessive pathogenic variants in European populations reveals phenotype-specific effects. Am. J. Hum. Genet. 2021, 108, 608–619. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef]
- Peña-Chilet, M.; Roldán, G.; Perez-Florido, J.; Ortuño, F.M.; Carmona, R.; Aquino, V.; Lopez-Lopez, D.; Loucera, C.; Fernandez-Rueda, J.L.; Gallego, A.; et al. CSVS, a crowdsourcing database of the Spanish population genetic variability. Nucleic acids research 2021, 49, D1130–D1137. [Google Scholar] [CrossRef] [PubMed]
- Hanany, M.; Rivolta, C.; Sharon, D. Worldwide carrier frequency and genetic prevalence of autosomal recessive inherited retinal diseases. Proc. Natl. Acad. Sci. USA 2020, 117, 2710–2716. [Google Scholar] [CrossRef]
- Wang, C.; Sun, L.; Zheng, H.; Hu, Y.-Q. Detecting multiple variants associated with disease based on sequencing data of case-parent trios. J. Hum. Genet. 2016, 61, 851–860. [Google Scholar] [CrossRef]
- Cordell, H.J.; Barratt, B.J.; Clayton, D.G. Case/pseudocontrol analysis in genetic association studies: A unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet. Epidemiol. 2004, 26, 167–185. [Google Scholar] [CrossRef] [PubMed]
- Molinari, E.; Srivastava, S.; Sayer, J.A.; Ramsbottom, S.A. From disease modelling to personalised therapy in patients with CEP290 mutations. F1000Research 2017, 6, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.-J.; Zhang, S.-H.; Chen, J.-Y.; Xu, G.-Z.; Wu, J.-H. Digenic heterozygous mutations in EYS/LRP5 in a Chinese family with retinitis pigmentosa. Int. J. Ophthalmol. 2017, 10, 325–328. [Google Scholar] [PubMed]
- Katsanis, N.; Ansley, S.J.; Badano, J.L.; Eichers, E.R.; Lewis, R.A.; Hoskins, B.E.; Scambler, P.J.; Davidson, W.S.; Beales, P.L.; Lupski, J.R. Triallelic Inheritance in Bardet-Biedl Syndrome, a Mendelian Recessive Disorder. Science 2001, 293, 2256–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea-Romero, I.; Gordo, G.; Iancu, I.F.I.F.I.F.; Del Pozo-Valero, M.; Almoguera, B.; Blanco-Kelly, F.; Carreño, E.; Jimenez-Rolando, B.; Lopez-Rodriguez, R.; Lorda-Sanchez, I.; et al. Genetic landscape of 6089 inherited retinal dystrophies affected cases in Spain and their therapeutic and extended epidemiological implications. Sci. Rep. 2021, 11, 1526. [Google Scholar] [CrossRef] [PubMed]
- Maffucci, P.; Bigio, B.; Rapaport, F.; Cobat, A.; Borghesi, A.; Lopez, M.; Patin, E.; Bolze, A.; Shang, L.; Bendavid, M.; et al. Blacklisting variants common in private cohorts but not in public databases optimizes human exome analysis. Proc. Natl. Acad. Sci. USA 2019, 116, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Musacchia, F.; Ciolfi, A.; Mutarelli, M.; Bruselles, A.; Castello, R.; Pinelli, M.; Basu, S.; Banfi, S.; Casari, G.; Tartaglia, M.; et al. VarGenius executes cohort-level DNA-seq variant calling and annotation and allows to manage the resulting data through a PostgreSQL database. BMC Bioinform. 2018, 19, 477. [Google Scholar] [CrossRef]
- Riordan, J.D.; Nadeau, J.H. From Peas to Disease: Modifier Genes, Network Resilience, and the Genetics of Health. Am. J. Hum. Genet. 2017, 101, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Katsanis, N. The continuum of causality in human genetic disorders. Genome Biol. 2016, 17, 233. [Google Scholar] [CrossRef] [Green Version]
- Mahecha, D.; Nuñez, H.; Lattig, M.C.; Duitama, J. Machine learning models for accurate prioritization of variants of uncertain significance. Hum. Mutat. 2022, 43, 449–460. [Google Scholar] [CrossRef]
- Nicora, G.; Zucca, S.; Limongelli, I.; Bellazzi, R.; Magni, P. A machine learning approach based on ACMG/AMP guidelines for genomic variant classification and prioritization. Sci. Rep. 2022, 12, 2517. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Guardiola, V.; Rosado-Jiménez, L.; Sarabia-Meseguer, M.D.; Marín-Vera, M.; Macías-Cerrolaza, J.A.; García-Hernández, R.; Zafra-Poves, M.; Sánchez-Henarejos, P.; Moreno-Locubiche, M.Á.; Cuevas-Tortosa, E.; et al. Next step in molecular genetics of hereditary breast/ovarian cancer: Multigene panel testing in clinical actionably genes and prioritization algorithms in the study of variants of uncertain significance. Eur. J. Med. Genet. 2022, 65, 104468. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; de la Fuente, L.; Del Pozo-Valero, M.; Riveiro-Álvarez, R.; Trujillo-Tiebas, M.J.; Martín-Mérida, I.; Ávila-Fernández, A.; Iancu, I.-F.; Perea-Romero, I.; Núñez-Moreno, G.; et al. An evaluation of pipelines for DNA variant detection can guide a reanalysis protocol to increase the diagnostic ratio of genetic diseases. NPJ Genom. Med. 2021, 7, 7. [Google Scholar] [CrossRef]
- Riveiro-Alvarez, R.; Aguirre-Lamban, J.; Lopez-Martinez, M.A.; Trujillo-Tiebas, M.J.; Cantalapiedra, D.; Vallespin, E.; Avila-Fernandez, A.; Ramos, C.; Ayuso, C. Frequency of ABCA4 mutations in 278 Spanish controls: An insight into the prevalence of autosomal recessive Stargardt disease. Br. J. Ophthalmol. 2009, 93, 1359–1364. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durbin, R.M.; Altshuler, D.L.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Collins, F.S.; De La Vega, F.M.; Donnelly, P.; Egholm, M.; et al. A map of human genome variation from population-scale sequencing. Nature 2010, 467, 1061–1073. [Google Scholar]
- Glusman, G.; Caballero, J.; Mauldin, D.E.; Hood, L.; Roach, J.C. Kaviar: An accessible system for testing SNV novelty. Bioinformatics 2011, 27, 3216–3217. [Google Scholar] [CrossRef] [Green Version]
- Ng, P.C.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814. [Google Scholar] [CrossRef] [Green Version]
- Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013, 76, 7.20.1–7.20.41. [Google Scholar] [CrossRef] [Green Version]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Chun, S.; Fay, J.C. Identification of deleterious mutations within three human genomes. Genome Res. 2009, 19, 1553–1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagadeesh, K.A.; Wenger, A.M.; Berger, M.J.; Guturu, H.; Stenson, P.D.; Cooper, D.N.; Bernstein, J.A.; Bejerano, G. M-CAP eliminates a majority of variants of uncertain significance in clinical exomes at high sensitivity. Nat. Genet. 2016, 48, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Wei, P.; Jian, X.; Gibbs, R.; Boerwinkle, E.; Wang, K.; Liu, X. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 2015, 24, 2125–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reva, B.; Antipin, Y.; Sander, C. Determinants of protein function revealed by combinatorial entropy optimization. Genome Biol. 2007, 8, R232. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.M.; Rödelsperger, C.; Schuelke, M.; Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 2010, 7, 575–576. [Google Scholar] [CrossRef]
- Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 2012, 7, e46688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.A.; Edwards, K.J.; Day, I.N.M.; Gaunt, T.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat. 2013, 34, 57–65. [Google Scholar] [CrossRef]
- Jian, X.; Boerwinkle, E.; Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 2014, 42, 13534–13544. [Google Scholar] [CrossRef] [Green Version]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Hoover, J.; et al. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016, 44, D862–D868. [Google Scholar] [CrossRef] [Green Version]
- Pollard, K.S.; Hubisz, M.J.; Rosenbloom, K.R.; Siepel, A. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010, 20, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siepel, A.; Bejerano, G.; Pedersen, J.S.; Hinrichs, A.S.; Hou, M.; Rosenbloom, K.; Clawson, H.; Spieth, J.; Hillier, L.W.; Richards, S.; et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005, 15, 1034–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadista, J.; Oskolkov, N.; Hansson, O.; Groop, L. LoFtool: A gene intolerance score based on loss-of-function variants in 60 706 individuals. Bioinformatics 2017, 33, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Havrilla, J.M.; Pedersen, B.S.; Layer, R.M.; Quinlan, A.R. A map of constrained coding regions in the human genome. Nat. Genet. 2018, 51, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.T.; Lee, K.; Chung, W.K.; Gordon, A.S.; Herman, G.E.; Klein, T.E.; Stewart, D.R.; Amendola, L.M.; Adelman, K.; Bale, S.J.; et al. ACMG SF v3.0 list for reporting of secondary findings in clinical exome and genome sequencing: A policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2021, 23, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Quinodoz, M.; Royer-Bertrand, B.; Cisarova, K.; Di Gioia, S.A.; Superti-Furga, A.; Rivolta, C. DOMINO: Using Machine Learning to Predict Genes Associated with Dominant Disorders. Am. J. Hum. Genet. 2017, 101, 623–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamosh, A.; Scott, A.F.; Amberger, J.; Bocchini, C.; Valle, D.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2002, 30, 52–55. [Google Scholar] [CrossRef]
Gene | Gene Panel | Phenotype | Prioritized Variant (HGVSc, HGVSp, and ACMG Classification) | Other variants | Genotype | Diagnostic Status |
---|---|---|---|---|---|---|
CDH23 | IRD | RCD | NM_022124.6: c.6050–9G > A pathogenic | - | Monoallelic 0/1 | Partially solved |
MYO7A | IRD | Usher syndrome | NM_000260.4: c.1996C > T (p. Arg666Ter); pathogenic | NM_000260.4: c.3764del (p. Lys1255ArgfsTer8) (pathogenic) | Biallelic 0/1, 0/1 | Solved |
IFT88 | ONRD | RP | NM_001318491.2: c.538G > T (p. Val180Phe); pathogenic | - | Monoallelic 0/1 | With evidence |
KIAA2022 | NRD | MD | NM_001008537.3: c.4385del (p. Cys1462LeufsTer24); likely pathogenic | - | Monoallelic 0/1 | With evidence |
TTPA | IRD | RP | NM_000370.3: c.227_235del (p. Trp76Ter); likely pathogenic | - | Monoallelic 0/1 | With evidence |
TTPA | IRD | MD | NM_000370.3: c.227_235del (p. Trp76Ter); likely pathogenic | - | Monoallelic 0/1 | With evidence |
CDHR1 | IRD | RP | NM_033100.4: c.2410_2485del (p. Thr804ProfsTer12); likely pathogenic | - | Monoallelic 0/1 | Partially solved |
CDHR1 | IRD | RP | NM_033100.4: c.2410_2485del (p. Thr804ProfsTer12); likely pathogenic | NM_033100.4: c.476C > A (p. Ala159Glu) (VUS) | Biallelic 0/1, 0/1 | Partially solved |
Gene | HGVSc | HGVSp | Inheritance | log2(FC) | Varsome | Criteria | PS4 | Status |
---|---|---|---|---|---|---|---|---|
CACNA1F | NM_001256789.3: c.4009–3C>G | - | XL | 2.7 | 3 | PM2, BP4 | 4 | Reclassified |
CDH23 | NM_022124.5: c.4231G>A | p. Glu1411Lys | AR | 2.0 | 3 | PM2, PP3 | 4 | Reclassified |
CDHR1 | NM_001171971.3: c.1589C>G | p. Thr530Ser | AR | 2.6 | 3 | PM1, PM2, and BP1 | 4 | Reclassified |
COL11A1 | NM_080629.2: c.4838C>A | p. Thr1613Asn | AD | 1.6 | 3 | PM2, PP2 | 4 | Reclassified |
GDF6 | NM_001001557.4: c.125G>T | p. Gly42Val | AR/AD | 2.0 | 3 | PM1, PM2, PP5, and BP6 | 4 | Reclassified |
IMPG2 | NM_016247.4: c.1460A>T | p. His487Leu | AR/AD | 2.7 | 3 | PM2, BP4 | 4 | Reclassified |
MERTK | NM_006343.3: c.2435A>G | p. Tyr812Cys | AR | 2.0 | 3 | PM1, PM2, PP3, and BP6 | 4 | Reclassified |
NYX | NM_022567.2: c.505A>G | p. Asn169Asp | XL | 2.9 | 3 | PM2 | 3 | Not reclassified |
OFD1 | NM_003611.2: c.87T>G | p. Asp29Glu | XL | 2.7 | 3 | PM2, PP3, and BP1 | 4 | Reclassified |
RP1 | NM_006269.2: c.2497T>C | p. Phe833Leu | AR/AD | 1.7 | 3 | PM2, BP4 | 4 | Reclassified |
WFS1 | NM_001145853.1: c.1597C>T | p. Pro533Ser | AR/AD | 3.7 | 3; 4 | PM2, PP3 | 4 | Reclassified |
Gene | Deleterious | Benign | FDR | Gene Panel | Inheritance |
---|---|---|---|---|---|
MYO7A | 10 | 42 | 1.08 × 10−3 | IRD | Recessive |
DYNC2H1 | 9 | 43 | 9.81 × 10−4 | IRD | Recessive |
LAMA1 | 7 | 22 | 3.56 × 10−2 | IRD | Recessive |
HMCN1 | 6 | 43 | 2.75 × 10−2 | IRD | Dominant |
NEB | 12 | 59 | 4.55 × 10−3 | OERD | Recessive |
PAH | 11 | 12 | 1.32 × 10−2 | OERD | Recessive |
ALS2 | 8 | 11 | 1.87 × 10−2 | OERD | Recessive |
DNAH9 | 7 | 13 | 1.32 × 10−2 | OERD | Recessive |
HSPG2 | 6 | 44 | 1.87 × 10−2 | OERD | R/D |
DNAH5 | 6 | 43 | 1.87 × 10−2 | OERD | Recessive |
PLEC | 6 | 80 | 1.87 × 10−2 | OERD | Dominant |
ADAMTSL4 | 5 | 16 | 2.70 × 10−2 | OERD | Recessive |
NDUFV1 | 5 | 8 | 1.32 × 10−2 | OERD | Recessive |
COL4A3 | 5 | 15 | 1.87 × 10−2 | OERD | R/D |
OBSCN | 9 | 91 | 1.32 × 10−2 | NRD | Recessive |
CAPN3 | 7 | 7 | 1.28 × 10−2 | NRD | Recessive |
MYOM1 | 6 | 22 | 1.32 × 10−2 | NRD | Recessive |
ABCB11 | 6 | 7 | 1.87 × 10−2 | NRD | Recessive |
Gene | Gene Panel | Phenotype | Variant (HGVSc, HGVSp, ACMG Classification) | Genotype | Diagnostic Status |
---|---|---|---|---|---|
YNC2H1 | IRD | MD | NM_001080463.2: c.3793C>T (p. Arg1265Cys), VUS; NM_001080463.2: c.1468C>T (p. Arg490Cys), VUS | Biallelic 0/1, 0/1 | With evidence |
DYNC2H1 | IRD | MD | NM_001080463.2: c.988C>T p. Arg330Cys, pathogenic | Monoallelic 0/1 | Partially solved |
DYNC2H1 | IRD | MD | NM_001080463.2: c.7966C>T p. Arg2656Cys, likely pathogenic | Monoallelic 0/1 | Partially solved |
MYO7A | IRD | Usher syndrome | NM_000260.4: c.1996C>T (p. Arg666Ter), pathogenic; NM_000260.4: c.3764del (p. Lys1255ArgfsTer8), pathogenic | Biallelic 0/1,0/1 | Solved |
ADAMTSL4 | OERD | Lens luxation | NM_001288607.2: c.2594G>A (p. Ser865Asn), pathogenic; NM_001288607.2: c.767_786del (p. Gln256ProfsTer3), pathogenic | Biallelic 0/1,0/1 | Solved |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iancu, I.-F.; Perea-Romero, I.; Núñez-Moreno, G.; de la Fuente, L.; Romero, R.; Ávila-Fernandez, A.; Trujillo-Tiebas, M.J.; Riveiro-Álvarez, R.; Almoguera, B.; Martín-Mérida, I.; et al. Aggregated Genomic Data as Cohort-Specific Allelic Frequencies can Boost Variants and Genes Prioritization in Non-Solved Cases of Inherited Retinal Dystrophies. Int. J. Mol. Sci. 2022, 23, 8431. https://doi.org/10.3390/ijms23158431
Iancu I-F, Perea-Romero I, Núñez-Moreno G, de la Fuente L, Romero R, Ávila-Fernandez A, Trujillo-Tiebas MJ, Riveiro-Álvarez R, Almoguera B, Martín-Mérida I, et al. Aggregated Genomic Data as Cohort-Specific Allelic Frequencies can Boost Variants and Genes Prioritization in Non-Solved Cases of Inherited Retinal Dystrophies. International Journal of Molecular Sciences. 2022; 23(15):8431. https://doi.org/10.3390/ijms23158431
Chicago/Turabian StyleIancu, Ionut-Florin, Irene Perea-Romero, Gonzalo Núñez-Moreno, Lorena de la Fuente, Raquel Romero, Almudena Ávila-Fernandez, María José Trujillo-Tiebas, Rosa Riveiro-Álvarez, Berta Almoguera, Inmaculada Martín-Mérida, and et al. 2022. "Aggregated Genomic Data as Cohort-Specific Allelic Frequencies can Boost Variants and Genes Prioritization in Non-Solved Cases of Inherited Retinal Dystrophies" International Journal of Molecular Sciences 23, no. 15: 8431. https://doi.org/10.3390/ijms23158431
APA StyleIancu, I. -F., Perea-Romero, I., Núñez-Moreno, G., de la Fuente, L., Romero, R., Ávila-Fernandez, A., Trujillo-Tiebas, M. J., Riveiro-Álvarez, R., Almoguera, B., Martín-Mérida, I., Del Pozo-Valero, M., Damián-Verde, A., Cortón, M., Ayuso, C., & Minguez, P. (2022). Aggregated Genomic Data as Cohort-Specific Allelic Frequencies can Boost Variants and Genes Prioritization in Non-Solved Cases of Inherited Retinal Dystrophies. International Journal of Molecular Sciences, 23(15), 8431. https://doi.org/10.3390/ijms23158431