Vitamin D-Related Single Nucleotide Polymorphisms as Risk Biomarker of Cardiovascular Disease
Abstract
:1. Introduction
2. Results
2.1. Patients Characteristics
2.2. Genotype Distribution
2.3. Influence of Genetic Polymorphisms on CVD Risk
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Study Subjects
4.3. Socio-Demographic and Clinical Variables
4.4. Genetic Variables
4.4.1. DNA Isolation
4.4.2. Genotyping and Quality Control
4.4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Cardiovascular Diseases; World Health Organization: Ginebra, Switzerland, 2017; Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 3 June 2022).
- Wang, W.; Jiang, B.; Sun, H.; Ru, X.; Sun, D.; Wang, L.; Wang, L.; Jiang, Y.; Li, Y.; Wang, Y.; et al. Prevalence, incidence, and mortality of stroke in China: Results from a nationwide population-based survey of 480687 adults. Circulation 2017, 135, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Della-Morte, D.; Guadagni, F.; Palmirotta, R.; Testa, G.; Caso, V.; Paciaroni, M.; Abete, P.; Rengo, F.; Ferroni, P.; Sacco, R.L.; et al. Genetics of ischemic stroke, stroke-related risk factors, stroke precursors and treatments. Pharmacogenomics 2012, 13, 595–613. [Google Scholar] [CrossRef] [PubMed]
- Abbate, R.; Sticchi, E.; Fatini, C. Genetics of cardiovascular disease. Clin. Cases Min. Bone Metab. 2008, 5, 63–66. [Google Scholar]
- Reiner, Z.; Catapano, A.L.; De Backer, G.; Graham, I.; Taskinen, M.R.; Wiklund, O.; Agewall, S.; Alegria, E.; Chapman, M.J.; Durrington, P.; et al. ESC/EAS Guidelines for the management of dyslipidaemias: The task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Eur. Heart J. 2011, 32, 1769–1818. [Google Scholar]
- Abu el Maaty, M.A.; Hassanein, S.I.; Sleem, H.M.; Gad, M.Z. Vitamin D receptor gene polymorphisms (TaqI and ApaI) in relation to 25-hydroxyvitamin D levels and coronary artery disease incidence. J. Recept. Signal Transduct. Res. 2015, 35, 391–396. [Google Scholar] [CrossRef]
- He, L.; Wang, M. Association of vitamin d receptor-a gene polymorphisms with coronary heart disease in Han Chinese. Int. J. Clin. and Exp. Med. 2015, 8, 6224–6229. [Google Scholar]
- Wang, E.W.-L.; Pang, M.Y.; Siu, P.M.; Lai, C.K.; Woo, J.; Collins, A.R.; Benzie, I.F. Vitamin D status and cardiometabolic risk factors in young adults in Hong Kong: Associations and implications. Asia Pac. J. Clin. Nutr. 2018, 27, 231–237. [Google Scholar]
- Somjen, D.; Weisman, Y.; Kohen, F.; Gayer, B.; Limor, R.; Sharon, O.; Jaccard, N.; Knoll, E.; Stern, N. 25-hydroxyvitamin D3-1alpha-hydroxylase is expressed in human vascular smooth muscle cells and is upregulated by parathyroid hormone and estrogenic compounds. Circulation 2005, 111, 1666–1671. [Google Scholar] [CrossRef] [Green Version]
- Grundmann, M.; Haidar, M.; Placzko, S.; Niendorf, R.; Darashchonak, N.; Hubel, C.A.; von Versen-Höynck, F. Vitamin D improves the angiogenic properties of endothelial progenitor cells. Am. J. Physiol. Cell Physiol. 2012, 303, 954–962. [Google Scholar] [CrossRef]
- Molinari, C.; Uberti, F.; Grossini, E.; Vacca, G.; Carda, S.; Invernizzi, M.; Cisari, C. 1α,25-Dihydroxycholecalciferol Induces Nitric Oxide Production in Cultured Endothelial Cells. Cell. Physiol. Biochem. 2011, 27, 661–668. [Google Scholar] [CrossRef]
- Tenderich, G.; Berthorld, H.K.; Stehle, P.; Koerfer, R.; Schleithoff, S.S.; Zittermann, A. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: A double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 2006, 83, 754–759. [Google Scholar]
- Li, Y.C.; Kong, J.; Wei, M.; Chen, Z.-F.; Liu, S.Q.; Cao, L.-P. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Investig. 2002, 110, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.C.; Qiao, G.; Uskokovic, M.; Xiang, W.; Zheng, W.; Kong, J. Vitamin D: A negative endocrine regulator of the renin-angiotensin system and blood pressure. J. Steroid Biochem. Mol. Biol. 2004, 89–90, 387–392. [Google Scholar] [CrossRef]
- Rammos, G.; Tseke, P.; Ziakka, S. Vitamin D, the renin-angiotensin system, and insulin resistance. Int. Urol. Nephrol. 2008, 40, 419–426. [Google Scholar] [CrossRef]
- Oh, J.; Riek, A.E.; Darwech, I.; Funai, K.; Shao, J.; Chin, K.; Sierra, O.L.; Carmeliet, G.; Ostlund, R.E., Jr.; Bernal-Mizrachi, C. Deletion of macrophage Vitamin D receptor promotes insulin resistance and monocyte cholesterol transport to accelerate atherosclerosis in mice. Cell Rep. 2015, 10, 1872–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Nanduri, R.; Bhagyaraj, E.; Kalra, R.; Ahuja, N.; Chacko, A.P.; Tiwari, D.; Sethi, K.; Saini, A.; Chandra, V.; et al. Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation. Autophagy 2020, 17, 2273–2289. [Google Scholar] [CrossRef] [PubMed]
- Mozos, I.; Marginean, O. Links between vitamin D deficiency and cardiovascular diseases. Biomed. Res. Int. 2015, 2015, 109275. [Google Scholar] [CrossRef] [PubMed]
- Pineda Lancheros, L.E.; Pérez Ramírez, C.; Sánchez Martín, A.; Gálvez Navas, J.M.; Martínez Martínez, F.; Ramírez Tortosa, M.d.C.; Jiménez Morales, A. Impact of Genetic Polymorphisms on the Metabolic Pathway of Vitamin D and Survival in Non-Small Cell Lung Cancer. Nutrients 2021, 13, 3783. [Google Scholar] [CrossRef]
- Wacker, M.; Holick, M.F. Sunlight and vitamin D: A global perspective for health. Dermato-Endocrinology 2013, 5, 51–108. [Google Scholar] [CrossRef] [Green Version]
- Borel, P.; Caillaud, D.; Cano, N. Vitamin D bioavailability: State of the art. Crit. Rev. Food Sci. Nutr. 2013, 55, 1193–1205. [Google Scholar] [CrossRef]
- Pilz, S.; Verheyen, N.; Grübler, M.R.; Tomaschitz, A.; März, W. Vitamin D and cardiovascular disease prevention. Nat. Rev. Cardiol. 2016, 13, 404. [Google Scholar]
- Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, molecular mechanism of action, and pleiotropic effects. Physiol. Rev. 2016, 96, 365–408. [Google Scholar] [CrossRef] [PubMed]
- Haussler, M.R.; Whitfield, G.K.; Kaneko, I.; Haussler, C.A.; Hsieh, D.; Hsieh, J.-C.; Jurutka, P.W. Molecular Mechanisms of Vitamin D Action. Calcif. Tissue Int. 2013, 92, 77–98. [Google Scholar] [CrossRef] [PubMed]
- Rachez, C.; Lemon, B.D.; Suldan, Z.; Bromleigh, V.; Gamble, M.J.; Näär, A.M.; Erdjument-Bromage, H.; Tempst, P.; Freedman, L.P. Ligand-dependent transcription activation by nuclear receptors requires the DRIP complex. Nature 1999, 398, 824–828. [Google Scholar] [CrossRef]
- Bouillon, R.; Carmeliet, G.; Verlinden, L.; van Etten, E.; Verstuyf, A.; Luderer, H.F.; Lieben, L.; Mathieu, C.; Demay, M. Vitamin D and human health: Lessons from vitamin D receptor null mice. Endocr. Rev. 2008, 29, 726–776. [Google Scholar] [CrossRef] [PubMed]
- Sangkaew, B.; Nuinoon, M.; Jeenduang, N. Association of vitamin D receptor gene polymorphisms with serum 25(OH)D levels and metabolic syndrome in Thai population. Gene 2018, 659, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, A.; Sun, B.; Forman, J.P.; Hopkins, P.N.; Brown, N.J.; Kolatkar, N.S.; Williams, G.H.; Williams, J.S. The Fok1 vitamin D receptor gene polymorphism is associated with plasma renin activity in Caucasians. Clin. Endocrinol. 2011, 74, 783–790. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; Van Meurs, J.B.; Pols, H.A.; Van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.J.; Kang, E.S.; Ji, M.J.; Choi, H.J.; Oh, T.; Koong, S.-S.; Jeon, H.J. Association between Bsm1 Polymorphism in Vitamin D Receptor Gene and Diabetic Retinopathy of Type 2 Diabetes in Korean Population. Endocrinol. Metab. 2015, 30, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Margolis, R.N.; Christakos, S. The nuclear receptor superfamily of steroid hormones and vitamin D gene regulation. An update. Ann. N. Y. Acad. Sci. 2010, 1192, 208–214. [Google Scholar] [CrossRef]
- Sygitowicz, G.; Pera, L.; Sitkiewicz, D. Vitamin D receptor (VDR) polymorphism and the risk of cardiovascular events. Kardiol Pol. 2014, 72, 64–66. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.C.E.; De Lorenzo, D.; Cassanye, A.; Martín-Gari, M.; Espinel, A.; Delgado, M.A.; Pamplona, R.; Portero-Otin, M. Vitamin D receptor BsmI polymorphism modulates soy intake and 25-hydroxyvitamin D supplementation benefits in cardiovascular disease risk factors profile. Genes Nutr. 2013, 8, 561–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Liao, S.; He, J.; Jin, Y.; Fu, H.; Chen, X.; Fan, X.; Xu, H.; Liu, X.; Jin, J.; et al. Association of vitamin D receptor gene polymorphisms with metabolic syndrome: A case-control design of population-based cross-sectional study in North China. Lipids Health Dis. 2014, 13, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorsch, M.P.; Nemerovski, C.W.; Ellingrod, V.L.; Cowger, J.A.; Dyke, D.B.; Koelling, T.M.; Wu, A.H.; Aaronson, K.D.; Simpson, R.U.; Bleske, B.E. Vitamin D Receptor Genetics on Extracellular Matrix Biomarkers and Hemodynamics in Systolic Heart Failure. J. Cardiovasc. Pharmacol. Ther. 2014, 19, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Mahjoubi, I.; Kallel, A.; Sbaï, M.H.; Ftouhi, B.; Ben Halima, M.; Jemaa, Z.; Moncef, F.; Hedia, S.; Riadh, J.; Naziha, K. Lack of association between FokI polymorphism in vitamin D receptor gene (VDR) & type 2 diabetes mellitus in the Tunisian population. Indian J. Med. Res. 2016, 144, 46–51. [Google Scholar]
- Hajj, A.; Chedid, R.; Chouery, E.; Megarbané, A.; Gannagé-Yared, M.-H. Relationship between vitamin D receptor gene polymorphisms, cardiovascular risk factors and adiponectin in a healthy young population. Pharmacogenomics 2016, 17, 1675–1686. [Google Scholar] [CrossRef] [Green Version]
- Bhakat, R.; Chandra, L.; Saxena, A.; Sarda, A.K.; Krishnamurthy, K.; Yadav, P. Evaluation of metabolic syndrome and vitamin D receptor gene polymorphism in male factor infertility. Indian J. Clin. Biochem. 2017, 32, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Vuolo, L.; Di Somma, C.; Faggiano, A.; Colao, A. Vitamin D and cancer. Front. Endocrinol. 2012, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jurutka, P.W.; Remus, L.S.; Whitfield, G.K.; Thompson, P.D.; Hsieh, J.C.; Zitzer, H.; Tavakkoli, P.; Galligan, M.A.; Dang, H.T.; Haussler, C.A. The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol. Endocrinol. 2000, 14, 401–420. [Google Scholar] [CrossRef]
- Decker, C.J.; Parker, R. Diversity of cytoplasmic functions for the 3′ untranslated region of eukaryotic transcripts. Curr Opin Cell Biol. 1995, 7, 386–392. [Google Scholar] [CrossRef]
- Morrison, N.A.; Qi, J.C.; Tokita, A.; Kelly, P.J.; Crofts, L.; Nguyen, T.V.; Sambrook, P.N.; Eisman, J.A. Prediction of bone density from vitamin D receptor alleles. Nature 1994, 367, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Györffy, B.; Vásárhelyi, B.; Krikovszky, D.; Madácsy, L.; Tordai, A.; Tulassay, T.; Szabó, A. Gender-specific association of vitamin D receptor polymorphism combinations with type 1 diabetes mellitus. Eur. J. Endocrinol. 2002, 147, 803–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, H.; Miyamoto, K.I.; Yoshida, M.; Yamamoto, H.; Taketani, Y.; Morita, K.; Kubota, M.; Yoshida, S.; Ikeda, M.; Watabe, F.; et al. The Polymorphism in the caudal-related homeodomain protein Cdx-2 binding element in the human vitamin D receptor gene. J. Bone Min. Res. 2001, 16, 1256–1264. [Google Scholar] [CrossRef]
- Yamamoto, H.; Miyamoto, K.-I.; Li, B.; Taketani, Y.; Kitano, M.; Inoue, Y.; Morita, K.; Pike, J.W.; Takeda, E. The Caudal-Related Homeodomain Protein Cdx-2 Regulates Vitamin D Receptor Gene Expression in the Small Intestine. J. Bone Miner. Res. 1999, 14, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Nakhl, S.; Sleilaty, G.; Chouery, E.; Salem, N.; Chaine, R.; Farès, N. FokI vitamin D receptor gene polymorphism and serum 25-hydroxyvitamin D in patients with cardiovascular risk. Arch. Med. Sci. Atheroscler. Dis. 2019, 4, e298–e303. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, Y. Vitamin D levels and vitamin D receptor variants are associated with chronic heart failure in Chinese patients. J. Clin. Lab. Anal. 2019, 33, e22847. [Google Scholar] [CrossRef] [Green Version]
- Jun, M.; Xue-Qiang, G.; Jia, L.; Yang-Jing, X.; Cheng, Z.; Ge, J. Interactions between vitamin D receptor (VDR) gene and Interleukin-6 gene and environment factors on coronary heart disease risk in a Chinese Han population. Oncotarget 2017, 8, 78419–78428. [Google Scholar] [CrossRef] [Green Version]
- Prabhakar, P.; Majumdar, V.; Kulkarni, G.B.; Christopher, R. Genetic variants of vitamin D receptor and susceptibility to ischemic stroke. Biochem. Biophys. Res. Commun. 2015, 456, 631–636. [Google Scholar] [CrossRef]
- Mokhtar, W.A.; Fawzy, A.; Allam, R.M.; Amer, R.M.; Hamed, M.S. Maternal vitamin D level and vitamin D receptor gene polymorphism as a risk factor for congenital heart diseases in offspring; An Egyptian case-control study. Genes Dis. 2018, 6, 193–200. [Google Scholar] [CrossRef]
- Lu, S.; Guo, S.; Hu, F.; Guo, Y.; Yan, L.; Ma, W.; Wang, Y.; Wei, Y.; Zhang, Z.; Wang, Z. The associations between the polymorphisms of vitamin D receptor and coronary artery disease: A systematic review and meta-analysis. Medicine 2016, 95, e3467. [Google Scholar] [CrossRef]
- Huzmeli, C.; Bagci, G.; Candan, F.; Bagci, B.; Akkaya, L.; Kayatas, M. Association of vitamin D receptor gene TaqI, FokI and ApaI variants with arteriovenous fistula failure in hemodialysis patients. J. Vasc. Access 2018, 19, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Wilke, R.A.; Simpson, R.U.; Mukesh, B.N.; Bhupathi, S.V.; Dart, R.A.; Ghebranious, N.R.; McCarty, C.A. Genetic variation in CYP27B1 is associated with congestive heart failure in patients with hypertension. Pharmacogenomics 2009, 10, 1789–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alizadeh, S.; Djafarian, K.; Alizadeh, H.; Mohseni, R.; Shab-Bidar, S. Common variants of vitamin D receptor gene polymorphisms and susceptibility to coronary artery disease: A systematic review and meta-analysis. J. Nutr. Nutr. 2017, 10, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Abouzid, M.; Kruszyna, M.; Burchardt, P.; Kruszyna, L.; Główka, F.K.; Karazniewicz-Łada, M. Vitamin D Receptor Gene Polymorphism and Vitamin D Status in Population of Patients with Cardiovascular Disease—A Preliminary Study. Nutrients 2021, 13, 3117. [Google Scholar] [CrossRef]
- Ewida, S.M.; Salem, A.; Shaker, Y.M.; Samy, N.; Yassen, I.; Hassan-Mohamed, R. Vitamin D levels and vitamin D receptor genetic variants in Egyptian cardiovascular disease patients with and without diabetes. Egypt. J. Med. Hum. Genet. 2021, 22, 55. [Google Scholar] [CrossRef]
- Tabaei, S.; Motallebnezhad, M.; Tabaee, S.S. Vitamin D Receptor (VDR) Gene Polymorphisms and Risk of Coronary Artery Disease (CAD): Systematic Review and Meta-analysis. Biochem. Genetics 2021, 59, 813–836. [Google Scholar] [CrossRef]
- The American Diabetes Association (ADA). Classification and diagnosis of diabetes: Standards of medical care in diabetes—2019. Diabetes Care 2019, 42 (Suppl. S1), S13–S28. [Google Scholar] [CrossRef] [Green Version]
- Ochoa Mangado, E.; Madoz-Gúrpide, A.; Vicente Muelas, N. Diagnóstico y tratamiento de la dependencia de alcohol. Med. Segur. Trab. 2009, 55, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Salas-Salvadó, J.; Rubio, M.A.; Barbany, M.; Moreno, B. Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med. Clin. 2007, 128, 184–196. [Google Scholar] [CrossRef]
- Catapano, A.L.; Graham, I.; De Backer, G.; Wiklund, O.; Chapman, M.J.; Drexel, H.; Hoes, A.; Jennings, C.; Landmesser, U.; Pedersen, T. Guía ESC/EAS 2016 sobre el tratamiento de las dislipemias. Rev. Esp. Cardiol. 2017, 70, 1151–11564. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 6 May 2022).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cases | Controls | χ² | p-Value | Reference | OR | 95% CI | |||
---|---|---|---|---|---|---|---|---|---|
N | n (%) | N | n (%) | ||||||
Gender | 246 | 246 | |||||||
Male | 114 (46.3) | 104 (42.3) | 0.8237 | 0.3641 | |||||
Female | 132 (53.7) | 142 (57.7) | |||||||
Age | 246 | 70 (63.25, 76) | 246 | 69.5 (63, 76) | |||||
Tobacco consumption | 233 | 203 | |||||||
Current-smokers | 41 (17.6) | 27 (13.3) | 1.9502 | 0.3772 | |||||
Former-smokers | 70 (30.0) | 70 (34.5) | |||||||
Non-smokers | 122 (52.4) | 106 (52.2) | |||||||
Alcohol consumption | 220 | 173 | |||||||
Current-drinkers | 46 (20.9) | 27 (15.6) | 2.0823 | 0.3531 | |||||
Former-drinkers | 8 (3.6) | 5 (2.9) | |||||||
Non-drinkers | 166 (75.5) | 141 (81.5) | |||||||
Body Mass Index | 182 | 29.63 ± 5.14 | 114 | 28.03 ± 4.89 | |||||
Underweight | 1 (0.5) | 1 (0.9) | 0.0066 a | Normal (healthy weight) | 1.21 | 0.05–31.44 | |||
Normal (healthy weight) | 33 (18.1) | 40 (35.1) | 1 | ||||||
Overweight | 68 (37.4) | 30 (26.3) | 2.74 | 1.47–5.20 | |||||
Obese Class I (Moderately obese) | 46 (25.3) | 32 (28.1) | 1.74 | 0.92–3.34 | |||||
Obese Class II (Severely obese) | 29 (15.9) | 10 (8.8) | 3.51 | 1.53–8.57 | |||||
Obese Class III (Very severely obese) | 5 (2.7) | 1 (0.9) | 6.06 | 0.92–119.19 | |||||
Dyslipidemia | 246 | 246 | |||||||
No | 158 (64.2) | 155 (63.0) | 0.0790 | 0.7786 | |||||
Yes | 88 (35.8) | 91 (37.0) | |||||||
Hypertension | 246 | 246 | |||||||
No | 100 (40.6) | 115 (46.8) | 1.8588 | 0.1728 | |||||
Yes | 146 (48) | 131 (53.2) | |||||||
Diabetes | 246 | 246 | |||||||
No | 170 (69.1) | 201 (81.7) | 10.5320 | 0.0012 a | No | 1 | |||
Yes | 76 (30.9) | 45 (18.3) | 1.99 | 1.32–3.06 | |||||
Disease | 246 | ||||||||
Cardiac Arrhythmias | 84 (34.15) | ||||||||
Cardiomyopathy | 15 (6.10) | ||||||||
Cerebrovascular disease | 15 (6.10) | ||||||||
Heart failure | 27 (10.98) | ||||||||
Heart valve disease | 46 (18.70) | ||||||||
Peripheral vascular disease | 59 (23.98) |
Models | Genotype | Cases [n (%)] | Controls [n (%)] | p-Value a | Adjusted p-Value b | OR c | 95% CI |
---|---|---|---|---|---|---|---|
Genotypic | TT | 45 (18.3) | 21 (8.5) | 0.0061 | 0.0305 | 2.35 | 1.33–4.28 |
CT | 99 (40.2) | 113 (45.9) | 0.96 | 0.66–1.41 | |||
CC | 102 (41.5) | 112 (45.5) | 1 | ||||
Dominant | T | 144 (58.5) | 134 (54.5) | 0.3631 | 1 | ||
CC | 102 (41.5) | 112 (45.5) | |||||
Recessive | TT | 45 (18.3) | 21 (8.5) | 0.0022 | 0.0075 | 2.39 | 1.39–4.24 |
C | 201 (81.7) | 225 (91.5) | |||||
Allelic | T | 189 (38.41) | 155 (31.50) | 0.0230 | 0.1151 | ||
C | 303 (61.59) | 337 (68.50) | |||||
Additive | - | - | - | 0.02673 d | 0.1336 |
Genotypic | Dominant | Recessive | Additive | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TT vs. CC | CT vs. CC | T vs. CC | TT vs. C | T vs. C | |||||||||||
p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | |
Body Mass Index | 0.0265 | 1.06 | 1.01–1.12 | 0.0265 | 1.06 | 1.01–1.12 | 0.0458 | 1.05 | 1.00–1.11 | 0.0413 | 1.05 | 1.00–1.11 | 0.0634 | 1.05 | 0.99–1.10 |
Diabetes | |||||||||||||||
Yes | 0.0359 | 1.91 | 1.06–3.55 | 0.0359 | 1.91 | 1.06–3.55 | 0.0468 | 1.83 | 1.02–3.38 | 0.0316 | 1.94 | 1.07–3.59 | 0.0372 | 1.89 | 1.05–3.50 |
VDR FokI (rs2228570) | 0.0430 | 2.30 | 1.06–5.37 | 0.2286 | 0.72 | 0.43–1.22 | 0.8648 | 0.95 | 0.58–1.57 | 0.0099 | 2.71 | 1.31–6.07 | 0.2151 | 1.24 | 0.88–1.76 |
Rs1544410 | Rs7975232 | Rs731236 | Freq | OR (95% CI) | p-Value | |
---|---|---|---|---|---|---|
1 | G | C | T | 0.4613 | 1.00 | --- |
2 | A | A | C | 0.3685 | 0.92 (0.70–1.22) | 0.570 |
3 | G | A | T | 0.1079 | 0.81 (0.52–1.24) | 0.330 |
4 | A | A | T | 0.0251 | 1.11 (0.51–2.38) | 0.800 |
5 | G | A | C | 0.0189 | 0.34 (0.12–0.98) | 0.047 |
6 | A | C | T | 0.0114 | 1.22 (0.41–3.65) | 0.730 |
Rare | * | * | * | 0.0069 | 0.54 (0.12–2.49) | 0.430 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González Rojo, P.; Pérez Ramírez, C.; Gálvez Navas, J.M.; Pineda Lancheros, L.E.; Rojo Tolosa, S.; Ramírez Tortosa, M.d.C.; Jiménez Morales, A. Vitamin D-Related Single Nucleotide Polymorphisms as Risk Biomarker of Cardiovascular Disease. Int. J. Mol. Sci. 2022, 23, 8686. https://doi.org/10.3390/ijms23158686
González Rojo P, Pérez Ramírez C, Gálvez Navas JM, Pineda Lancheros LE, Rojo Tolosa S, Ramírez Tortosa MdC, Jiménez Morales A. Vitamin D-Related Single Nucleotide Polymorphisms as Risk Biomarker of Cardiovascular Disease. International Journal of Molecular Sciences. 2022; 23(15):8686. https://doi.org/10.3390/ijms23158686
Chicago/Turabian StyleGonzález Rojo, Paula, Cristina Pérez Ramírez, José María Gálvez Navas, Laura Elena Pineda Lancheros, Susana Rojo Tolosa, María del Carmen Ramírez Tortosa, and Alberto Jiménez Morales. 2022. "Vitamin D-Related Single Nucleotide Polymorphisms as Risk Biomarker of Cardiovascular Disease" International Journal of Molecular Sciences 23, no. 15: 8686. https://doi.org/10.3390/ijms23158686
APA StyleGonzález Rojo, P., Pérez Ramírez, C., Gálvez Navas, J. M., Pineda Lancheros, L. E., Rojo Tolosa, S., Ramírez Tortosa, M. d. C., & Jiménez Morales, A. (2022). Vitamin D-Related Single Nucleotide Polymorphisms as Risk Biomarker of Cardiovascular Disease. International Journal of Molecular Sciences, 23(15), 8686. https://doi.org/10.3390/ijms23158686