Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review
Abstract
:1. Introduction
1.1. Postmenopausal Osteoporosis
1.2. Microgravity-Induced Bone Loss
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Search
2.4. Study Selection
2.5. Data Collection Process
2.6. Data Items
2.7. Risk of Bias in Individual Studies
2.8. Summary Measures
2.9. Risk of Bias across Studies
3. Results
3.1. Study Selection
3.2. Study Characteristics and Results of Individual Studies
3.3. Latest Clinical Trials
4. Discussion
4.1. Summary of Evidence
4.1.1. Mechanisms of Microgravity-Related Changes in Bone Density
4.1.2. Possible Treatment Options for Microgravity-Induced Bone Loss
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AACE | American Association of Clinical Endocrinologists |
ALF | Alfacalcidol |
ALP | Alkaline phosphatase |
AO | Antioxidants |
ARED | Advanced resistive exercise device |
BP | Bisphosphonate |
BF | Bone formation |
BL | Bone loss |
BR/BRS | Bone resorption |
BMD | Bone mineral density |
BT | Bone turnover |
bMSC | Bone mesenchymal stem cell |
BV/TV | Bone volume fraction |
CM | Countermeasure |
CMS | Cyclic mechanical stretch treated bone mesenchymal stem cell-derived exosomes |
DM | Differentiation marker |
HLU | Hindlimb unloading |
IL-6 mAb | Interleukin-6 monoclonal antibody |
ISS | International Space Station |
MP | Menopausal |
OB | Osteoblast |
OC | Osteoclast |
OP | Osteoporosis |
PC-I | Pan-caspase inhibitor |
PI | Proteasome inhibitor |
PMP | Postmenopausal |
PTH | Parathyroid hormone |
RANKL | Receptor activator of nuclear factor κβ ligand |
RHLI | Right hindlimb immobilization |
R-irisin | Recombinant irisin |
SCHN | Strontium-containing hydroxyapatite nanoparticles |
SERM | Selective estrogen receptor modulator |
S-µg | Simulated microgravity |
uCaV | Urinary calcium excretion |
uNTx | Urinary N-telopeptide |
Wnt | Wingless-related integration site |
ZOL | Zoledronic acid |
µg | Microgravity |
References
- Morphew, M.E. Psychological and human factors in long duration spaceflight. McGill J. Med. 2001, 6, 74–80. [Google Scholar] [CrossRef]
- Furukawa, S.; Nagamatsu, A.; Nenoi, M.; Fujimori, A.; Kakinuma, S.; Katsube, T.; Wang, B.; Tsuruoka, C.; Shirai, T.; Nakamura, A.J.; et al. Space Radiation Biology for “Living in Space”. Biomed. Res. Int. 2020, 2020, 4703286. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Frishman, W.H. Effects of Spaceflight on Cardiovascular Physiology and Health. Cardiol Rev. 2019, 27, 122–126. [Google Scholar] [CrossRef]
- Hughes-Fulford, M. To infinity … and beyond! Human spaceflight and life science. FASEB J. 2011, 25, 2858–2864. [Google Scholar] [CrossRef] [PubMed]
- Juhl, O.J.T.; Buettmann, E.G.; Friedman, M.A.; DeNapoli, R.C.; Hoppock, G.A.; Donahue, H.J. Update on the effects of microgravity on the musculoskeletal system. NPJ Microgravity 2021, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, A.; Schneider, V.; Shackelford, L.; West, S.; Oganov, V.; Bakulin, A.; Voronin, L. Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet Neuronal Interact 2000, 1, 157–160. [Google Scholar] [PubMed]
- Vico, L.; van Rietbergen, B.; Vilayphiou, N.; Linossier, M.T.; Locrelle, H.; Normand, M.; Zouch, M.; Gerbaix, M.; Bonnet, N.; Novikov, V.; et al. Cortical and Trabecular Bone Microstructure Did Not Recover at Weight-Bearing Skeletal Sites and Progressively Deteriorated at Non-Weight-Bearing Sites During the Year Following International Space Station Missions. J. Bone Mineral. Res. 2017, 32, 2010–2021. [Google Scholar] [CrossRef] [PubMed]
- Glaser, D.L.; Kaplan, F.S. Osteoporosis. Definition and clinical presentation. Spine 1997, 22, 12S–16S. [Google Scholar] [CrossRef]
- Siris, E.S.; Adler, R.; Bilezikian, J.; Bolognese, M.; Dawson-Hughes, B.; Favus, M.J.; Harris, S.T.; Jan de Beur, S.M.; Khosla, S.; Lane, N.E.; et al. The clinical diagnosis of osteoporosis: A position statement from the National Bone Health Alliance Working Group. Osteoporos. Int. 2014, 25, 1439–1443. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2019, 30, 3–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Recker, R.R.; Davies, K.M.; Hinders, S.M.; Heaney, R.P.; Stegman, M.R.; Kimmel, D.B. Bone gain in young adult women. Jama 1992, 268, 2403–2408. [Google Scholar] [CrossRef] [PubMed]
- Rizzoli, R.; Bianchi, M.L.; Garabédian, M.; McKay, H.A.; Moreno, L.A. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 2010, 46, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Hopper, J.L.; Green, R.M.; Nowson, C.A.; Young, D.; Sherwin, A.J.; Kaymakci, B.; Larkins, R.G.; Wark, J.D. Genetic, common environment, and individual specific components of variance for bone mineral density in 10- to 26-year-old females: A twin study. Am. J. Epidemiol. 1998, 147, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armas, L.A.; Recker, R.R. Pathophysiology of osteoporosis: New mechanistic insights. Endocrinol. Metab. Clin. N. Am. 2012, 41, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P.; Recker, R.R.; Saville, P.D. Menopausal changes in calcium balance performance. J. Lab. Clin. Med. 1978, 92, 953–963. [Google Scholar] [CrossRef]
- Camacho, P.M.; Petak, S.M.; Binkley, N.; Diab, D.L.; Eldeiry, L.S.; Farooki, A.; Harris, S.T.; Hurley, D.L.; Kelly, J.; Lewiecki, E.M.; et al. American Association of Clinical Endocrinologists/American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis 2020 Update. Endocr. Pract. 2020, 26, 1–46. [Google Scholar] [CrossRef]
- Zwart, S.R.; Rice, B.L.; Dlouhy, H.; Shackelford, L.C.; Heer, M.; Koslovsky, M.D.; Smith, S.M. Dietary acid load and bone turnover during long-duration spaceflight and bed rest. Am. J. Clin. Nutr. 2018, 107, 834–844. [Google Scholar] [CrossRef]
- Han, Y.; An, M.; Yang, L.; Li, L.; Rao, S.; Cheng, Y. Effect of Acid or Base Interventions on Bone Health: A Systematic Review, Meta-Analysis, and Meta-Regression. Adv. Nutr. 2021, 12, 1540–1557. [Google Scholar] [CrossRef]
- Brent, M.B.; Brüel, A.; Thomsen, J.S. Anti-sclerostin antibodies and abaloparatide have additive effects when used as a countermeasure against disuse osteopenia in female rats. Bone 2022, 160, 116417. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef] [Green Version]
- Rauner, M.; Taipaleenmäki, H.; Tsourdi, E.; Winter, E.M. Osteoporosis Treatment with Anti-Sclerostin Antibodies-Mechanisms of Action and Clinical Application. J. Clin. Med. 2021, 10, 787. [Google Scholar] [CrossRef] [PubMed]
- Man, J.; Graham, T.; Squires-Donelly, G.; Laslett, A.L. The effects of microgravity on bone structure and function. NPJ Microgravity 2022, 8, 9. [Google Scholar] [CrossRef]
- Smith, S.M.; McCoy, T.; Gazda, D.; Morgan, J.L.; Heer, M.; Zwart, S.R. Space flight calcium: Implications for astronaut health, spacecraft operations, and Earth. Nutrients 2012, 4, 2047–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.M.; Wastney, M.E.; Morukov, B.V.; Larina, I.M.; Nyquist, L.E.; Abrams, S.A.; Taran, E.N.; Shih, C.Y.; Nillen, J.L.; Davis-Street, J.E.; et al. Calcium metabolism before, during, and after a 3-mo spaceflight: Kinetic and biochemical changes. Am. J. Physiol. 1999, 277, R1–R10. [Google Scholar] [CrossRef] [PubMed]
- Caillot-Augusseau, A.; Vico, L.; Heer, M.; Voroviev, D.; Souberbielle, J.C.; Zitterman, A.; Alexandre, C.; Lafage-Proust, M.H. Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: Observations in two cosmonauts. Clin. Chem. 2000, 46, 1136–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caillot-Augusseau, A.; Lafage-Proust, M.H.; Soler, C.; Pernod, J.; Dubois, F.; Alexandre, C. Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin. Chem. 1998, 44, 578–585. [Google Scholar] [CrossRef]
- Smith, S.M.; Wastney, M.E.; O’Brien, K.O.; Morukov, B.V.; Larina, I.M.; Abrams, S.A.; Davis-Street, J.E.; Oganov, V.; Shackelford, L.C. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. J. Bone Miner. Res. 2005, 20, 208–218. [Google Scholar] [CrossRef] [Green Version]
- Grimm, D.; Grosse, J.; Wehland, M.; Mann, V.; Reseland, J.E.; Sundaresan, A.; Corydon, T.J. The impact of microgravity on bone in humans. Bone 2016, 87, 44–56. [Google Scholar] [CrossRef]
- Bucaro, M.A.; Fertala, J.; Adams, C.S.; Steinbeck, M.; Ayyaswamy, P.; Mukundakrishnan, K.; Shapiro, I.M.; Risbud, M.V. Bone cell survival in microgravity: Evidence that modeled microgravity increases osteoblast sensitivity to apoptogens. Ann. N. Y. Acad. Sci. 2004, 1027, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Bucaro, M.A.; Zahm, A.M.; Risbud, M.V.; Ayyaswamy, P.S.; Mukundakrishnan, K.; Steinbeck, M.J.; Shapiro, I.M.; Adams, C.S. The effect of simulated microgravity on osteoblasts is independent of the induction of apoptosis. J. Cell. Biochem. 2007, 102, 483–495. [Google Scholar] [CrossRef] [PubMed]
- Dufour, C.; Holy, X.; Marie, P.J. Skeletal unloading induces osteoblast apoptosis and targets α5β1-PI3K-Bcl-2 signaling in rat bone. Exp. Cell Res. 2007, 313, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Carmeliet, G.; Vico, L.; Bouillon, R. Space flight: A challenge for normal bone homeostasis. Crit. Rev. Eukaryot. Gene Expr. 2001, 11, 131–144. [Google Scholar] [CrossRef] [PubMed]
- DiFrancesco, J.M.; Olson, J.M. The economics of microgravity research. NPJ Microgravity 2015, 1, 15001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mars, K.; Bollweg, L.; Norsk, P. About Human Health Countermeasures (HHC). Available online: http://www.nasa.gov/hrp/elements/hhc/about (accessed on 5 April 2022).
- Orwoll, E.S.; Adler, R.A.; Amin, S.; Binkley, N.; Lewiecki, E.M.; Petak, S.M.; Shapses, S.A.; Sinaki, M.; Watts, N.B.; Sibonga, J.D. Skeletal health in long-duration astronauts: Nature, assessment, and management recommendations from the NASA Bone Summit. J. Bone Miner. Res. 2013, 28, 1243–1255. [Google Scholar] [CrossRef]
- Trappe, S.; Costill, D.; Gallagher, P.; Creer, A.; Peters, J.R.; Evans, H.; Riley, D.A.; Fitts, R.H. Exercise in space: Human skeletal muscle after 6 months aboard the International Space Station. J. Appl. Physiol. 2009, 106, 1159–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loehr, J.A.; Lee, S.M.; English, K.L.; Sibonga, J.; Smith, S.M.; Spiering, B.A.; Hagan, R.D. Musculoskeletal adaptations to training with the advanced resistive exercise device. Med. Sci. Sports Exerc. 2011, 43, 146–156. [Google Scholar] [CrossRef]
- Furukawa, S.; Chatani, M.; Higashitani, A.; Higashibata, A.; Kawano, F.; Nikawa, T.; Numaga-Tomita, T.; Ogura, T.; Sato, F.; Sehara-Fujisawa, A.; et al. Findings from recent studies by the Japan Aerospace Exploration Agency examining musculoskeletal atrophy in space and on Earth. NPJ Microgravity 2021, 7, 18. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Zhu, S.; Tremblay, M.S.; Payette, J.N.; Wang, J.; Bouchez, L.C.; Meeusen, S.; Althage, A.; Cho, C.Y.; Wu, X.; et al. A stem cell-based approach to cartilage repair. Science 2012, 336, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W65–W94. [Google Scholar] [CrossRef] [Green Version]
- Aslam, S.; Emmanuel, P. Formulating a researchable question: A critical step for facilitating good clinical research. Indian J. Sex. Transm. Dis. AIDS 2010, 31, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Bilancio, G.; Cavallo, P.; Lombardi, C.; Guarino, E.; Cozza, V.; Giordano, F.; Cirillo, M. Urea and minerals monitoring in space missions by spot samples of saliva and urine. Aerosp. Med. Hum. Perform. 2019, 90, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, K.; Allaire, B.; Anderson, D.E.; Lee, D.; Keaveny, T.M.; Bouxsein, M.L. Effects of Long-Duration Spaceflight on Vertebral Strength and Risk of Spine Fracture. J. Bone Mineral. Res. 2020, 35, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Sibonga, J.D.; Spector, E.R.; Keyak, J.H.; Zwart, S.R.; Smith, S.M.; Lang, T.F. Use of Quantitative Computed Tomography to Assess for Clinically-relevant Skeletal Effects of Prolonged Spaceflight on Astronaut Hips. J. Clin. Densitom. 2020, 23, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Berg-Johansen, B.; Liebenberg, E.C.; Li, A.; Macias, B.R.; Hargens, A.R.; Lotz, J.C. Spaceflight-induced bone loss alters failure mode and reduces bending strength in murine spinal segments. J. Orthop. Res. 2016, 34, 48–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerbaix, M.; Gnyubkin, V.; Farlay, D.; Olivier, C.; Ammann, P.; Courbon, G.; Laroche, N.; Genthial, R.; Follet, H.; Peyrin, F.; et al. One-month spaceflight compromises the bone microstructure, tissue-level mechanical properties, osteocyte survival and lacunae volume in mature mice skeletons. Sci. Rep. 2017, 7, 2659. [Google Scholar] [CrossRef] [PubMed]
- Chatani, M.; Morimoto, H.; Takeyama, K.; Mantoku, A.; Tanigawa, N.; Kubota, K.; Suzuki, H.; Uchida, S.; Tanigaki, F.; Shirakawa, M.; et al. Acute transcriptional up-regulation specific to osteoblasts/osteoclasts in medaka fish immediately after exposure to microgravity. Sci. Rep. 2016, 6, 39545. [Google Scholar] [CrossRef] [Green Version]
- von Kroge, S.; Wölfel, E.M.; Buravkova, L.B.; Atiakshin, D.A.; Markina, E.A.; Schinke, T.; Rolvien, T.; Busse, B.; Jähn-Rickert, K. Bone loss recovery in mice following microgravity with concurrent bone-compartment-specific osteocyte characteristics. Eur. Cell Mater. 2021, 42, 220–231. [Google Scholar] [CrossRef]
- Bonnefoy, J.; Baselet, B.; Moser, D.; Ghislin, S.; Miranda, S.; Riant, E.; Vermeesen, R.; Keiler, A.M.; Baatout, S.; Choukér, A.; et al. B-Cell Homeostasis Is Maintained During Two Months of Head-Down Tilt Bed Rest With or Without Antioxidant Supplementation. Front. Immunol. 2022, 13, 830662. [Google Scholar] [CrossRef] [PubMed]
- Bemben, D.A.; Baker, B.S.; Buchanan, S.R.; Ade, C.J. Circulating MiR-21 expression is upregulated after 30° days of head-down tilt bed rest. Osteoporos. Int. 2021, 32, 1369–1378. [Google Scholar] [CrossRef]
- Buehlmeier, J.; Frings-Meuthen, P.; Mohorko, N.; Lau, P.; Mazzucco, S.; Ferretti, J.L.; Biolo, G.; Pisot, R.; Simunic, B.; Rittweger, J. Markers of bone metabolism during 14 days of bed rest in young and older men. J. Musculoskelet Neuronal Interact. 2017, 17, 399–408. [Google Scholar]
- Cabahug-Zuckerman, P.; Frikha-Benayed, D.; Majeska, R.J.; Tuthill, A.; Yakar, S.; Judex, S.; Schaffler, M.B. Osteocyte Apoptosis Caused by Hindlimb Unloading is Required to Trigger Osteocyte RANKL Production and Subsequent Resorption of Cortical and Trabecular Bone in Mice Femurs. J. Bone Miner. Res. 2016, 31, 1356–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, P.; Akel, N.; Jamshidi-Parsian, A.; Gaddy, D.; Griffin, R.J.; Yadlapalli, J.S.K.; Dobretsov, M. Degenerative tissue responses to space-like radiation doses in a rodent model of simulated microgravity. Ann. Clin. Lab. Sci. 2016, 46, 190–197. [Google Scholar] [PubMed]
- Chen, Z.; Zhang, Y.; Zhao, F.; Yin, C.; Yang, C.; Huai, Y.; Liang, S.; Liu, S.; Xu, X.; Wu, Z.; et al. miR-138–5p negatively regulates osteoblast differentiation through inhibiting β-catenin under simulated microgravity in MC3T3-E1 cells. Acta Astronaut. 2021, 182, 240–250. [Google Scholar] [CrossRef]
- Cazzaniga, A.; Maier, J.A.M.; Castiglioni, S. Impact of simulated microgravity on human bone stem cells: New hints for space medicine. Biochem. Biophys. Res. Commun. 2016, 473, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Luo, Q.; Lin, C.; Kuang, D.; Song, G. Simulated microgravity inhibits osteogenic differentiation of mesenchymal stem cells via depolymerizing F-actin to impede TAZ nuclear translocation. Sci. Rep. 2016, 6, 30322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Li, G.; Wang, K.; Wang, Y.; Dong, J.; Wang, H.; Xu, L.; Shi, F.; Cao, X.; Hu, Z.; et al. MiR-30 family members inhibit osteoblast differentiation by suppressing Runx2 under unloading conditions in MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 2020, 522, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Colucci, S.; Colaianni, G.; Brunetti, G.; Ferranti, F.; Mascetti, G.; Mori, G.; Grano, M. Irisin prevents microgravity-induced impairment of osteoblast differentiation in vitro during the space flight CRS-14 mission. FASEB J. 2020, 34, 10096–10106. [Google Scholar] [CrossRef] [PubMed]
- Cristofaro, F.; Pani, G.; Pascucci, B.; Mariani, A.; Balsamo, M.; Donati, A.; Mascetti, G.; Rea, G.; Rizzo, A.M.; Visai, L. The NATO project: Nanoparticle-based countermeasures for microgravity-induced osteoporosis. Sci. Rep. 2019, 9, 17141. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, P.R.; Rice, A.J.; Novotny, S.C.; Genc, K.O.; Englehaupt, R.K.; Owings, T.M.; Comstock, B.; Cardoso, T.; Ilaslan, H.; Smith, S.M.; et al. Replacement of daily load attenuates but does not prevent changes to the musculoskeletal system during bed rest. Bone Rep. 2016, 5, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Belavý, D.L.; Baecker, N.; Armbrecht, G.; Beller, G.; Buehlmeier, J.; Frings-Meuthen, P.; Rittweger, J.; Roth, H.J.; Heer, M.; Felsenberg, D. Serum sclerostin and DKK1 in relation to exercise against bone loss in experimental bed rest. J. Bone Mineral. Metab. 2016, 34, 354–365. [Google Scholar] [CrossRef]
- Gao, R.; Duff, W.; Chizen, D.; Zello, G.A.; Chilibeck, P.D. The Effect of a Low Glycemic Index Pulse-Based Diet on Insulin Sensitivity, Insulin Resistance, Bone Resorption and Cardiovascular Risk Factors during Bed Rest. Nutrients 2019, 11, 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austermann, K.; Baecker, N.; Zwart, S.R.; Fimmers, R.; Frippiat, J.P.; Stehle, P.; Smith, S.M.; Heer, M. Antioxidant Supplementation Does Not Affect Bone Turnover Markers During 60 Days of 6° Head-Down Tilt Bed Rest: Results from an Exploratory Randomized Controlled Trial. J. Nutr. 2021, 151, 1527–1538. [Google Scholar] [CrossRef]
- Colaianni, G.; Mongelli, T.; Cuscito, C.; Pignataro, P.; Lippo, L.; Spiro, G.; Notarnicola, A.; Severi, I.; Passeri, G.; Mori, G.; et al. Irisin prevents and restores bone loss and muscle atrophy in hind-limb suspended mice. Sci. Rep. 2017, 7, 2811. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Cui, Y.; Yang, X.; Wang, X.; Tian, G.; Peng, J.; Wu, B.; Tang, L.; Cui, C.P.; Zhang, L. Anti-RANKL monoclonal antibody and bortezomib prevent mechanical unloading-induced bone loss. J. Bone Mineral. Metab. 2021, 39, 974–983. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Wei, S.P.; Zhang, X.C.; Li, H.; Li, Y.; Li, R.X.; Li, K.; Zhang, X.Z. Effects of constrained dynamic loading, CKIP-1 gene knockout and combination stimulations on bone loss caused by mechanical unloading. Mol. Med. Rep. 2018, 18, 2506–2514. [Google Scholar] [CrossRef] [PubMed]
- DeLong, A.; Friedman, M.A.; Tucker, S.M.; Krause, A.R.; Kunselman, A.; Donahue, H.J.; Lewis, G.S. Protective Effects of Controlled Mechanical Loading of Bone in C57BL6/J Mice Subject to Disuse. JBMR Plus 2020, 4, e10322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Zhou, S.; Lv, H.; Wei, M.; Fang, Y.; Shang, P. Static magnetic field of 0.2–0.4 T promotes the recovery of hindlimb unloading-induced bone loss in mice. Int. J. Radiat. Biol. 2021, 97, 746–754. [Google Scholar] [CrossRef]
- Xu, M.; Du, J.; Cui, J.; Zhang, S.; Zhang, S.; Deng, M.; Zhang, W.; Li, H.; Yu, Z. Cell-Free Fat Extract Prevents Tail Suspension–Induced Bone Loss by Inhibiting Osteocyte Apoptosis. Front. Bioeng. Biotechnol. 2022, 10, 818572. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Zuo, B.; Tao, B.; Wang, C.; Li, Y.; Peng, J.; Shen, C.; Cui, Y.; Zhu, J.; Chen, X. Exosomes derived from cyclic mechanical stretch-exposed bone marrow mesenchymal stem cells inhibit RANKL-induced osteoclastogenesis through the NF-κB signaling pathway. Ann. Transl. Med. 2021, 9, 798. [Google Scholar] [CrossRef]
- Wakabayashi, H.; Miyamura, G.; Nagao, N.; Kato, S.; Naito, Y.; Sudo, A. Functional Block of Interleukin-6 Reduces a Bone Pain Marker but Not Bone Loss in Hindlimb-Unloaded Mice. Int. J. Mol. Sci. 2020, 21, 3521. [Google Scholar] [CrossRef] [PubMed]
- Diao, Y.; Chen, B.; Wei, L.; Wang, Z. Polyphenols (S3) Isolated from Cone Scales of Pinus koraiensis Alleviate Decreased Bone Formation in Rat under Simulated Microgravity. Sci. Rep. 2018, 8, 12719. [Google Scholar] [CrossRef]
- He, B.; Yin, X.; Hao, D.; Zhang, X.; Zhang, Z.; Zhang, K.; Yang, X. Blockade of IL-6 alleviates bone loss induced by modeled microgravity in mice. Can. J. Physiol. Pharmacol. 2020, 98, 678–683. [Google Scholar] [CrossRef]
- Khajuria, D.K.; Disha, C.; Razdan, R.; Mahapatra, D.R. Additive effect of zoledronic acid and alfacalcidol in the treatment of disuse osteoporosis in rats. Rev. Bras. Reumatol. 2015, 55, 240–250. [Google Scholar] [CrossRef] [Green Version]
- Braveboy-Wagner, J.; Sharoni, Y.; Lelkes, P.I. Nutraceuticals synergistically promote osteogenesis in cultured 7F2 osteoblasts and mitigate inhibition of differentiation and maturation in simulated microgravity. Int. J. Mol. Sci. 2022, 23, 136. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, Y.; Zhao, F.; Yin, C.; Yang, C.; Wang, X.; Wu, Z.; Liang, S.; Li, D.; Lin, X.; et al. Recombinant irisin prevents the reduction of osteoblast differentiation induced by stimulated microgravity through increasing β-catenin expression. Int. J. Mol. Sci. 2020, 21, 1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ethiraj, P.; Ottinger, A.M.; Singh, T.; Singh, A.; Haire, K.M.; Reddy, S.V. Proteasome inhibition suppress microgravity elevated RANK signaling during osteoclast differentiation. Cytokine 2020, 125, 154821. [Google Scholar] [CrossRef] [PubMed]
- Sahana, H.; Khajuria, D.K.; Razdan, R.; Mahapatra, D.R.; Bhat, M.R.; Suresh, S.; Rao, R.R.; Mariappan, L. Improvement in bone properties by using risedronate adsorbed hydroxyapatite novel nanoparticle based formulation in a rat model of osteoporosis. J. Biomed. Nanotechnol. 2013, 9, 193–201. [Google Scholar] [CrossRef]
- Khajuria, D.K.; Razdan, R.; Mahapatra, D.R. Development, in vitro and in vivo characterization of zoledronic acid functionalized hydroxyapatite nanoparticle based formulation for treatment of osteoporosis in animal model. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2015, 66, 173–183. [Google Scholar] [CrossRef]
- Khajuria, D.K.; Disha, C.; Vasireddi, R.; Razdan, R.; Mahapatra, D.R. Risedronate/zinc-hydroxyapatite based nanomedicine for osteoporosis. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 63, 78–87. [Google Scholar] [CrossRef]
- Khajuria, D.K.; Vasireddi, R.; Trebbin, M.; Karasik, D.; Razdan, R. Novel therapeutic intervention for osteoporosis prepared with strontium hydroxyapatite and zoledronic acid: In vitro and pharmacodynamic evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 71, 698–708. [Google Scholar] [CrossRef]
- Jilka, R.L. The relevance of mouse models for investigating age-related bone loss in humans. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 1209–1217. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, J.S.; Brockwell, S.E.; Mehta, V.; Greendale, G.A.; Sowers, M.R.; Ettinger, B.; Lo, J.C.; Johnston, J.M.; Cauley, J.A.; Danielson, M.E.; et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J. Clin. Endocrinol. Metab. 2008, 93, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, J.R.; Ebeling, P.R.; Hopper, J.L.; Barrett-Connor, E.; Dennerstein, L.; Dudley, E.C.; Burger, H.G.; Wark, J.D. A prospective study of bone loss in menopausal Australian-born women. Osteoporos. Int. 1998, 8, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Keshawarz, N.M.; Recker, R.R. Expansion of the medullary cavity at the expense of cortex in postmenopausal osteoporosis. Metab. Bone Dis. Relat. Res. 1984, 5, 223–228. [Google Scholar] [CrossRef]
- Akesson, K.; Ljunghall, S.; Jonsson, B.; Sernbo, I.; Johnell, O.; Gärdsell, P.; Obrant, K.J. Assessment of biochemical markers of bone metabolism in relation to the occurrence of fracture: A retrospective and prospective population-based study of women. J. Bone Miner. Res. 1995, 10, 1823–1829. [Google Scholar] [CrossRef]
- Garnero, P.; Hausherr, E.; Chapuy, M.C.; Marcelli, C.; Grandjean, H.; Muller, C.; Cormier, C.; Bréart, G.; Meunier, P.J.; Delmas, P.D. Markers of bone resorption predict hip fracture in elderly women: The EPIDOS Prospective Study. J. Bone Miner. Res. 1996, 11, 1531–1538. [Google Scholar] [CrossRef]
- Garnero, P.; Shih, W.J.; Gineyts, E.; Karpf, D.B.; Delmas, P.D. Comparison of new biochemical markers of bone turnover in late postmenopausal osteoporotic women in response to alendronate treatment. J. Clin. Endocrinol. Metab. 1994, 79, 1693–1700. [Google Scholar] [CrossRef] [PubMed]
- Delmas, P.D.; Eastell, R.; Garnero, P.; Seibel, M.J.; Stepan, J. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos. Int. 2000, 11 (Suppl. S6), S2–S17. [Google Scholar] [CrossRef] [PubMed]
- Fabre, S.; Funck-Brentano, T.; Cohen-Solal, M. Anti-Sclerostin Antibodies in Osteoporosis and Other Bone Diseases. J. Clin. Med. 2020, 9, 3439. [Google Scholar] [CrossRef]
- Chan, C.Y.; Subramaniam, S.; Mohamed, N.; Muhammad, N.; Ramli, F.F.; Ima-Nirwana, S.; Chin, K.Y. Circulating Biomarkers Related to Osteocyte and Calcium Homeostasis Between Postmenopausal Women with and without Osteoporosis. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 2273–2280. [Google Scholar] [CrossRef]
- Xu, X.J.; Shen, L.; Yang, Y.P.; Lu, F.R.; Zhu, R.; Shuai, B.; Li, C.G.; Wu, M.X. Serum sclerostin levels associated with lumbar spine bone mineral density and bone turnover markers in patients with postmenopausal osteoporosis. Chin. Med. J. 2013, 126, 2480–2484. [Google Scholar]
- Wang, Y.; Song, W.; Jing, S.; Yu, J. Effect of estrogen deficiency on the proliferation and osteogenic differentiation potential of mandibular bone marrow stromal cells. Zhonghua Kou Qiang Yi Xue Za Zhi 2014, 49, 619–624. [Google Scholar]
- Schiavi, J.; Fodera, D.M.; Brennan, M.A.; McNamara, L.M. Estrogen depletion alters osteogenic differentiation and matrix production by osteoblasts in vitro. Exp. Cell Res. 2021, 408, 112814. [Google Scholar] [CrossRef]
- Stolzenberg, N.; Belavý, D.L.; Beller, G.; Armbrecht, G.; Semler, J.; Felsenberg, D. Bone strength and density via pQCT in post-menopausal osteopenic women after 9 months resistive exercise with whole body vibration or proprioceptive exercise. J. Musculoskelet Neuronal Interact. 2013, 13, 66–76. [Google Scholar]
- Kerr, D.; Morton, A.; Dick, I.; Prince, R. Exercise effects on bone mass in postmenopausal women are site-specific and load-dependent. J. Bone Miner. Res. 1996, 11, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.E.; Fisher, E.C.; Dilmanian, F.A.; Dallal, G.E.; Evans, W.J. A 1-y walking program and increased dietary calcium in postmenopausal women: Effects on bone. Am. J. Clin. Nutr. 1991, 53, 1304–1311. [Google Scholar] [CrossRef]
- Bloomfield, S.A.; Williams, N.I.; Lamb, D.R.; Jackson, R.D. Non-weightbearing exercise may increase lumbar spine bone mineral density in healthy postmenopausal women. Am. J. Phys. Med. Rehabil. 1993, 72, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Sanad, Z.; Ellakwa, H.; Desouky, B. Comparison of alendronate and raloxifene in postmenopausal women with osteoporosis. Climacteric 2011, 14, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Matsumoto, T.; Sugimoto, T.; Hosoi, T.; Miki, T.; Gorai, I.; Yoshikawa, H.; Tanaka, Y.; Tanaka, S.; Sone, T.; et al. Clinical Trials Express: Fracture risk reduction with denosumab in Japanese postmenopausal women and men with osteoporosis: Denosumab fracture intervention randomized placebo controlled trial (DIRECT). J. Clin. Endocrinol. Metab. 2014, 99, 2599–2607. [Google Scholar] [CrossRef] [Green Version]
- Kendler, D.L.; Palacios, S.; Cox, D.A.; Stock, J.; Alam, J.; Dowsett, S.A.; Zanchetta, J. Arzoxifene versus raloxifene: Effect on bone and safety parameters in postmenopausal women with osteoporosis. Osteoporos. Int. 2012, 23, 1091–1101. [Google Scholar] [CrossRef]
- Bone, H.G.; Wagman, R.B.; Brandi, M.L.; Brown, J.P.; Chapurlat, R.; Cummings, S.R.; Czerwiński, E.; Fahrleitner-Pammer, A.; Kendler, D.L.; Lippuner, K.; et al. 10 years of denosumab treatment in postmenopausal women with osteoporosis: Results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017, 5, 513–523. [Google Scholar] [CrossRef]
- Tsai, J.N.; Uihlein, A.V.; Lee, H.; Kumbhani, R.; Siwila-Sackman, E.; McKay, E.A.; Burnett-Bowie, S.A.; Neer, R.M.; Leder, B.Z. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: The DATA study randomised trial. Lancet 2013, 382, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Gossiel, F.; Scott, J.R.; Paggiosi, M.A.; Naylor, K.E.; McCloskey, E.V.; Peel, N.F.A.; Walsh, J.S.; Eastell, R. Effect of Teriparatide Treatment on Circulating Periostin and Its Relationship to Regulators of Bone Formation and BMD in Postmenopausal Women With Osteoporosis. J. Clin. Endocrinol. Metab. 2018, 103, 1302–1309. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.R.; Burr, D.B. Bisphosphonate effects on bone turnover, microdamage, and mechanical properties: What we think we know and what we know that we don’t know. Bone 2011, 49, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Qaisi, M.; Hargett, J.; Loeb, M.; Brown, J.; Caloss, R. Denosumab Related Osteonecrosis of the Jaw with Spontaneous Necrosis of the Soft Palate: Report of a Life Threatening Case. Case Rep. Dent. 2016, 2016, 5070187. [Google Scholar] [CrossRef]
- Diz, P.; López-Cedrún, J.L.; Arenaz, J.; Scully, C. Denosumab-related osteonecrosis of the jaw. J. Am. Dent. Assoc. 2012, 143, 981–984. [Google Scholar] [CrossRef] [PubMed]
- Hamadeh, I.S.; Ngwa, B.A.; Gong, Y. Drug induced osteonecrosis of the jaw. Cancer Treat. Rev. 2015, 41, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Komori, T. Animal models for osteoporosis. Eur. J. Pharmacol. 2015, 759, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Srinivasan, V.; Tao, J.; Sun, W.; Lin, X.; Wu, T.; Boyce, B.F.; Ebetino, F.H.; Boeckman, R.K., Jr.; et al. Targeting Bortezomib to Bone Increases Its Bone Anabolic Activity and Reduces Systemic Adverse Effects in Mice. J. Bone Miner. Res. 2020, 35, 343–356. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, M.O.; Kim, H.J.; Neupane, S.; Kim, H.J.; Lee, J.H.; Kim, H.H.; Kim, J.Y.; Lee, Y. Bortezomib prevents ovariectomy-induced osteoporosis in mice by inhibiting osteoclast differentiation. J. Bone Miner. Metab. 2018, 36, 537–546. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, K.S.; Kim, M.J.; Kim, H.S.; Lee, K.Y.; Kang, K.W. Auranofin Inhibits RANKL-Induced Osteoclastogenesis by Suppressing Inhibitors of κB Kinase and Inflammasome-Mediated Interleukin-1β Secretion. Oxid. Med. Cell Longev. 2019, 2019, 3503912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, B.; Zhu, Y.; Cui, H.; Sun, B.; Su, T.; Wen, P. Comparison of Necroptosis With Apoptosis for OVX-Induced Osteoporosis. Front. Mol. Biosci. 2021, 8, 790613. [Google Scholar] [CrossRef]
- Kitazawa, R.; Kimble, R.B.; Vannice, J.L.; Kung, V.T.; Pacifici, R. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice. J. Clin. Investig. 1994, 94, 2397–2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girasole, G.; Jilka, R.L.; Passeri, G.; Boswell, S.; Boder, G.; Williams, D.C.; Manolagas, S.C. 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: A potential mechanism for the antiosteoporotic effect of estrogens. J. Clin. Investig. 1992, 89, 883–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littlewood, A.J.; Aarden, L.A.; Evans, D.B.; Russell, R.G.; Gowen, M. Human osteoblastlike cells do not respond to interleukin-6. J. Bone Miner. Res. 1991, 6, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Kimble, R.B.; Bain, S.; Pacifici, R. The functional block of TNF but not of IL-6 prevents bone loss in ovariectomized mice. J. Bone Miner. Res. 1997, 12, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Wotring, V. Evidence Report: Risk of Therapeutic Failure Due to Ineffectiveness of Medication. Available online: https://humanresearchroadmap.nasa.gov/Evidence/reports/Pharm.pdf (accessed on 5 April 2022).
- Gandia, P.; Saivin, S.; Houin, G. The influence of weightlessness on pharmacokinetics. Fundam. Clin. Pharmacol. 2005, 19, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Gandia, P.; Bareille, M.P.; Saivin, S.; Le-Traon, A.P.; Lavit, M.; Guell, A.; Houin, G. Influence of simulated weightlessness on the oral pharmacokinetics of acetaminophen as a gastric emptying probe in man: A plasma and a saliva study. J. Clin. Pharmacol. 2003, 43, 1235–1243. [Google Scholar] [CrossRef]
- Merrill, A.H., Jr.; Wang, E.; LaRocque, R.; Mullins, R.E.; Morgan, E.T.; Hargrove, J.L.; Bonkovsky, H.L.; Popova, I.A. Differences in glycogen, lipids, and enzymes in livers from rats flown on COSMOS 2044. J. Appl. Physiol. 1992, 73, 142S–147S. [Google Scholar] [CrossRef] [PubMed]
- Merrill, A.H., Jr.; Hoel, M.; Wang, E.; Mullins, R.E.; Hargrove, J.L.; Jones, D.P.; Popova, I.A. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887. FASEB J. 1990, 4, 95–100. [Google Scholar] [CrossRef]
- Merrill, A.H., Jr.; Wang, E.; Jones, D.P.; Hargrove, J.L. Hepatic function in rats after spaceflight: Effects on lipids, glycogen, and enzymes. Am. J. Physiol. 1987, 252, R222–R226. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Ma, Y.; Qiao, X.; Zeng, R.; Cheng, R.; Nie, Y.; Li, S.; A, R.; Shen, X.; Yang, M.; et al. Irisin ameliorates bone loss in ovariectomized mice. Climacteric 2020, 23, 496–504. [Google Scholar] [CrossRef]
- Morgan, E.N.; Alsharidah, A.S.; Mousa, A.M.; Edrees, H.M. Irisin Has a Protective Role against Osteoporosis in Ovariectomized Rats. Biomed. Res. Int. 2021, 2021, 5570229. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.M.; Wai-Chee Kung, A.; Pheng, C.S.; Zhu, H.M.; Zhang, Z.L.; Wu, Y.Y.; Xu, L.; Meng, X.W.; Huang, M.L.; Chung, L.P.; et al. Efficacy and safety of 2 g/day of strontium ranelate in Asian women with postmenopausal osteoporosis. Bone 2009, 45, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.Y.; Bruyère, O.; Sawicki, A.; Roces-Varela, A.; Fardellone, P.; Roberts, A.; Devogelaer, J.P. Long-term treatment of postmenopausal osteoporosis with strontium ranelate: Results at 8 years. Bone 2009, 45, 1059–1064. [Google Scholar] [CrossRef]
- Talaulikar, V.S.; Chambers, T.; Manyonda, I. Exploiting the antioxidant potential of a common vitamin: Could vitamin C prevent postmenopausal osteoporosis? J. Obstet. Gynaecol. Res. 2012, 38, 253–257. [Google Scholar] [CrossRef]
- Wong, R.H.; Thaung Zaw, J.J.; Xian, C.J.; Howe, P.R. Regular Supplementation With Resveratrol Improves Bone Mineral Density in Postmenopausal Women: A Randomized, Placebo-Controlled Trial. J. Bone Miner. Res. 2020, 35, 2121–2131. [Google Scholar] [CrossRef]
- Khanizadeh, F.; Rahmani, A.; Asadollahi, K.; Ahmadi, M.R.H. Combination therapy of curcumin and alendronate modulates bone turnover markers and enhances bone mineral density in postmenopausal women with osteoporosis. Arch. Endocrinol. Metab. 2018, 62, 438–445. [Google Scholar] [CrossRef] [Green Version]
- Fournier, R.; Harrison, R.E. Strategies for studying bone loss in microgravity. Reach 2020, 17, 100036. [Google Scholar] [CrossRef]
Author and Publication Year | Population | Intervention | Outcome |
---|---|---|---|
Real microgravity in humans | |||
Bilancio et al., 2019 [42] | 1 male (52 years) and 1 female (37 years) | 6 months on ISS | Compared to BSL: Decrease of 0.9 to 1.4% in total BMD; Increase of 27 to 116% in urine calcium/creatinine ratio. |
Burkhart et al., 2020 [43] | 1 female and 16 males (45 ± 4 years) | 4–7 months on ISS | Between 4.6% and 6.1% decline in vertebral volumetric BMD (p < 0.05) compared to preflight. Vertebral volumetric BMD decreased 1% and lumbar spine BMD decreased 0.5% per month. |
Sibonga et al., 2020 [44] | 10 humans (gender N/A, 48 ± 5 years) | 157 ± 21 days on ISS | 5 of 10 astronauts had an incomplete recovery of BMD 1 year after return to Earth, which persisted in 4 of 5 astronauts after 2 years compared to BSL. |
Real microgravity in animals | |||
Berg-Johansen et al., 2016 [45] | 14 male C57BL/6 mice (19–20 weeks) | SG (n = 6): 30 days in low Earth orbit CG (n = 8): normal gravity | SG showed 20% reduced BV/TV (p < 0.05), 18% reduced BMD (p < 0.05), and 14% reduced trabecular thickness (p = 0.001) compared to CG. No significant difference in the trabecular number or trabecular spacing. |
Gerbaix et al., 2017 [46] | 22 C57/BL6 male mice (2 months) | SG (n = 10): 30 days in space CG (n = 12): normal gravity | SG decreased femur BV 64% and vertebrae BV 35.7%. SG increased bone resorption 140% and empty lacunae 344%. No bone recovery in SG 8 days after landing despite normalized OC activity. |
Chatani et al., 2016 [47] | Medaka fish larvae in stage 39 | SG (n = 3–9, depending on the anaylsis): 8 days on the ISS CG (n = 3–16, depending on the anaylsis): normal gravity | SG had significantly enhanced osterix, osteocalcin, TRAP5, and matrix metallopeptidase-9. |
Von Kroge et al., 2021 [48] | C57BL/6N male mice (8–9 weeks) | SG (n = 5): 4 weeks in space CG (n = 5): normal gravity | After 4 weeks in space, BV/TV, cortical thickness, trabecular number, and thickness significantly decreased. This bone loss was only recovered in trabecular bone, and not in cortical thickness. |
Simulated microgravity in humans | |||
Bonnefoy et al., 2022 [49] | 20 male (34 ± 8 years) | SG: 60 days HDBR + antioxidant CG: 60 days HDBR | Compared to BSL: Decreased bone density of 1.4% (p < 0.0001) and BV/TV of 1% (p < 0.05). |
Bemben et al., 2021 [50] | 6 males and 5 females (25–50 years) | 30 d HDBR | Compared to BSL: Increase in sclerostin, TRAP5, P1NP, and calcium. Decrease in total hip BMD and PTH. Women had a greater decrease in total hip BMD and increase in TRAP5 than men. |
Buehlmeier et al., 2017 [51] | 24 males (SG1 + SG2 ~60 years, SG3 ~23 years) | SG1 (n = 8): 14 days bed rest SG2 (n = 8): 14 days bed rest + CD SG3 (n = 7): 14 days bed rest | Urinary N-telopeptide of type I collagen (p < 0.05), urinary C-telopeptide of type I collagen (p = N/A), and sclerostin (p < 0.05) increased during bed rest in all groups compared to BSL. |
Simulatedmicrogravity in animals | |||
Cabahug-Zuckerman et al., 2016 [52] | 24 C57BL/6J male mice (4 months) | SG1 (n = 6): 14 days HLU SG2 (n = 6): 14 days HLU + PC-I SG3 (n = 6): PC-I CG (n = 6): normal gravity | After 5 days: Increased RANKL-producing osteocytes and osteocyte apoptosis yjtrrfold in cortical bone and fourfold in trabecular SG1 compared to CG (p < 0.05). After 14 days: Only the increased osteocyte apoptosis in trabecular bone and RANKL-producing osteocytes remained significantly elevated threefold in SG1 compared to CG. |
Chowdhury et al., 2016 [53] | 61 male rats (3–18 rats per SG and CG, age N/A) | SG1: 2 weeks HLU SG2: 2 weeks X-ray IR SG3: 2 weeks HLU + X-ray IR CG: normal gravity | Significantly decreased BMD in distal femur and proximal tibia in SG1 and SG3 compared to CG (p < 0.05), but BMD was not significantly decreased in SG2. |
Chen et al., 2021 [54] | 12 C57/BL6 mice (2 months) | SG (n = 6): 4 weeks HLU CG (n = 6): normal gravity | MicroRNA-138-5p was upregulated during s-µg in SG compared to CG (p < 0.01). |
Simulatedmicrogravity in vitro | |||
Chen et al., 2021 [54] | Murine pre-OB cells MC3T3-E1 | SG: 12 h RPM CG: normal gravity | Compared to CG: MicroRNA-138-5p decreased ALP 93.1% and collagen type 1 α-1 64.9% in SG (p < 0.01). MicroRNA-138-5p decreased protein and mRNA expression of β-catenin in SG. |
Cazzaniga et al., 2016 [55] | Human bMSCs | SG: 4 days RPM CG: normal gravity | SG show a significant upregulation of heat shock protein 60, heat-shock protein 70, superoxide dismutase 2 and cylclooxygenase 2, and a significant increase in RUNX2 and osterix compared to CG. |
Chen et al., 2016 [56] | Rat bMSCs | SG: 2 days clinostat CG: normal gravity | Clinorotation significantly depolymerizes F-actin, and this hinders “transcriptional coactivator with PDZ-binding motif” nuclear. Furthermore, s-µg inhibited ALP and RUNX2. |
Zhang et al., 2020 [57] | Murine pre-OB MC3T3-E1 | SG: 72 h clinorotation CG: normal gravity | Expression of all but microRNA-30a in the microRNA-30 family is upregulated in s-µg. This is negatively correlated with expression of RUNX2, osteocalcin and ALP, which decreased during s-µg. |
Author and Publication Year | Population | Intervention | Outcome |
---|---|---|---|
Real microgravity in vitro | |||
Colucci et al., 2020 [58] | System 1: OC/OB System 2: OC/EC System 3: OC/OB/EC | SG1: 14 days ISS + R-irisin SG2: 14 days ISS CG1: normal gravity CG2: normal gravity + R-irisin | R-irisin in SG1 prevented the downregulation of RUNX2, osterix, activating transcription factor 4, osteoprotegerin, and Collα1 caused by microgravity. |
Cristofaro et al., 2019 [59] | Human bMSCs | SG: 88 h ISS + SCHN CG: normal gravity | SCHN exhibited a protective effect in SG on the reduced ALP activity caused by microgravity compared to CG (p < 0.05). |
Simulatedmicrogravity in humans | |||
Cavanagh et al., 2016 [60] | 6 male and 6 female (30.2 ± 6.8 years) | SG (n = 6): 84 days HDBR + LE CG (n = 6): 84 days HDBR | BMD in the intertrochanteric and total hip regions was decreased in CG, but not in SG compared to baseline. The BMD loss was higher in CG than in SG. |
Belavý et al., 2016 [61] | 24 males (32 ± 10.6 years) | SG1 (n = 7): 60 days BR + vibration RE SG2 (n = 8): 60 days BR + RE CG (n = 9): 60 days BR | In SG1 and SG2 bone-specific ALP increased significantly more than in CG. SG1 also showed a greater proximal femur bone mineral content 6–24 months after BR compared to CG (p = 0.01). There was no significant difference on sclerostin and dickkopf-1 proteins. |
Gao et al., 2019 [62] | 2 males and 4 females (30 ± 12 years) | Cross-over study: 4 days of BR with either PBD or hospital diet separated by 30 days | The PBD attenuated the increase of urinary N-telopeptide of type I collagen to 33% ± 20% from 89% ± 75% during hospital diet. PBD had no effect on BMD compared to hospital diet. |
Buehlmeier et al., 2017 [51] | 24 males (SG1 + SG2 ~60 years, SG3 ~23 years) | SG1 (n = 8): 14 days BR SG2 (n = 8): 14 days BR + CD SG3 (n = 8): 14 days BR | No systematic difference between the SGs. |
Austermann et al., 2021 [63] | 20 males (3 ± 8 years) | SG (n = 10): 60 days HDBR + antioxidant CG (n = 10): 60 days HDBR | Antioxidant supplement had no effect on bone resorption or formation. |
Simulatedmicrogravity in animals | |||
Cabahug-Zuckerman et al., 2016 [52] | 24 C57BL/6J male mice (4 months) | SG1 (n = 6): 14 days HLU SG2 (n = 6): 14 days HLU + PC-I SG3 (n = 6): PC-I CG (n = 6): no intervention | The PC-I used in SG2 prevented the HLU-induced increase in osteocyte apoptosis, osteocyte RANKL expression, and endocortical resorption in both cortical and trabecular bone compared to SG1. |
Colaianni et al., 2017 [64] | 32 C57BL6 male mice (2 months) | SG1 (n = 8): 4 weeks HLU + R-irisin SG2 (n = 8): 4 weeks HLU SG3 (n = 8): R-irisin CG (n = 8): vehicle injection | Compared to CG: R-irisin prevented loss of cortical or trabecular BMD in SG1. R-irisin induced the recovery of bone mass through attenuation of osteoprotegerin; thus, the RANKL/osteoprotegerin ratio was the same in SG1 as CG. R-irisin also inhibited the decrease in ALP and Collα1 mRNA expression caused by simulated microgravity in SG1. |
Ding et al., 2021 [65] | 42 C57BL/6J male mice (12 weeks) | SG1 (n = 6): 28 days HLU + alendronate SG2 (n = 6): 28 days HLU + raloxifene SG3 (n = 6): 28 days HLU + teriparatide SG4 (n = 6): 28 days HLU + Anti-RANKL SG5 (n = 6): 28 days HLU + bortezomib CG1 (n = 6): normal gravity CG2 (n = 6): 28 days HLU | SG1 and SG4 reduced urinary C-telopeptide of type I collagen compared to CG2 (p < 0.05) and restored BMD close to CG1. SG5 reduced urinary C-telopeptide of type I collagen (p < 0.05) and enhanced P1NP compared to CG2 (p < 0.05), which increased BMD and strength compared to CG2 (p < 0.05). SG2 had no effect on bone loss. SG3 only stimulated cortical bone formation. |
Han et al., 2018 [66] | 48 WTC57BL/6J mice (2–3 months) 32 KOC mice (2–3 months) | SG1 (n = 16): 4 weeks HLU + CDL SG2 (n = 16): 4 weeks HLU + KOC SG3 (n = 16): 4 weeks HLU + CDL + KOC CG1 (n = 16): 4 weeks HLU CG2 (n = 16): normal gravity | Increased BV/TV, trabecular number and thickness, ALP activity, osteocalcin content, and mRNA level of bone morphogenetic protein-2, Collα1, ALP, and osteocalcin in SG1 compared to CG1, but this effect was even bigger in SG3 with combined CDL and KOC. Osteoprotegerin increased, while RANKL level decreased in SG3 compared to CG1; however, in SG1, only osteoprotegerin increased compared to CG1. |
DeLong et al., 2020 [67] | 35 C57BL/6J male mice (16 weeks) | SG (n = 15): 3 weeks HLU + TC CG1 (n = 10): 3 weeks HLU CG2 (n = 10): 3 weeks TC | In SG, a 2% loss in cortical thickness and 15% loss in trabecular BV/TV was observed compared to 6% and 50% corresponding losses in CG1. This protective effect did not influence the cortical bone at lower strained distal shaft. |
Yang et al., 2021 [68] | 36 C57BL/6J male mice (8 weeks) | SG (n = 6): 4 weeks HLU + SMF CG1 (n = 6): 4 weeks GMF CG2 (n = 6): 4 weeks SMF CG3 (n = 6): 4 weeks HLU CG4 (n = 6): 4 weeks HLU + GMF | SG had an increased BV/TV, trabecular number, connectivity density, cortical area, and femoral bone mineral content compared to CG4 (p < 0.05). Additionally, TRAP5 decreased during SMF compared to CG4 (p < 0.05). |
Xu et al., 2022 [69] | 18 C57BL/6 male mice (8 weeks) | SG (n = 6): 4 weeks HLU + CEFFE CG1 (n = 6): normal gravity CG2 (n = 6): 4 weeks HLU + PBS | Compared to CG2: CEFFE in SG increased BV/TV and trabecular number and cortical thickness. Additionally, the number of empty lacunae was reduced by CEFFE. |
Xiao et al., 2021 [70] | 40 C57BL/6J male mice (6 months) | SG1 (n = 10): 28 dats HLU + CMS SG2 (n = 10): 28 dats HLU + STE CG1 (n = 10): normal gravity + PBS CG2 (n = 10): 28 days HLU + PBS | Compared to CG2: CMS increased the BMD, BV/TV, cortical thickness, and trabecular thickness and number. CMS decreased trabecular spacing, number of OCs per field, and percentage of OC surface per bone surface. STE only increased BV/TV, as well as trabecular thickness and number, and decreased trabecular spacing. |
Wakabayashi et al., 2020 [71] | 32 ddY male mice (8 weeks) | SG1 (n = 8): 4 weeks HLU + IL-6 mAb SG2 (n = 8): 4 weeks HLU + alendronate CG1 (n = 8): normal gravity + vehicle CG2 (n = 8): 4 weeks HLU + vehicle | Compared to CG2: IL-6 mAb in SG1 reduced number of OCs per bone perimeter compared to CG2 (p < 0.05). Alendronate in SG2 increased BV/TV and trabecular number, while decreasing number of OCs per bone perimeter in both femur and tibia (p < 0.05). |
Diao et al., 2018 [72] | 50 SD male rats (6 weeks) | SG1 (n = 30): 30 days HLU + polyphenol SG2 (n = 10): 30 days HLU CG (n = 10): normal gravity | SG1 compared to SG2: SG1 alleviated the rise of bone surface/bone volume ratio and decreased ME, BMD, and BV/TV, but it differed from CG. SG1 increased ALP, P1NP, and expression of RUNX2, Collα1, ALP, osteonectin, osterix, osteocalcin, and β-catenin. |
He et al., 2020 [73] | 32 C57BL/6J male mice (10 weeks) | SG1 (n = 8): 4 weeks HLU SG2 (n = 8): 4 weeks HLU + IL-6 mAb CG1 (n = 8): normal gravity CG2 (n = 8): normal gravity + IL-6 mAb | Increased BMD, BV/TV, trabecular thickness, trabecular number, stiffness, and ultimate load in femur in SG2 compared to SG1 (p < 0.05). Serum osteocalcin and mRNA expression of ALP, osteocalcin and TRAP5 increased, while RANKL/osteoprotegerin ratio decreased in SG2 compared to SG1 (p < 0.05). All these factors were normalized compared to CG1. |
Khajuria et al., 2015 [74] | 30 male Wistar rats (12 weeks) | SG1 (n = 6): 20 weeks RHLI SG2 (n = 6): 10 weeks RHLI+ 10 weeks RHLI/ZOL SG3 (n = 6): 10 weeks RHLI+ 10 weeks RHLI/ALF SG4 (n = 6): 10 weeks RHLI+ 10 weeks RHLI/ALF/ZOL CG (n = 6): nonimmobilized control | The combination of ZOL + ALF was more effective in decreasing bone porosity, in improving the mechanical strength of the femoral midshaft, and in improving dry bone and ash weights than the respective monotherapies. |
Simulatedmicrogravity in vitro | |||
Cristofaro et al., 2019 [59] | Human bMSCs | SG: 88 h RPM + SCHN CG: normal gravity | SCHN had a promoting effect in SG on the deposition of hydroxyapatite crystals compared to CG (p < 0.05). |
Braveboy-Wagner et al., 2022 [75] | 7F2 murine OBs | SG: 6 days RPM + nutraceuticals (curcumin, carnosic acid, and zinc) CG: 6 days RPM | Compared to CG: In SG, ALP activity was elevated 160% by 50 µm zinc, 140% by 7.5 µm curcumin, and 113% by 10 µm carsonic acid. SG had an induced expression of ALP, RUNX2, and osteonectin in nonosteogenic maintenance medium. |
Chen et al., 2020 [76] | Murine primary OBs | SG1: 48 h RPM + R-irisin SG2: 48 h RPM CG: normal gravity | Lower doses of R-irisin promote both expression of Collα1 and ALP (p < 0.05), activity of ALP, and calcium deposition in OBs. R-irisin also recovered the microgravity-induced reduction of ALP and Collα1 (p < 0.001), ALP activity, and β-catenin expression. |
Ethiraj et al., 2020 [77] | RAW264.7 pre-OCs | SG1: 24 h RCCS + MG-132 SG2: 24 h RCCS CG1: normal gravity CG2: normal gravity + MG-132 | The proteasome inhibitor MG-132 in SG1 suppressed receptor activator of nuclear factor κβ receptor expression, compared to CG. MG-132 treatment in SG1 also showed a significant decrease in resorbed bone area compared to SG2. |
Diao et al., 2018 [72] | OBs from newborn rat | SG1: 72 h RPM + polyphenols SG2: 72 h RPM CG: normal gravity | Polyphenols promoted ALP activity in SG1 compared to SG2 (p < 0.01). Polyphenols had a dose–effect response, but were still decreased compared to CG (p < 0.05). |
He et al., 2020 [73] | Murine pre-OB cell line MC3T3-E1 | SG1: 96 h RB SG2: 96 h RB + IL-6 mAb CG: normal gravity | IL-6 mAb increased ALP activity, osteoprotegerin level, and mRNA expression of ALP, osteopontin and RUNX2, while RANKL decreased in SG2 compared to SG1 (p < 0.05). All these factors were normalized compared to CG. |
He et al., 2020 [73] | Macrophage cell line RAW264.7 | SG1: 96 h RB SG2: 96 h RB + IL-6 mAb CG: normal gravity | IL-6 mAb decreased mRNA expression of cathepsin K and TRAP5 in SG2 compared to SG1 (p < 0.05). All these factors were normalized compared to CG. |
Title and Identification Number | Subjects | Design | Outcome | Status/Conclusion |
---|---|---|---|---|
The Effects of Whole Body Unloading on Physiological Function (NCT03195348) | 12 | IV SG | Investigate the effects of hyper-buoyancy flotation in 7 days on skeletal muscles and bone mineral density. | Completed. No results posted yet. |
A New Nutritional Countermeasure to Prevent the Deconditioning Induced by 60 Days of Antiorthostatic Bed Rest (NCT03594799) | 20 | IV RP Investigator masking | Investigate if XXS-2A-BR2 prevents or reduces the harmful effects caused by physical inactivity through 60 days of bed rest. Secondary outcome is the change in urinary C-telopeptide of type I collagen. | Completed. No effect on urinary C-telopeptide of type I collagen, serum β-C-telopeptide of type I collagen, NTX, alkaline phosphatase, P1NP, or osteocalcin. |
Thigh Cuffs to Prevent the Deconditioning Induced by 5 Days of Dry Immersion (NCT03915457) | 20 | IV RP No masking | Investigate if thigh cuffs prevent or reduce the deconditioning caused by dry immersion. The outcome is the change in the balance of bone remodeling markers. | Completed. No results posted yet. |
Planetary Habitat Simulation: Bone Metabolism Studies (NCT02637921) | 14 | IV RC Open-label masking | Investigate the effect of hypoxia and bed rest on bone metabolism. Outcomes include the change in markers of bone cell activity. | Completed. Serum calcium and NTX increased, while P1NP decreased. No difference between normoxia or hypoxia. |
Understanding the Negative Effects of Bed Rest and Using Exercise as Countermeasure (NCT04964999) | 24 | IV RP Open-label masking | Investigate if exercise counteracts the negative effects caused by 2 week head-down tilt bed rest on bone markers among others. | Recruiting. |
Integrative Study of Physiological Changes Induced by a 5-Day Dry Immersion on 20 Healthy Female Volunteers (NCT05043974) | 20 | IV SG Open-label masking | Investigate the changes caused by dry immersion for 5 days in female physiology. The outcome is the change in bone metabolism and bone mineral density. | Recruiting. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baran, R.; Wehland, M.; Schulz, H.; Heer, M.; Infanger, M.; Grimm, D. Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 8650. https://doi.org/10.3390/ijms23158650
Baran R, Wehland M, Schulz H, Heer M, Infanger M, Grimm D. Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review. International Journal of Molecular Sciences. 2022; 23(15):8650. https://doi.org/10.3390/ijms23158650
Chicago/Turabian StyleBaran, Ronni, Markus Wehland, Herbert Schulz, Martina Heer, Manfred Infanger, and Daniela Grimm. 2022. "Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review" International Journal of Molecular Sciences 23, no. 15: 8650. https://doi.org/10.3390/ijms23158650
APA StyleBaran, R., Wehland, M., Schulz, H., Heer, M., Infanger, M., & Grimm, D. (2022). Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review. International Journal of Molecular Sciences, 23(15), 8650. https://doi.org/10.3390/ijms23158650