Microsatellite Instability: From the Implementation of the Detection to a Prognostic and Predictive Role in Cancers
Abstract
:1. Introduction
2. Methods of MSI Detection
3. MSI in Colorectal Cancer
4. MSI in Gastric Cancer
5. MSI in Gynecologic Cancers
6. MSI in Other Malignancies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, K.; Luo, H.; Huang, L.; Luo, H.; Zhu, X. Microsatellite instability: A review of what the oncologist should know. Cancer Cell Int. 2020, 20, 16. [Google Scholar] [CrossRef] [Green Version]
- Hause, R.J.; Pritchard, C.C.; Shendure, J.; Salipante, S.J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 2016, 22, 1342–1350. [Google Scholar] [CrossRef]
- Kawka, M.; Parada, R.; Jaszczak, K.; Horbańczuk, J.O. The use of microsatellite polymorphism in genetic mapping of the ostrich (Struthio camelus). Mol. Biol. Rep. 2012, 39, 3369–3374. [Google Scholar] [CrossRef] [Green Version]
- Bastos-Rodrigues, L.; Pimenta, J.R.; Pena, S.D.J. The Genetic Structure of Human Populations Studied Through Short Inser-tion-Deletion Polymorphisms. Ann. Hum. Genet. 2006, 70, 658–665. [Google Scholar] [CrossRef]
- Sturzeneker, R.; Bevilacqua, R.A.; Haddad, L.A.; Simpson, A.J.; Pena, S.D. Microsatellite instability in tumors as a model to study the process of microsatellite mutations. Hum. Mol. Genet. 2000, 9, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Eso, Y.; Shimizu, T.; Takeda, H.; Takai, A.; Marusawa, H. Microsatellite instability and immune checkpoint inhibitors: Toward pre-cision medicine against gastrointestinal and hepatobiliary cancers. J. Gastroenterol. 2020, 55, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Jiricny, J. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 2006, 7, 335–346. [Google Scholar] [CrossRef]
- Bonneville, R.; Krook, M.A.; Chen, H.Z.; Smith, A.; Samorodnitsky, E.; Wing, M.R.; Reeser, J.W.; Roychowdhury, S. Detection of Mi-crosatellite Instability Biomarkers via Next-Generation Sequencing. Methods Mol. Biol. 2020, 2055, 119–132. [Google Scholar]
- Lochhead, P.; Kuchiba, A.; Imamura, Y.; Liao, X.; Yamauchi, M.; Nishihara, R.; Qian, Z.R.; Morikawa, T.; Shen, J.; Meyerhardt, J.A.; et al. Microsatellite Instability and BRAF Mutation Testing in Colorectal Cancer Prognostication. J. Natl. Cancer Inst. 2013, 105, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Ligtenberg, M.J.; Kuiper, R.P.; Chan, T.L.; Goossens, M.; Hebeda, K.M.; Voorendt, M.; Lee, T.Y.; Bodmer, D.; Hoenselaar, E.; Hendriks-Cornelissen, S.J.; et al. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3′ exons of TACSTD1. Nat. Genet. 2009, 41, 112–117. [Google Scholar] [CrossRef]
- Edwards, R.A.; Witherspoon, M.; Wang, K.; Afrasiabi, K.; Pham, T.; Birnbaumer, L.; Lipkin, S.M. Epigenetic repression of DNA mis-match repair by inflammation and hypoxia in inflammatory bowel disease-associated colorectal cancer. Cancer Res. 2009, 69, 6423–6429. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, H.; Adachi, Y.; Taniguchi, H.; Kunimoto, H.; Nosho, K.; Suzuki, H.; Shinomura, Y. Interrelationship between microsatel-lite instability and microRNA in gastrointestinal cancer. World J. Gastroenterol. 2012, 18, 2745–2755. [Google Scholar] [CrossRef]
- Lai, Y.; Sun, F. The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol. Biol. Evol. 2003, 20, 2123–2131. [Google Scholar] [CrossRef]
- Gologan, A.; Sepulveda, A.R. Microsatellite Instability and DNA Mismatch Repair Deficiency Testing in Hereditary and Sporadic Gastrointestinal Cancers. Clin. Lab. Med. 2005, 25, 179–196. [Google Scholar] [CrossRef]
- Yurgelun, M.B.; Kastrinos, F. Tumor Testing for Microsatellite Instability to Identify Lynch Syndrome: New Insights into an Old Diagnostic Strategy. J. Clin. Oncol. 2019, 37, 263–265. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppälä, T.T.; Ten Broeke, S.W.; Plazzer, J.P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Bucksch, K.; Zachariae, S.; Aretz, S.; Büttner, R.; Holinski-Feder, E.; Holzapfel, S.; Hüneburg, R.; Kloor, M.; von Doeberitz, M.K.; Morak, M.; et al. Cancer risks in Lynch syndrome, Lynch-like syndrome, and familial colorectal cancer type X: A prospective cohort study. BMC Cancer 2020, 20, 460. [Google Scholar] [CrossRef]
- Kim, T.-M.; Laird, P.W.; Park, P.J. The Landscape of Microsatellite Instability in Colorectal and Endometrial Cancer Genomes. Cell 2013, 155, 858–868. [Google Scholar] [CrossRef] [Green Version]
- Oda, S.; Maehara, Y.; Ikeda, Y.; Oki, E.; Egashira, A.; Okamura, Y.; Takahashi, I.; Kakeji, Y.; Sumiyoshi, Y.; Miyashita, K.; et al. Two modes of microsatellite insta-bility in human cancer: Differential connection of defective DNA mismatch repair to dinucleotide repeat instability. Nucleic Acids Res. 2005, 33, 1628–1636. [Google Scholar] [CrossRef] [Green Version]
- Thibodeau, S.N.; Bren, G.; Schaid, D. Microsatellite Instability in Cancer of the Proximal Colon. Science 1993, 260, 816–819. [Google Scholar] [CrossRef]
- De la Chapelle, A.; Hampel, H. Clinical relevance of microsatellite instability in colorectal cancer. J. Clin. Oncol. 2010, 28, 3380–3387. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, C.C.; Morrissey, C.; Kumar, A.; Zhang, X.; Smith, C.; Coleman, I.; Salipante, S.J.; Milbank, J.; Yu, M.; Grady, W.M.; et al. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat. Commun. 2014, 5, 4988. [Google Scholar] [CrossRef] [Green Version]
- Dudley, J.C.; Lin, M.-T.; Le, D.T.; Eshleman, J.R. Microsatellite Instability as a Biomarker for PD-1 Blockade. Clin. Cancer Res. 2016, 22, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, Y.; Kondo, K.; Hirose, T.; Nakagawa, H.; Tsuyuguchi, M.; Hashimoto, M.; Sano, T.; Ochiai, A.; Monden, Y. Microsatellite instability and protein expression of the DNA mismatch repair gene, hMLH1, of lung cancer in chromate-exposed workers. Mol. Carcinog. 2005, 42, 150–158. [Google Scholar] [CrossRef]
- Alvino, E.; Marra, G.; Pagani, E.; Falcinelli, S.; Pepponi, R.; Perrera, C.; Haider, R.; Castiglia, D.; Ferranti, G.; Bonmassar, E.; et al. High-Frequency Microsatellite Instability is Associated with Defective DNA Mismatch Repair in Human Melanoma. J. Investig. Dermatol. 2002, 118, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Kassem, H.S.; Varley, J.M.; Hamam, S.M.; Margison, G.P. Immunohistochemical analysis of expression and allelotype of mismatch repair genes (hMLH1 and hMSH2) in bladder cancer. Br. J. Cancer 2001, 84, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [Green Version]
- Jover, R.; Zapater, P.; Castells, A.; Llor, X.; Andreu, M.; Cubiella, J.; Balaguer, F.; Sempere, L.; Xicola, R.M.; Bujanda, L.; et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur. J. Cancer 2009, 45, 365–373. [Google Scholar] [CrossRef]
- Nikanjam, M.; Arguello, D.; Gatalica, Z.; Swensen, J.; Barkauskas, D.A.; Kurzrock, R. Relationship between protein biomarkers of chemotherapy response and microsatellite status, tumor mutational burden and PD-L1 expression in cancer patients. Int. J. Cancer 2019, 146, 3087–3097. [Google Scholar] [CrossRef] [Green Version]
- Drescher, K.M.; Sharma, P.; Watson, P.; Gatalica, Z.; Thibodeau, S.N.; Lynch, H.T. Lymphocyte recruitment into the tumor site is altered in patients with MSI-H colon cancer. Fam. Cancer 2009, 8, 231–239. [Google Scholar] [CrossRef]
- Llosa, N.J.; Cruise, M.; Tam, A.; Wicks, E.C.; Hechenbleikner, E.M.; Taube, J.M.; Blosser, R.L.; Fan, H.; Wang, H.; Luber, B.S.; et al. The vigorous immune microenvi-ronment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015, 5, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Patel, K.; Singhi, A.D.; Ren, B.; Zhu, B.; Shaikh, F.; Sun, W. Programmed Death-Ligand 1 Expression Is Common in Gastric Cancer Associated with Epstein-Barr Virus or Microsatellite Instability. Am. J. Surg. Pathol. 2016, 40, 1496–1506. [Google Scholar] [CrossRef]
- Bai, W.; Ma, J.; Liu, Y.; Liang, J.; Wu, Y.; Yang, X.; Xu, E.; Li, Y.; Xi, Y. Screening of MSI detection loci and their heterogeneity in East Asian colorectal cancer patients. Cancer Med. 2019, 8, 2157–2166. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Yang, B.; Liao, Z. Biomarkers in Immunotherapy-Based Precision Treatments of Digestive System Tumors. Front. Oncol. 2021, 11, 650481. [Google Scholar] [CrossRef]
- Marginean, E.C.; Melosky, B. Is There a Role for Programmed Death Ligand-1 Testing and Immunotherapy in Colorectal Can-cer With Microsatellite Instability? Part I-Colorectal Cancer: Microsatellite Instability, Testing, and Clinical Implications. Arch. Pathol. Lab. Med. 2018, 142, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, R.; Markow, M.; Knight, D.; Chen, W.; Arnold, C.A.; Pritchard, C.C.; Hampel, H.; Frankel, W.L. Two-stain immunohisto-chemical screening for Lynch syndrome in colorectal cancer may fail to detect mismatch repair deficiency. Mod. Pathol. 2018, 31, 1891–1900. [Google Scholar] [CrossRef]
- Chen, W.; Swanson, B.J.; Frankel, W.L. Molecular genetics of microsatellite-unstable colorectal cancer for pathologists. Diagn. Pathol. 2017, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Rigau, V.; Sebbagh, N.; Olschwang, S.; Paraf, F.; Mourra, N.; Parc, Y.; Flejou, J.F. Microsatellite instability in colorectal carcinoma. The comparison of immunohistochemistry and molecular biology suggests a role for hMSH6 [correction of hMLH6] im-munostaining. Arch. Pathol. Lab. Med. 2003, 127, 694–700. [Google Scholar] [CrossRef]
- Beamer, L.; Grant, M.L.; Espenschied, C.; Blazer, K.R.; Hampel, H.L.; Weitzel, J.N.; Macdonald, D.J. Reflex Immunohistochemistry and Microsatellite Instability Testing of Colorectal Tumors for Lynch Syndrome Among US Cancer Programs and Follow-Up of Abnormal Results. J. Clin. Oncol. 2012, 30, 1058–1063. [Google Scholar] [CrossRef]
- Hampel, H. Point: Justification for Lynch Syndrome Screening Among All Patients with Newly Diagnosed Colorectal Cancer. J. Natl. Compr. Cancer Netw. 2010, 8, 597–601. [Google Scholar] [CrossRef] [Green Version]
- Berardinelli, G.N.; Scapulatempo-Neto, C.; Durães, R.; de Oliveira, M.A.; Guimarães, D.; Reis, R.M. Advantage of HSP110 (T17) marker inclusion for microsatellite instability (MSI) detection in colorectal cancer patients. Oncotarget 2018, 9, 28691–28701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bacher, J.W.; Sievers, C.K.; Albrecht, D.M.; Grimes, I.C.; Weiss, J.; Matkowskyj, K.A.; Agni, R.M.; Vyazunova, I.; Clipson, L.; Storts, U.R.; et al. Improved Detection of Microsatellite Instability in Early Colorectal Lesions. PLoS ONE 2015, 10, e0132727. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Capo-Chichi, J.M.; Spence, T.; Grenier, S.; Stockley, T.; Kamel-Reid, S.; Serra, S.; Sabatini, P.; Chetty, R. Heterogenous loss of mismatch repair (MMR) protein expression: A challenge for immunohistochemical interpretation and microsatellite in-stability (MSI) evaluation. J. Pathol. Clin. Res. 2019, 5, 115–129. [Google Scholar] [CrossRef]
- Mathiak, M.; Warneke, V.S.; Behrens, H.M.; Haag, J.; Böger, C.; Krüger, S.; Röcken, C. Clinicopathologic Characteristics of Microsatel-lite Instable Gastric Carcinomas Revisited: Urgent Need for Standardization. Appl. Immunohistochem. Mol. Morphol. 2017, 25, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Bartley, A.N.; Luthra, R.; Saraiya, D.S.; Urbauer, D.L.; Broaddus, R.R. Identification of cancer patients with Lynch syndrome: Clinically significant discordances and problems in tissue-based mismatch repair testing. Cancer Prev. Res. 2012, 5, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Suraweera, N.; Duval, A.; Reperant, M.; Vaury, C.; Furlan, D.; Leroy, K.; Seruca, R.; Iacopetta, B.; Hamelin, R. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology 2002, 123, 1804–1811. [Google Scholar] [CrossRef]
- Campanella, N.C.; Berardinelli, G.N.; Scapulatempo-Neto, C.; Viana, D.; Palmero, E.I.; Pereira, R.; Reis, R.M. Optimization of a penta-plex panel for MSI analysis without control DNA in a Brazilian population: Correlation with ancestry markers. Eur. J. Hum. Genet. 2014, 22, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Umar, A.; Risinger, J.I.; Hawk, E.T.; Barrett, J.C. Testing guidelines for hereditary non-polyposis colorectal cancer. Nat. Cancer 2004, 4, 153–158. [Google Scholar] [CrossRef]
- Murphy, K.M.; Zhang, S.; Geiger, T.; Hafez, M.J.; Bacher, J.; Berg, K.D.; Eshleman, J.R. Comparison of the Microsatellite Instability Analysis System and the Bethesda Panel for the Determination of Microsatellite Instability in Colorectal Cancers. J. Mol. Diagn. 2006, 8, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Cheah, P.L.; Li, J.; Looi, L.M.; Koh, C.C.; Lau, T.P.; Chang, S.W.; Teoh, K.H.; Mun, K.S.; Nazarina, A.R. Screening for microsatellite instability in colorectal carcinoma: Practical utility of immunohistochemistry and PCR with fragment analysis in a diagnostic histopathology setting. Malays. J. Pathol. 2019, 41, 91–100. [Google Scholar]
- Cho, J.; Kang, S.Y.; Kim, K.-M. MMR protein immunohistochemistry and microsatellite instability in gastric cancers. Pathology 2018, 51, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Haron, N.H.; Mohamad Hanif, E.A.; Abdul Manaf, M.R.; Yaakub, J.A.; Harun, R.; Mohamed, R.; Mohamed Rose, I. Microsatellite In-stability and Altered Expressions of MLH1 and MSH2 in Gastric Cancer. Asian Pac. J. Cancer Prev. 2019, 20, 509–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salipante, S.J.; Scroggins, S.M.; Hampel, H.L.; Turner, E.H.; Pritchard, C.C. Microsatellite instability detection by next generation se-quencing. Clin Chem. 2014, 60, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Soong, T.D.; Elemento, O. A Novel Approach for Characterizing Microsatellite Instability in Cancer Cells. PLoS ONE 2013, 8, e63056. [Google Scholar] [CrossRef] [Green Version]
- Niu, B.; Ye, K.; Zhang, Q.; Lu, C.; Xie, M.; McLellan, M.D.; Wendl, M.C.; Ding, L. MSIsensor: Microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics 2013, 30, 1015–1016. [Google Scholar] [CrossRef] [Green Version]
- Kautto, E.A.; Bonneville, R.; Miya, J.; Yu, L.; Krook, M.A.; Reeser, J.W.; Roychowdhury, S. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 2016, 8, 7452–7463. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, C.C.; Smith, C.; Salipante, S.J.; Lee, M.K.; Thornton, A.M.; Nord, A.; Gulden, C.; Kupfer, S.S.; Swisher, E.M.; Bennett, R.L.; et al. ColoSeq Provides Comprehensive Lynch and Polyposis Syndrome Mutational Analysis Using Massively Parallel Sequencing. J. Mol. Diagn. 2012, 14, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Huang, Y.; Fang, X.; Liu, C.; Deng, W.; Zhong, C.; Xu, J.; Xu, D.; Yuan, Y. A Novel and Reliable Method to Detect Microsatel-lite Instability in Colorectal Cancer by Next-Generation Sequencing. J. Mol. Diagn. 2018, 20, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Salem, M.E.; Battaglin, F.; Goldberg, R.M.; Puccini, A.; Shields, A.F.; Arguello, D.; Korn, W.M.; Marshall, J.L.; Grothey, A.; Lenz, H.J. Molecular Analyses of Left- and Right-Sided Tumors in Adolescents and Young Adults with Colorectal Cancer. Oncologist 2020, 25, 404–413. [Google Scholar] [CrossRef] [Green Version]
- Zito Marino, F.; Amato, M.; Ronchi, A.; Panarese, I.; Ferraraccio, F.; De Vita, F.; Tirino, G.; Martinelli, E.; Troiani, T.; Facchini, G.; et al. Microsatellite Status Detection in Gastrointestinal Cancers: PCR/NGS Is Mandatory in Negative/Patchy MMR Immunohistochemistry. Cancers 2022, 14, 2204. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas (TCGA) Research Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goel, A.; Nagasaka, T.; Arnold, C.N.; Inoue, T.; Hamilton, C.; Niedzwiecki, D.; Compton, C.; Mayer, R.J.; Goldberg, R.; Bertagnolli, M.M.; et al. The CpG Island Methylator Phenotype and Chromosomal Instability Are Inversely Correlated in Sporadic Colorectal Cancer. Gastroenterology 2007, 132, 127–138. [Google Scholar] [CrossRef]
- Li, L.S.; Kim, N.-G.; Kim, S.H.; Park, C.; Kim, H.; Kang, H.J.; Koh, K.H.; Kim, S.N.; Kim, W.H.; Kim, H. Chromosomal Imbalances in the Colorectal Carcinomas with Microsatellite Instability. Am. J. Pathol. 2003, 163, 1429–1436. [Google Scholar] [CrossRef]
- Jiang, W.; Cai, M.-Y.; Li, S.-Y.; Bei, J.-X.; Wang, F.; Hampel, H.; Ling, Y.-H.; Frayling, I.M.; Sinicrope, F.A.; Rodriguez-Bigas, M.A.; et al. Universal screening for Lynch syndrome in a large consecutive cohort of Chinese colorectal cancer patients: High prevalence and unique molecular features. Int. J. Cancer 2018, 144, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Hoodfar, E.; Jiang, S.F.; Udaltsova, N.; Pham, N.P.; Jodesty, Y.; Armstrong, M.A.; Hung, Y.Y.; Baker, R.J.; Postlethwaite, D.; et al. Comparison of Universal Versus Age-Restricted Screening of Colorectal Tumors for Lynch Syndrome Using Mismatch Repair Immunohistochemistry: A Cohort Study. Ann. Intern. Med. 2019, 171, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Iijima, T.; Inokuchi, T.; Kojika, E.; Takao, M.; Takao, A.; Koizumi, K.; Horiguchi, S.I.; Hishima, T.; Yamaguchi, T. Clinicopathological features of sporadic MSI colorectal cancer and Lynch syndrome: A single-center retrospective cohort study. Int. J. Clin. Oncol. 2021, 26, 1881–1889. [Google Scholar] [CrossRef]
- Nojadeh, J.N.; Behrouz Sharif, S.; Sakhinia, E. Microsatellite instability in colorectal cancer. EXCLI J. 2018, 17, 159–168. [Google Scholar]
- Tran, B.; Kopetz, S.; Tie, J.; Gibbs, P.; Jiang, Z.-Q.; Lieu, C.H.; Agarwal, A.; Maru, D.M.; Sieber, O.; Desai, J. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer. Cancer 2011, 117, 4623–4632. [Google Scholar] [CrossRef] [Green Version]
- Ladas, I.; Yu, F.; Leong, K.W.; Fitarelli-Kiehl, M.; Song, C.; Ashtaputre, R.; Kulke, M.; Mamon, H.; Makrigiorgos, G.M. Enhanced detec-tion of microsatellite instability using pre-PCR elimination of wild-type DNA homo-polymers in tissue and liquid biopsies. Nucleic Acids Res. 2018, 46, e74. [Google Scholar] [CrossRef] [Green Version]
- Kloor, M.; Huth, C.; Voigt, A.Y.; Benner, A.; Schirmacher, P.; von Knebel Doeberitz, M.; Bläker, H. Prevalence of mismatch re-pair-deficient crypt foci in Lynch syndrome: A pathological study. Lancet Oncol. 2012, 13, 598–606. [Google Scholar] [CrossRef]
- Boland, C.R.; Goel, A. Microsatellite instability in colorectal cancer. Gastroenterology 2010, 138, 2073–2087.e3. [Google Scholar] [CrossRef] [PubMed]
- Pino, M.S.; Mino-Kenudson, M.; Wildemore, B.M.; Ganguly, A.; Batten, J.; Sperduti, I.; Iafrate, A.J.; Chung, D.C. Deficient DNA mis-match repair is common in Lynch syndrome-associated colorectal adenomas. J. Mol. Diagn. 2009, 11, 238–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venderbosch, S.; Nagtegaal, I.D.; Maughan, T.S.; Smith, C.G.; Cheadle, J.P.; Fisher, D.; Kaplan, R.; Quirke, P.; Seymour, M.T.; Richman, S.D.; et al. Mismatch repair status and BRAF mutation status in metastatic colorectal cancer patients: A pooled analysis of the CAIRO, CAIRO2, COIN, and FOCUS studies. Clin. Cancer Res. 2014, 20, 5322–5330. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.G.; Fisher, D.; Claes, B.; Maughan, T.S.; Idziaszczyk, S.; Peuteman, G.; Harris, R.; James, M.D.; Meade, A.; Jasani, B.; et al. Somatic Profiling of the Epidermal Growth Factor Receptor Pathway in Tumors from Patients with Advanced Colorectal Cancer Treated with Chemotherapy ± Cetuximab. Clin. Cancer Res. 2013, 19, 4104–4113. [Google Scholar] [CrossRef] [Green Version]
- Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, T.; Cai, X.; Dong, J.; Xia, C.; Zhou, Y.; Ding, R.; Yang, R.; Tan, J.; Zhang, L.; et al. Neoadjuvant Immunotherapy for MSI-H/dMMR Locally Advanced Colorectal Cancer: New Strategies and Unveiled Opportunities. Front. Immunol. 2022, 13, 795972. [Google Scholar] [CrossRef]
- Andre, T.; Amonkar, M.; Norquist, J.M.; Shiu, K.-K.; Kim, T.W.; Jensen, B.V.; Jensen, L.H.; Punt, C.J.A.; Smith, D.; Garcia-Carbonero, R.; et al. Health-related quality of life in patients with microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer treated with first-line pembrolizumab versus chemotherapy (KEYNOTE-177): An open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 665–677. [Google Scholar] [CrossRef]
- Overman, M.J.; Lonardi, S.; Wong, K.Y.M.; Lenz, H.J.; Gelsomino, F.; Aglietta, M.; Morse, M.A.; Van Cutsem, E.; McDermott, R.; Hill, A.; et al. Durable Clinical Benefit with Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J. Clin. Oncol. 2018, 36, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Lenz, H.-J.; Van Cutsem, E.; Limon, M.L.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Hatch, S.B.; Lightfoot, H.M., Jr.; Garwacki, C.P.; Moore, D.T.; Calvo, B.F.; Woosley, J.T.; Sciarrotta, J.; Funkhouser, W.K.; Farber, R.A. Microsatellite instability testing in colorectal carcinoma: Choice of markers affects sensitivity of detection of mismatch re-pair-deficient tumors. Clin. Cancer Res. 2005, 11, 2180–2187. [Google Scholar] [CrossRef] [Green Version]
- Hissong, E.; Crowe, E.P.; Yantiss, R.K.; Chen, Y.-T. Assessing colorectal cancer mismatch repair status in the modern era: A survey of current practices and re-evaluation of the role of microsatellite instability testing. Mod. Pathol. 2018, 31, 1756–1766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, L.; Chi, Y.; Chen, W.; Chen, X.; Wei, P.; Sheng, W.; Zhou, X.; Shi, D. Immunohistochemistry and microsatellite instability analy-sis in molecular subtyping of colorectal carcinoma based on mismatch repair competency. Int. J. Clin. Exp. Med. 2015, 8, 20988–21000. [Google Scholar] [PubMed]
- Dedeurwaerdere, F.; Claes, K.B.; Van Dorpe, J.; Rottiers, I.; Van der Meulen, J.; Breyne, J.; Swaerts, K.; Martens, G. Comparison of mi-crosatellite instability detection by immunohistochemistry and molecular techniques in colorectal and endometrial cancer. Sci. Rep. 2021, 11, 12880. [Google Scholar] [CrossRef] [PubMed]
- Loughrey, M.B.; McGrath, J.; Coleman, H.G.; Bankhead, P.; Maxwell, P.; McGready, C.; Bingham, V.; Humphries, M.P.; Craig, S.G.; McQuaid, S.; et al. Identifying mismatch repair-deficient colon cancer: Near-perfect concordance between immunohistochemistry and microsatellite instability testing in a large, population-based series. Histopathology 2021, 78, 401–413. [Google Scholar] [CrossRef]
- Xiao, J.; Li, W.; Huang, Y.; Huang, M.; Li, S.; Zhai, X.; Zhao, J.; Gao, C.; Xie, W.; Qin, H.; et al. A next-generation sequencing-based strategy combining microsatellite instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer. BMC Cancer 2021, 21, 282. [Google Scholar] [CrossRef]
- Gilson, P.; Levy, J.; Rouyer, M.; Demange, J.; Husson, M.; Bonnet, C.; Salleron, J.; Leroux, A.; Merlin, J.L.; Harlé, A. Evaluation of 3 mo-lecular-based assays for microsatellite instability detection in formalin-fixed tissues of patients with endometrial and colorectal cancers. Sci. Rep. 2020, 10, 16386. [Google Scholar] [CrossRef]
- Jang, M.; Kwon, Y.; Kim, H.; Kim, H.; Min, B.S.; Park, Y.; Kim, T.I.; Hong, S.P.; Kim, W.K. Microsatellite instability test using peptide nu-cleic acid probe-mediated melting point analysis: A comparison study. BMC Cancer 2018, 18, 1218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W. TCGA divides gastric cancer into four molecular subtypes: Implications for individualized therapeutics. Chin. J. Cancer 2014, 33, 469–470. [Google Scholar] [CrossRef]
- Yang, N.; Wu, Y.; Jin, M.; Jia, Z.; Wang, Y.; Cao, D.; Qin, L.; Wang, X.; Zheng, M.; Cao, X.; et al. Microsatellite instability and Ep-stein-Barr virus combined with PD-L1 could serve as a potential strategy for predicting the prognosis and efficacy of postop-erative chemotherapy in gastric cancer. PeerJ 2021, 9, e11481. [Google Scholar] [CrossRef]
- Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.-M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015, 21, 449–456. [Google Scholar] [CrossRef]
- Guan, W.L.; Ma, Y.; Cui, Y.H.; Liu, T.S.; Zhang, Y.Q.; Zhou, Z.W.; Xu, J.Y.; Yang, L.Q.; Li, J.Y.; Sun, Y.T.; et al. The Impact of Mismatch Repair Status on Prognosis of Patients with Gastric Cancer: A Multicenter Analysis. Front. Oncol. 2021, 11, 712760. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, R.; Sugai, T.; Habano, W.; Endoh, M.; Eizuka, M.; Yamamoto, E.; Uesugi, N.; Ishida, K.; Kawasaki, T.; Matsumoto, T.; et al. Clinicopathological and molecular alterations in early gastric cancers with the microsatellite instability-high phenotype. Int. J. Cancer 2015, 138, 1689–1697. [Google Scholar] [CrossRef] [PubMed]
- Ottini, L.; Falchetti, M.; Lupi, R.; Rizzolo, P.; Agnese, V.; Colucci, G.; Bazan, V.; Russo, A. Patterns of genomic instability in gastric cancer: Clinical implications and perspectives. Ann. Oncol. 2006, 17, vii97–vii102. [Google Scholar] [CrossRef]
- Corso, G.; Velho, S.; Paredes, J.; Pedrazzani, C.; Martins, D.; Milanezi, F.; Pascale, V.; Vindigni, C.; Pinheiro, H.; Leite, M.; et al. Oncogenic mutations in gastric cancer with microsatellite instability. Eur. J. Cancer 2011, 47, 443–451. [Google Scholar] [CrossRef]
- Hudler, P. Genetic Aspects of Gastric Cancer Instability. Sci. World J. 2012, 2012, 761909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Chan, T.L.; Chu, K.-M.; Chan, A.S.; Stratton, M.R.; Yuen, S.T.; Leung, S.Y. Mutations ofBRAF andKRAS in gastric cancer and their association with microsatellite instability. Int. J. Cancer 2003, 108, 167–169. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Z.; Li, Y.; Zhao, Q.; Niu, Z. Amplification of the human epidermal growth factor receptor 2 (HER2) gene is as-sociated with a microsatellite stable status in Chinese gastric cancer patients. J. Gastrointest. Oncol. 2021, 12, 377–387. [Google Scholar] [CrossRef]
- Polom, K.; Marano, L.; Marrelli, D.; DE Luca, R.; Roviello, G.; Savelli, V.; Tan, P. Meta-analysis of microsatellite instability in relation to clinicopathological characteristics and overall survival in gastric cancer. Br. J. Surg. 2017, 105, 159–167. [Google Scholar] [CrossRef]
- Cai, L.; Sun, Y.; Wang, K.; Guan, W.; Yue, J.; Li, J.; Wang, R.; Wang, L. The Better Survival of MSI Subtype Is Associated With the Oxidative Stress Related Pathways in Gastric Cancer. Front. Oncol. 2020, 10, 1269. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Ni, S.; Tan, C.; Cai, X.; Huang, D.; Sheng, W. Clinicopathological features and prognostic value of mismatch repair protein deficiency in gastric cancer. Int. J. Clin. Exp. Pathol. 2018, 11, 2579–2587. [Google Scholar]
- An, J.Y.; Kim, H.; Cheong, J.-H.; Hyung, W.J.; Kim, H.; Noh, S.H. Microsatellite instability in sporadic gastric cancer: Its prognostic role and guidance for 5-FU based chemotherapy after R0 resection. Int. J. Cancer 2011, 131, 505–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smyth, E.C.; Wotherspoon, A.; Peckitt, C.; Gonzalez, D.; Hulkki-Wilson, S.; Eltahir, Z.; Fassan, M.; Rugge, M.; Valeri, N.; Okines, A.; et al. Mismatch Repair Deficiency, Microsatellite Instability, and Survival: An Exploratory Analysis of the Medical Research Council Adjuvant Gastric Infusional Chemotherapy (MAGIC) Trial. JAMA Oncol. 2017, 3, 1197–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janjigian, Y.Y.; Sanchez-Vega, F.; Jonsson, P.; Chatila, W.K.; Hechtman, J.F.; Ku, G.Y.; Riches, J.C.; Tuvy, Y.; Kundra, R.; Bouvier, N.; et al. Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer. Cancer Discov. 2018, 8, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Chao, J.; Fuchs, C.S.; Shitara, K.; Tabernero, J.; Muro, K.; Van Cutsem, E.; Bang, Y.J.; De Vita, F.; Landers, G.; Yen, C.J.; et al. Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 Clinical Trials. JAMA Oncol. 2021, 7, 895–902. [Google Scholar] [CrossRef]
- Cohen, R.; Pudlarz, T.; Garcia-Larnicol, M.L.; Vernerey, D.; Dray, X.; Clavel, L.; Jary, M.; Piessen, G.; Zaanan, A.; Aparicio, T.; et al. Localized MSI/dMMR gastric cancer patients, perioperative immunotherapy instead of chemotherapy: The GERCOR NE-ONIPIGA phase II study is opened to recruitment. Bull Cancer 2020, 107, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, A.; Palermo, F.; Prisciandaro, M.; Aglietta, M.; Antonuzzo, L.; Aprile, G.; Berardi, R.; Cardellino, G.G.; De Manzoni, G.; De Vita, F.; et al. TremelImumab and Durvalumab Combination for the Non-OperatIve Management (NOM) of Microsatellite InstabiliTY (MSI)-High Resectable Gastric or Gastroesophageal Junction Cancer: The Multicentre, Single-Arm, Multi-Cohort, Phase II INFINITY Study. Cancers 2021, 13, 2839. [Google Scholar] [CrossRef]
- Park, J.; Shin, S.; Yoo, H.M.; Lee, S.W.; Kim, J.G. Evaluation of the Three Customized MSI Panels to Improve the Detection of Mi-crosatellite Instability in Gastric Cancer. Clin Lab. 2017, 63, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Pécriaux, A.; Favre, L.; Calderaro, J.; Charpy, C.; Derman, J.; Pujals, A. Detection of microsatellite instability in a panel of solid tu-mours with the Idylla MSI Test using extracted DNA. J. Clin Pathol. 2021, 74, 36–42. [Google Scholar] [CrossRef]
- Farmkiss, L.; Hopkins, I.; Jones, M. Idylla microsatellite instability assay versus mismatch repair immunohistochemistry: A retro-spective comparison in gastric adenocarcinoma. J. Clin Pathol. 2021, 74, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Aysal, A.; Karnezis, A.; Medhi, I.; Grenert, J.P.; Zaloudek, C.J.; Rabban, J.T. Ovarian endometrioid adenocarcinoma: Incidence and clinical significance of the morphologic and immunohistochemical markers of mismatch repair protein defects and tumor mi-crosatellite instability. Am. J. Surg. Pathol. 2012, 36, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.C.; Mariappan, M.R.; Putcha, G.V.; Husain, A.; Chun, N.; Ford, J.M.; Schrijver, I.; Longacre, T.A. Microsatellite Instability and Mismatch Repair Protein Defects in Ovarian Epithelial Neoplasms in Patients 50 Years of Age and Younger. Am. J. Surg. Pathol. 2008, 32, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.A.; Wentzensen, N. Frequency of mismatch repair deficiency in ovarian cancer: A systematic review This article is a US Government work and, as such, is in the public domain of the United States of America. Int. J. Cancer 2010, 129, 1914–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howitt, B.E.; Strickland, K.C.; Sholl, L.M.; Rodig, S.; Ritterhouse, L.L.; Chowdhury, D.; D’Andrea, A.D.; Matulonis, U.A.; Konstantinopoulos, P.A. Clear cell ovarian cancers with microsatellite instability: A unique subset of ovarian cancers with increased tu-mor-infiltrating lymphocytes and PD-1/PD-L1 expression. Oncoimmunology 2017, 6, e1277308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shilpa, V.; Bhagat, R.; Premalata, C.S.; Pallavi, V.R.; Krishnamoorthy, L. Microsatellite instability, promoter methylation and protein expression of the DNA mismatch repair genes in epithelial ovarian cancer. Genomics 2014, 104, 257–263. [Google Scholar]
- Hodan, R.; Kingham, K.; Cotter, K.; Folkins, A.K.; Kurian, A.W.; Ford, J.M.; Longacre, T. Prevalence of Lynch syndrome in women with mismatch repair-deficient ovarian cancer. Cancer Med. 2020, 10, 1012–1017. [Google Scholar] [CrossRef]
- Latham, A.; Srinivasan, P.; Kemel, Y.; Shia, J.; Bandlamudi, C.; Mandelker, D.; Middha, S.; Hechtman, J.; Zehir, A.; Dubard-Gault, M.; et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. 2019, 37, 286–295. [Google Scholar] [CrossRef]
- Yamashita, H.; Nakayama, K.; Ishikawa, M.; Ishibashi, T.; Nakamura, K.; Sawada, K.; Yoshimura, Y.; Tatsumi, N.; Kurose, S.; Minamoto, T.; et al. Relationship between Microsatellite Instability, Immune Cells Infiltration, and Expression of Immune Checkpoint Molecules in Ovarian Carcinoma: Immunotherapeutic Strategies for the Future. Int. J. Mol. Sci. 2019, 20, 5129. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Cragun, D.; Thompson, Z.; Coppola, M.; Nicosia, S.V.; Akbari, M.; Zhang, S.; McLaughlin, J.; Narod, S.; Schildkraut, J.; et al. Association Between IHC and MSI Testing to Identify Mismatch Repair–Deficient Patients with Ovarian Cancer. Genet. Test. Mol. Biomark. 2014, 18, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Rosen, D.G.; Cai, K.Q.; Luthra, R.; Liu, J. Immunohistochemical staining of hMLH1 and hMSH2 reflects microsatellite instability status in ovarian carcinoma. Mod. Pathol. 2006, 19, 1414–1420. [Google Scholar] [CrossRef]
- Cai, K.Q.; Albarracin, C.; Rosen, D.; Zhong, R.; Zheng, W.; Luthra, R.; Broaddus, R.; Liu, J. Microsatellite instability and alteration of the expression of hMLH1 and hMSH2 in ovarian clear cell carcinoma. Hum. Pathol. 2004, 35, 552–559. [Google Scholar] [CrossRef]
- Travaglino, A.; Raffone, A.; Gencarelli, A.; Mollo, A.; Guida, M.; Insabato, L.; Santoro, A.; Zannoni, G.F.; Zullo, F. TCGA Classification of Endometrial Cancer: The Place of Carcinosarcoma. Pathol. Oncol. Res. 2020, 26, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [PubMed] [Green Version]
- Bianco, B.; Barbosa, C.P.; Trevisan, C.M.; Laganà, A.S.; Montagna, E. Endometrial cancer: A genetic point of view. Transl. Cancer Res. 2020, 9, 7706–7715. [Google Scholar] [CrossRef] [PubMed]
- Bosse, T.; Nout, R.A.; McAlpine, J.N.; McConechy, M.K.; Britton, H.; Hussein, Y.R.; Gonzalez, C.; Ganesan, R.; Steele, J.C.; Harrison, B.T.; et al. Molecular Classification of Grade 3 Endometrioid Endometrial Cancers Identifies Distinct Prognostic Subgroups. Am. J. Surg. Pathol. 2018, 42, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Pasanen, A.; Loukovaara, M.; Kaikkonen, E.; Olkinuora, A.; Pylvänäinen, K.; Alhopuro, P.; Peltomäki, P.; Mecklin, J.P.; Bützow, R. Testing for Lynch Syndrome in Endometrial Carcinoma: From Universal to Age-Selective MLH1 Methylation Analysis. Cancers 2022, 14, 1348. [Google Scholar] [CrossRef]
- Shia, J.; Black, D.; Hummer, A.J.; Boyd, J.; Soslow, R.A. Routinely assessed morphological features correlate with microsatellite in-stability status in endometrial cancer. Hum. Pathol. 2008, 39, 116–125. [Google Scholar] [CrossRef]
- Mrkonjic, M.; Turashvili, G. EPM2AIP1 Immunohistochemistry Can Be Used as Surrogate Testing for MLH1 Promoter Methyl-ation in Endometrial Cancer. Am. J. Surg. Pathol. 2022, 46, 376–382. [Google Scholar]
- Cortes-Ciriano, I.; Lee, S.; Park, W.-Y.; Kim, T.-M.; Park, P.J. A molecular portrait of microsatellite instability across multiple cancers. Nat. Commun. 2017, 8, 15180. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.K.; Bashashati, A.; Anglesio, M.S.; Cochrane, D.R.; Grewal, D.S.; Ha, G.; McPherson, A.; Horlings, H.M.; Senz, J.; Prentice, L.M.; et al. Genomic consequences of aberrant DNA re-pair mechanisms stratify ovarian cancer histotypes. Nat. Genet. 2017, 49, 856–865. [Google Scholar]
- Novetsky, A.P.; Zighelboim, I.; Thompson, D.M., Jr.; Powell, M.A.; Mutch, D.G.; Goodfellow, P.J. Frequent mutations in the RPL22 gene and its clinical and functional implications. Gynecol. Oncol. 2013, 128, 470–474. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, M.; Banno, K.; Yanokura, M.; Kobayashi, Y.; Kishimi, A.; Ogawa, S.; Kisu, I.; Nomura, H.; Hirasawa, A.; Susumu, N.; et al. Analysis of candidate target genes for mononucleotide repeat mutation in microsatellite instability-high (MSI-H) endome-trial cancer. Int. J. Oncol. 2009, 35, 977–982. [Google Scholar] [PubMed] [Green Version]
- Bilbao, C.; Ramírez, R.; Rodríguez, G.; Falcón, O.; León, L.; Díaz-Chico, N.; Perucho, M.; Díaz-Chico, J.C. Double strand break repair components are frequent targets of microsatellite instability in endometrial cancer. Eur. J. Cancer 2010, 46, 2821–2827. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, F.; Codegoni, A.M.; Furlan, D.; Tibiletti, M.G.; Capella, C.; Broggini, M. CHK1 frameshift mutations in genetically unstable colorectal and endometrial cancers. Genes Chromosom. Cancer 1999, 26, 176–180. [Google Scholar] [CrossRef]
- Vassileva, V.; Millar, A.; Briollais, L.; Chapman, W.; Bapat, B. Genes involved in DNA repair are mutational targets in endometrial cancers with microsatellite instability. Cancer Res. 2002, 62, 4095–4099. [Google Scholar] [PubMed]
- Deshpande, M.; Romanski, P.A.; Rosenwaks, Z.; Gerhardt, J. Gynecological Cancers Caused by Deficient Mismatch Repair and Microsatellite Instability. Cancers 2020, 12, 3319. [Google Scholar] [CrossRef]
- Bilbao, C.; Rodríguez, G.; Ramírez, R.; Falcón, O.; León, L.; Chirino, R.; Rivero, J.F.; Díaz-Chico, B.N.; Díaz-Chico, J.C.; Perucho, M. The relationship between microsatellite instability and PTEN gene mutations in endometrial cancer. Int. J. Cancer 2006, 119, 563–570. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; De Jesus Acosta, A.; Miller, W.H., Jr.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Pembrolizumab in Patients with Microsatellite Instability–High Advanced Endometrial Cancer: Results From the KEYNOTE-158 Study. J. Clin. Oncol. 2022, 40, 752–761. [Google Scholar] [CrossRef]
- Zighelboim, I.; Goodfellow, P.J.; Gao, F.; Gibb, R.K.; Powell, M.A.; Rader, J.S.; Mutch, D.G. Microsatellite instability and epigenetic inac-tivation of MLH1 and outcome of patients with endometrial carcinomas of the endometrioid type. J. Clin. Oncol. 2007, 25, 2042–2048. [Google Scholar] [CrossRef]
- Macdonald, N.D.; Salvesen, H.B.; Ryan, A.; Iversen, O.E.; Akslen, L.A.; Jacobs, I.J. Frequency and prognostic impact of microsatellite instability in a large population-based study of endometrial carcinomas. Cancer Res. 2000, 60, 1750–1752. [Google Scholar]
- Kanopiene, D.; Vidugiriene, J.; Valuckas, K.P.; Smailyte, G.; Uleckiene, S.; Bacher, J. Endometrial cancer and microsatellite instability status. Open Med. 2014, 10, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Makker, V.; Taylor, M.H.; Aghajanian, C.; Oaknin, A.; Mier, J.; Cohn, A.L.; Romeo, M.; Bratos, R.; Brose, M.S.; DiSimone, C.; et al. Lenvatinib Plus Pem-brolizumab in Patients with Advanced Endometrial Cancer. J. Clin. Oncol. 2020, 38, 2981–2992. [Google Scholar] [CrossRef] [PubMed]
- Ackroyd, S.A.; Huang, E.S.; Kurnit, K.C.; Lee, N.K. Pembrolizumab and lenvatinib versus carboplatin and paclitaxel as first-line therapy for advanced or recurrent endometrial cancer: A Markov analysis. Gynecol. Oncol. 2021, 162, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Oaknin, A.; Gilbert, L.; Tinker, A.V.; Brown, J.; Mathews, C.; Press, J.; Sabatier, R.; O’Malley, D.M.; Samouelian, V.; Boni, V.; et al. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite insta-bility-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: Interim results from GARNET-a phase I, single-arm study. Immunother Cancer 2022, 10, e003777. [Google Scholar]
- Ukkola, I.; Nummela, P.; Pasanen, A.; Kero, M.; Lepistö, A.; Kytölä, S.; Bützow, R.; Ristimäki, A. Detection of microsatellite instability with Idylla MSI assay in colorectal and endometrial cancer. Virchows Arch. 2021, 479, 471–479. [Google Scholar] [CrossRef]
- Saeki, H.; Hlaing, M.T.; Horimoto, Y.; Kajino, K.; Ohtsuji, N.; Fujino, K.; Terao, Y.; Hino, O. Usefulness of immunohistochemistry for mismatch repair protein and microsatellite instability examination in adenocarcinoma and background endometrium of spo-radic endometrial cancer cases. J. Obs. Gynaecol. Res. 2019, 45, 2037–2042. [Google Scholar] [CrossRef]
- Siemanowski, J.; Schömig-Markiefka, B.; Buhl, T.; Haak, A.; Siebolts, U.; Dietmaier, W.; Arens, N.; Pauly, N.; Ataseven, B.; Büttner, R.; et al. Managing Difficulties of Microsatellite Instability Testing in Endometrial Cancer-Limitations and Ad-vantages of Four Different PCR-Based Approaches. Cancers 2021, 13, 1268. [Google Scholar] [CrossRef]
- McConechy, M.; Talhouk, A.; Li-Chang, H.; Leung, S.; Huntsman, D.; Gilks, C.; McAlpine, J. Detection of DNA mismatch repair (MMR) deficiencies by immunohistochemistry can effectively diagnose the microsatellite instability (MSI) phenotype in endometrial carcinomas. Gynecol. Oncol. 2015, 137, 306–310. [Google Scholar] [CrossRef]
- Song, Y.; Gu, Y.; Hu, X.; Wang, M.; He, Q.; Li, Y. Endometrial Tumors with MSI-H and dMMR Share a Similar Tumor Immune Mi-croenvironment. Onco Targets Ther. 2021, 14, 4485–4497. [Google Scholar] [CrossRef]
- Warth, A.; Körner, S.; Penzel, R.; Muley, T.; Dienemann, H.; Schirmacher, P.; von Knebel-Doeberitz, M.; Weichert, W.; Kloor, M. Mi-crosatellite instability in pulmonary adenocarcinomas: A comprehensive study of 480 cases. Virchows Arch. 2016, 468, 313–319. [Google Scholar] [CrossRef]
- De Marchi, P.; Berardinelli, G.N.; Cavagna, R.; De Paula, F.; Da Silva, E.A.; Miziara, J.; Leal, L.; Reis, R. EP1.04-11 Frequency of Microsatellite Instability (MSI) in Brazilian TKI non-treatable Non-Small Cell Lung Cancer (NSCLC) patients. J. Thor. Oncol. 2019, 14, S973. [Google Scholar] [CrossRef]
- Woenckhaus, M.; Stoehr, R.; Dietmaier, W.; Wild, P.J.; Zieglmeier, U.; Foerster, J.; Merk, J.; Blaszyk, H.; Pfeifer, M.; Hofstaedter, F.; et al. Microsatellite instability at chromosome 8p in non-small cell lung cancer is associated with lymph node metastasis and squamous differentiation. Int. J. Oncol. 2003, 23, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.W.; Chen, Y.C.; Chen, C.Y.; Chen, J.T.; Chen, S.K.; Wang, Y.C. Correlation of genetic instability with mismatch repair protein expression and p53 mutations in non-small cell lung cancer. Clin. Cancer Res. 2000, 6, 1639–1646. [Google Scholar] [PubMed]
- Carpagnano, G.E.; Lacedonia, D.; Crisetti, E.; Martinelli, D.; Foschino-Barbaro, M.P. New panel of microsatellite alterations detecta-ble in the EBC for lung cancer prognosis. J. Cancer 2016, 7, 2266–2269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivares-Hernández, A.; Del Barco Morillo, E.; Parra Pérez, C.; Miramontes-González, J.P.; Figuero-Pérez, L.; Martín-Gómez, T.; Escala-Cornejo, R.; Bellido Hernández, L.; González Sarmiento, R.; Cruz-Hernández, J.J.; et al. Influence of DNA Mismatch Repair (MMR) System in Survival and Response to Immune Checkpoint Inhibitors (ICIs) in Non-Small Cell Lung Cancer (NSCLC): Retrospective Analysis. Biomedicines 2022, 10, 360. [Google Scholar] [CrossRef]
- Leighl, N.B.; Hellmann, M.D.; Hui, R.; Carcereny, E.; Felip, E.; Ahn, M.-J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Pembrolizumab in patients with advanced non-small-cell lung cancer (KEYNOTE-001): 3-year results from an open-label, phase 1 study. Lancet Respir. Med. 2019, 7, 347–357. [Google Scholar] [CrossRef]
- Shaverdian, N.; Lisberg, A.E.; Bornazyan, K.; Veruttipong, D.; Goldman, J.W.; Formenti, S.C.; Garon, E.B.; Lee, P. Previous radiother-apy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analy-sis of the KEYNOTE-001 phase 1 trial. Lancet Oncol. 2017, 18, 895–903. [Google Scholar] [CrossRef]
- Diaz, L.A.; Marabelle, A.; Delord, J.-P.; Shapira-Frommer, R.; Geva, R.; Peled, N.; Kim, T.W.; Andre, T.; Van Cutsem, E.; Guimbaud, R.; et al. Pembrolizumab therapy for mi-crosatellite instability high (MSI-H) colorectal cancer (CRC) and non-CRC. J. Clin. Oncol. 2017, 35, 3071. [Google Scholar] [CrossRef]
- Mills, A.M.; Dill, E.A.; Moskaluk, C.A.; Dziegielewski, J.; Bullock, T.N.; Dillon, P.M. The Relationship Between Mismatch Repair Defi-ciency and PD-L1 Expression in Breast Carcinoma. Am. J. Surg. Pathol. 2018, 42, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Sajjadi, E.; Venetis, K.; Piciotti, R.; Invernizzi, M.; Guerini-Rocco, E.; Haricharan, S.; Fusco, N. Mismatch repair-deficient hormone receptor-positive breast cancers: Biology and pathological characterization. Cancer Cell Int. 2021, 21, 266. [Google Scholar] [CrossRef]
- Fusco, N.; Lopez, G.; Corti, C.; Pesenti, C.; Colapietro, P.; Ercoli, G.; Gaudioso, G.; Faversani, A.; Gambini, D.; Michelotti, A.; et al. Mismatch Repair Protein Loss as a Prognostic and Predictive Biomarker in Breast Cancers Regardless of Microsatellite Instability. JNCI Cancer Spectr. 2018, 2, pky056. [Google Scholar] [CrossRef] [Green Version]
- Lotsari, J.E.; Gylling, A.; Abdel-Rahman, W.M.; Nieminen, T.T.; Aittomäki, K.; Friman, M.; Pitkänen, R.; Aarnio, M.; Järvinen, H.J.; Mecklin, J.P.; et al. Breast carcinoma and Lynch syndrome: Molecular analysis of tumors arising in mutation carriers, non-carriers, and sporadic cases. Breast Cancer Res. 2012, 14, R90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurata, K.; Kubo, M.; Kai, M.; Mori, H.; Kawaji, H.; Kaneshiro, K.; Yamada, M.; Nishimura, R.; Osako, T.; Arima, N.; et al. Microsatellite instability in Japanese female patients with triple-negative breast cancer. Breast Cancer 2020, 27, 490–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldés, T.; Perez-Segura, P.; Tosar, A.; de La Hoya, M.; Diaz-Rubio, E. Microsatellite instability correlates with negative expression of estrogen and progesterone receptors in sporadic breast cancer. Teratog. Carcinog. Mutagen. 2000, 20, 283–291. [Google Scholar] [CrossRef]
- Yee, C.J.; Roodi, N.; Verrier, C.S.; Parl, F.F. Microsatellite instability and loss of heterozygosity in breast cancer. Cancer Res. 1994, 54, 1641–1644. [Google Scholar]
- Rugo, H.S.; Delord, J.-P.; Im, S.-A.; Ott, P.A.; Piha-Paul, S.A.; Bedard, P.L.; Sachdev, J.; Le Tourneau, C.; van Brummelen, E.M.; Varga, A.; et al. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor–Positive/Human Epidermal Growth Factor Receptor 2–Negative Advanced Breast Cancer. Clin. Cancer Res. 2018, 24, 2804–2811. [Google Scholar] [CrossRef] [Green Version]
- Lupinacci, R.M.; Goloudina, A.; Buhard, O.; Bachet, J.B.; Maréchal, R.; Demetter, P.; Cros, J.; Bardier-Dupas, A.; Collura, A.; Cervera, P.; et al. Preva-lence of Microsatellite Instability in Intraductal Papillary Mucinous Neoplasms of the Pancreas. Gastroenterology 2018, 154, 1061–1065. [Google Scholar] [CrossRef]
- Leclerc, J.; Vermaut, C.; Buisine, M.-P. Diagnosis of Lynch Syndrome and Strategies to Distinguish Lynch-Related Tumors from Sporadic MSI/dMMR Tumors. Cancers 2021, 13, 467. [Google Scholar] [CrossRef]
- Hu, Z.I.; Shia, J.; Stadler, Z.K.; Varghese, A.M.; Capanu, M.; Salo-Mullen, E.; Lowery, M.A.; Diaz, L.A., Jr.; Mandelker, D.; Yu, K.H.; et al. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations. Clin. Cancer Res. 2018, 24, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Møller, P.; Seppälä, T.T.; Bernstein, I.; Holinski-Feder, E.; Sala, P.; Gareth Evans, D.; Lindblom, A.; Macrae, F.; Blanco, I.; Sijmons, R.H.; et al. Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: A report from the Prospective Lynch Syndrome Database. Gut 2018, 67, 1306–1316. [Google Scholar] [CrossRef] [Green Version]
- Ahmad-Nielsen, S.A.; Nielsen, M.F.B.; Mortensen, M.B.; Detlefsen, S. Frequency of mismatch repair deficiency in pancreatic ductal adenocarcinoma. Pathol. Res. Pract. 2020, 216, 152985. [Google Scholar] [CrossRef]
- Lupinacci, R.M.; Bachet, J.B.; André, T.; Duval, A.; Svrcek, M. Pancreatic ductal adenocarcinoma harboring microsatellite instability/DNA mismatch repair deficiency. Towards personalized medicine. Surg. Oncol. 2019, 28, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Riazy, M.; Kalloger, S.E.; Sheffield, B.S.; Peixoto, R.D.; Li-Chang, H.H.; Scudamore, C.H.; Renouf, D.J.; Schaeffer, D.F. Mismatch repair status may predict response to adjuvant chemotherapy in resectable pancreatic ductal adenocarcinoma. Mod. Pathol. 2015, 28, 1383–1389. [Google Scholar] [CrossRef] [Green Version]
- Cloyd, J.M.; Katz, M.H.G.; Wang, H.; Cuddy, A.; You, Y.N. Clinical and Genetic Implications of DNA Mismatch Repair Deficiency in Patients with Pancreatic Ductal Adenocarcinoma. JAMA Surg. 2017, 152, 1086–1088. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Can-cer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Xu, B.; Fuchs, T.; Dogan, S.; Landa, I.; Katabi, N.; Fagin, J.A.; Tuttle, R.M.; Sherman, E.; Gill, A.J.; Ghossein, R. Dissecting Anaplastic Thy-roid Carcinoma: A Comprehensive Clinical, Histologic, Immunophenotypic, and Molecular Study of 360 Cases. Thyroid 2020, 30, 1505–1517. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.S.; Lorch, J.H.; Alexander, E.K.; Nehs, M.A.; Nowak, J.A.; Hornick, J.L.; Barletta, J.A. Clinicopathologic Features of Mismatch Repair-Deficient Anaplastic Thyroid Carcinomas. Thyroid 2019, 29, 666–673. [Google Scholar] [CrossRef]
- Qiao, P.-P.; Tian, K.-S.; Han, L.-T.; Ma, B.; Shen, C.-K.; Zhao, R.-Y.; Zhang, Y.; Wei, W.-J.; Chen, X.-P. Correlation of mismatch repair deficiency with clinicopathological features and programmed death-ligand 1 expression in thyroid carcinoma. Endocrine 2022, 76, 660–670. [Google Scholar] [CrossRef]
- D’Andréa, G.; Lassalle, S.; Guevara, N.; Mograbi, B.; Hofman, P. From biomarkers to therapeutic targets: The promise of PD-L1 in thyroid autoimmunity and cancer. Theranostics 2021, 11, 1310–1325. [Google Scholar] [CrossRef]
- Rocha, M.L.; Schmid, K.W.; Czapiewski, P. The prevalence of DNA microsatellite instability in anaplastic thyroid carcinoma–systematic review and discussion of current therapeutic options. Contemp. Oncol. 2021, 25, 213–223. [Google Scholar] [CrossRef]
- Ülgen, E.; Can, Ö.; Bilguvar, K.; Oktay, Y.; Akyerli, C.B.; Danyeli, A.E.; Yakıcıer, M.C.; Sezerman, O.U.; Pamir, M.N.; Özduman, K. Whole exome sequencing-based analysis to identify DNA damage repair deficiency as a major contributor to gliomagenesis in adult diffuse gliomas. J. Neurosurg. 2019, 132, 1435–1446. [Google Scholar] [CrossRef]
- Akır, E.; Saygın, İ.; Ercin, M.E. Investigation of the relationship between immune checkpoints and mismatch repair deficiency in recurrent and nonrecurrent glioblastoma. Turk. J. Med. Sci. 2021, 51, 1800–1808. [Google Scholar]
- Kroiss, M.M.; Vogt, T.M.M.; Landthaler, M.; Schlegel, J.; Stolz, W. Microsatellite Instability in Malignant Melanomas. Acta Derm. Venereol. 2001, 81, 242–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birindelli, S.; Tragni, G.; Bartoli, C.; Ranzani, G.N.; Rilke, F.; Pierotti, M.A.; Pilotti, S. Detection of microsatellite alterations in the spec-trum of melanocytic nevi in patients with or without individual or family history of melanoma. Int. J. Cancer 2000, 86, 255–261. [Google Scholar] [CrossRef]
- Uribe, P.; Wistuba, I.I.; Gonzalez, S. Allelotyping, microsatellite instability, and BRAF mutation analyses in common and atypical melanocytic nevi and primary cutaneous melanomas. Am. J. Dermatopathol. 2009, 31, 354–363. [Google Scholar] [CrossRef]
- Kubecek, O.; Trojanova, P.; Molnarova, V.; Kopecky, J. Microsatellite instability as a predictive factor for immunotherapy in ma-lignant melanoma. Med. Hypotheses 2016, 93, 74–76. [Google Scholar] [CrossRef]
- Gayhart, M.G.; Johnson, N.; Paul, A.; Quillin, J.M.; Hampton, L.J.; Idowu, M.O.; Smith, S.C. Universal Mismatch Repair Protein Screening in Upper Tract Urothelial Carcinoma. Am. J. Clin. Pathol. 2020, 154, 792–801. [Google Scholar] [CrossRef]
- Lindner, A.K.; Schachtner, G.; Tulchiner, G.; Thurnher, M.; Untergasser, G.; Obrist, P.; Pipp, I.; Steinkohl, F.; Horninger, W.; Culig, Z.; et al. Lynch Syndrome: Its Impact on Urothelial Carcinoma. Int. J. Mol. Sci. 2021, 22, 531. [Google Scholar] [CrossRef]
- Fraune, C.; Simon, R.; Hube-Magg, C.; Makrypidi-Fraune, G.; Kähler, C.; Kluth, M.; Höflmayer, D.; Büscheck, F.; Dum, D.; Luebke, A.M.; et al. MMR deficiency in urothelial carcinoma of the bladder presents with temporal and spatial homogeneity throughout the tumor mass. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 488–495. [Google Scholar] [CrossRef]
- Metcalfe, M.J.; Petros, F.G.; Rao, P.; Mork, M.E.; Xiao, L.; Broaddus, R.R.; Matin, S.F. Universal Point of Care Testing for Lynch Syn-drome in Patients with Upper Tract Urothelial Carcinoma. J. Urol. 2018, 199, 60–65. [Google Scholar] [CrossRef]
- Harper, H.L.; McKenney, J.K.; Heald, B.; Stephenson, A.; Campbell, S.C.; Plesec, T.; Magi-Galluzzi, C. Upper tract urothelial carcino-mas: Frequency of association with mismatch repair protein loss and lynch syndrome. Mod. Pathol. 2017, 30, 146–156. [Google Scholar] [CrossRef] [Green Version]
- Urakami, S.; Inoshita, N.; Oka, S.; Miyama, Y.; Nomura, S.; Arai, M.; Sakaguchi, K.; Kurosawa, K.; Okaneya, T. Clinicopathological characteristics of patients with upper urinary tract urothelial cancer with loss of immunohistochemical expression of the DNA mismatch repair proteins in universal screening. Int. J. Urol. 2017, 25, 151–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, J.; Mills, A.M.; Mahadevan, M.S.; Fan, J.; Culp, S.H.; Thomas, M.H.; Cathro, H.P. Universal Lynch Syndrome Screening Should be Performed in All Upper Tract Urothelial Carcinomas. Am. J. Surg. Pathol. 2018, 42, 1549–1555. [Google Scholar] [CrossRef] [PubMed]
- Guedes, L.B.; Antonarakis, E.S.; Schweizer, M.T.; Mirkheshti, N.; Almutairi, F.; Park, J.C.; Glavaris, S.; Hicks, J.; Eisenberger, M.A.; De Marzo, A.M.; et al. MSH2 Loss in Primary Prostate Cancer. Clin. Cancer Res. 2017, 23, 6863–6874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sedhom, R.; Antonarakis, E.S. Clinical implications of mismatch repair deficiency in prostate cancer. Futur. Oncol. 2019, 15, 2395–2411. [Google Scholar] [CrossRef] [PubMed]
- Mollica, V.; Marchetti, A.; Rosellini, M.; Nuvola, G.; Rizzo, A.; Santoni, M.; Cimadamore, A.; Montironi, R.; Massari, F. An Insight on Novel Molecular Pathways in Metastatic Prostate Cancer: A Focus on DDR, MSI and AKT. Int. J. Mol. Sci. 2021, 22, 13519. [Google Scholar] [CrossRef]
Clinical Trial | Drug Treatment | Phase | Tumor Type | N. Patients | Status | Conclusion |
---|---|---|---|---|---|---|
NCT02460198 KEYNOTE-164 | Pembrolizumab | 2 | Advanced unresectable CRC mCRC Stage IV | 124 | Completed | Pembrolizumab is effective in MSI-H/dMMR CRC |
NCT01876511 KEYNOTE-016 | Pembrolizumab | 2 | MSI-H CRC MSS CRC MSI non-CRC | 113 | Completed | ORR: disappearance of all target lesions PR: 30% decrease in the diameters of the target lesions |
NCT00912743 | Olaparib | 2 | CRC MSI-H | 33 | Completed | Olaparib activity not demonstrated after failure of standard systemic therapy |
NCT03374254 KEYNOTE-651 | Pembrolizumab + Binimetinib alone Pembrolizumab + Chemotherapy with or without Binimetinib | 1 | mCRC MSS/pMMR | 220 | Active, not recruiting | No results posted |
NCT02060188 CheckMate 142 | Nivolumab alone vs. Nivolumab + Ipilimumab orNivolumab + BMS-986016 or Nivolumab + Daratumumab Nivolumab + Ipilimumab + Cobimetinib | 2 | mCRC MSI-H CRC non-MSI-H | 385 | Active, not recruiting | No results posted |
NCT04258111 | IBI310 (anti-CTLA-4 antibody) + Sintilimab (anti-PD-1 antibody) | 2 | CRC MSI-H mCRC MSI-H | 4 | Active, not recruiting | No results posted |
NCT03435107 | Durvalumab | 2 | mCRC MSI-H or POLE | 33 | Active, not recruiting | No results posted |
NCT03350126 | Ipilimumab + Nivolumab | 2 | mCRC MSI/dMMR | 57 | Active, not recruiting | No results posted |
NCT03186326 | FOLFOX or FOLFIRI Protocol + Panitumumab + Cetuximab + Bevacizumab + Aflibercept vs. Avelumab | 2 | mCRC MSI-H | 132 | Active, not recruiting | No results posted |
NCT02563002 KEYNOTE-177 | Pembrolizumab vs. standard therapy (mFOLFOX6 and FOLFIRI alone or associated with Bevacizumab + Cetuximab) | 3 | MSI CRC stage IV | 307 | Active, not recruiting | Pembrolizumab prolongs PFS or OS |
NCT03827044 | Avelumab | 3 | POLE CRC CRC MSI Stage III | 402 | Active, not recruiting | No results posted |
NCT03926338 | Toripalimab + Celecoxib vs. Toripalimab alone | 1–2 | MSI-H/dMMR CRC | 34 | Recruiting | No results posted |
NCT04636008 | Sintilimab + Hypofractionated radiotherapy | 1–2 | Rectal cancer MSI-H/dMMR | 20 | Recruiting | No results posted |
NCT04014530 | Ataluren + Pembrolizumab | 1–2 | mCRC pMMR and dMMR mEC dMMR | 47 | Recruiting | No results posted |
NCT04988191 | Toripalimab + Bevacizumab + Irinotecan | 1–2 | CRC dMMR/MSI-H | 44 | Recruiting | No results posted |
NCT04715633 | Camrelizumab + Apatinib | 2 | Locally advanced dMMR/MSI-H CRC | 52 | Recruiting | No results posted |
NCT03519412 | Temozolomide (induction) Pembrolizumab (treatment) | 2 | mCRC pMMR and dMMR | 102 | Recruiting | No results posted |
NCT05116085 | Tislelizumab | 2 | With early-stage (Stage II-III) MSI-H or dMMR CRC | 38 | Recruiting | No results posted |
NCT04715633 | Camrelizumab + Apatinib | 2 | MSI-H/dMMR CRC | 52 | Recruiting | No results posted |
NCT05118724 | Atezolizumab | 2 | CRC MSI-H/dMMR Stage III | 120 | Recruiting | No results posted |
NCT04695470 | Fruquintinib + Sintilimab | 2 | mCRC TMB and non MSI-H | 70 | Recruiting | No results posted |
NCT03638297 | BAT1306 + Aspirin | 2 | CRC MSI-H/dMMR or TMB | 27 | Recruiting | No results posted |
NCT04730544 | Nivolumab + Ipilimumab | 2 | mCRC dMMR/MSI-H | 96 | Recruiting | No results posted |
NCT04895722 | Pembrolizumab alone vs. Pembrolizumab + Quavonlimab vs. Pembrolizumab + Favezelimab vs. Pembrolizumab + Vibostolimab | 2 | CRC MSI Stage IV | 320 | Recruiting | No results posted |
NCT04301557 | PD-1 Antibody + Oxaliplatin + Capecitabine + External beam radiotherapy + Total mesorectal excision | 2 | Advanced CRC dMMR/MSI-H | 25 | Recruiting | No results posted |
NCT04304209 | Oxaliplatin + Capecitabine + Sintilimab + Total mesorectal excision vs. Oxaliplatin + Capecitabine + Sintilimab + Radiotherapy + Total mesorectal excision vs. Oxaliplatin + Capecitabine + Radiotherapy + Total mesorectal excision | 2–3 | CRC Stage IICRC Stage III dMMR/MSI-H | 195 | Recruiting | No results posted |
NCT02912559 | Atezolizumab + Fluorouracil vs. Leucovorin calcium + Oxaliplatin vs. Fluorouracil + Leucovorin calcium + Oxaliplatin | 3 | CRC dMMR Stage III | 700 | Recruiting | No results posted |
NCT05239741 | Pembrolizumab alone vs. 5-fluorouracil alone or 5-fluorouracil + Bevacizumab or 5-fluorouracil + Cetuximab or FOLFIRI + Bevacizumab or FOLFIRI + Cetuximab | 3 | CRC MSI-H Stage IV dMMR CRC | 100 | Recruiting | No results posted |
NCT02997228 | Atezolizumab alone vs. mFOLFOX6 + Bevacizumab vs. mFOLFOX6 + Bevacizumab + Atezolizumab | 3 | mCRC MSI-H | 231 | Recruiting | No results posted |
NCT04008030 | Nivolumab alone vs. Nivolumab + Ipilimumab vs. Active comparator (Oxaliplatin, Leucovorin, Fluorouracil, Irinotecan, Bevacizumab, Cetuximab) | 3 | mCRC MSI-H | 748 | Recruiting | No results posted |
NCT05236972 | Sintilimab alone vs. Oxaliplatin + Capecitabine | 3 | CRC dMMR/MSI-H Stage III | 323 | Recruiting | No results posted |
NCT05239741 | Pembrolizumab alone vs. Active comparator (Oxaliplatin, Leucovorin, 5-fluorouracil, Irinotecan, Bevacizumab, Cetuximab) | 3 | CRC MSI-H/dMMR Stage IV | 100 | Recruiting | No results posted |
NCT05217446 | Pembrolizumab alone vs. Encorafenib + Cetuximab + Pembrolizumab | 2 | mCRC MSI-H/dMMR | 104 | Not yet recruiting | No results posted |
NCT05217446 | Pembrolizumab alone vs. Encorafenib + Cetuximab + Pembrolizumab | 2 | mCRC MSI-H/dMMR | 104 | Not yet recruiting | No results posted |
NCT05231850 | Tislelizumab | 2 | CRC dMMR/MSI-H Stage II and III | 70 | No yet recruiting | No results posted |
NCT05231850 | Tislelizumab | 2 | CRC dMMR/MSI-H Stage II and Stage III | 70 | Not yet recruiting | No results posted |
NCT04866862 | Fruquintinib + Camrelizumab | 2 | Non MSI-H/dMMR Refractory CRC | 32 | Not yet recruiting | No results posted |
NCT05131919 | Pembrolizumab | 2 | Locally advanced, Irresectable, dMMR not- mCRC | 25 | Not yet recruiting | No results posted |
NCT05215379 | Xintilimab injection | 2–3 | Rectal cancer immunotherapy MSI-L | 180 | Not yet recruiting | No results posted |
Cases | IHC Results | PCR Results | NGS Results | References |
---|---|---|---|---|
28 | 16 dMMR | 15 MSI-H | 15 MSI | [83] |
1 MSS | 1 MSS | |||
12 pMMR | 12 MSS | 12 MSS | ||
93 | 135 dMMR | 132 MSI-H | NP | [84] |
3 MSS | ||||
458 pMMR | 4 MSI-H | |||
10 MSI-L | ||||
444 MSS | ||||
988 | 102 dMMR | 98 MSI-H | NP | [41] |
4 MSS/MSI-L | ||||
886 pMMR | 4 MSI-H | |||
882 MSS/MSI-L | ||||
91 | 54 dMMR | 48 MSI-H | 47 MSI | [58] |
1 MSS | ||||
6 MSS/MSI-L | 6 MSS | |||
37 pMMR | 37 MSS/MSI-L | 37 MSS | ||
73 | 12 dMMR | 8 MSI-H | NP | [50] |
1 MSI-L | ||||
3 MSS | ||||
61 pMMR | 3 MSI-H | |||
11 MSI-L | ||||
47 MSS | ||||
15 | 6 dMMR | 6 MSI-H | 6 MSI | [86] |
1 loMMR | 1 MSI-H | 1 MSI | ||
1 paMMR | 1 MSS | 1 MSS | ||
6 pMMR | 6 MSS | 1 MSI | ||
5 MSS | ||||
1 NV | 1 MSS | 1 MSS | ||
262 | 28 dMMR | 26 MSI-H | NP | [80] |
2 MSI-L | ||||
234 pMMR | 9 MSI-L | |||
225 MSS | ||||
296 | 65 dMMR | 63 MSI-H | NP | [82] |
2 MSS | ||||
7 loMMR | 5 MSI-H | |||
2 MSI-L | ||||
224 pMMR | 7 MSI-L | |||
217 MSS | ||||
98 | 38 dMMR | 33 MSI-H | 32 MSI-H | [85] |
1 MSS | ||||
1 MSI-L | 1 MSS | |||
4 MSS | 4 MSS | |||
60 pMMR | 1 MSI-H | 1 MSS | ||
59 MSS | 59 MSS | |||
809 | 148 dMMR | 147 MSI-H | NP | [81] |
1 MSS | ||||
12 loMMR | 11 MSI-H | |||
1 MSS | ||||
649 pMMR | 1 MSI-H | |||
3 MSI-L | ||||
645 MSS | ||||
166 | 75 dMMR | 75 MSI-H | NP | [87] |
91 pMMR | 90 MSS/MSI-L | |||
1 MSI-H |
Clinical Trials | Drug Treatment | Phase | Tumor Type | N. Patients | Status | Conclusions |
---|---|---|---|---|---|---|
NCT04795661 | Pembrolizumab | 2 | Localized resectable tumor MSI/dMMR or EBV-positive GC | 120 | Recruiting | No results posted |
NCT04817826 | Durvalumab + Tremelimumab | 2 | GC MSI-H | 31 | Recruiting | No results posted |
NCT05177133 | Capecitabine + Oxaliplatin + Retifanlimab | 2 | dMMR Esophagogastric cancer | 25 | Recruiting | No results posted |
NCT04152889 | Camrelizumab + S-1 + Docetaxel | 2 | GC Stage III (PD-L1 +/MSI-H/EBV +/dMMR) | 20 | Recruiting | No results posted |
NCT04006262 | Nivolumab + Ipilimumab | 2 | Localized MSI and/or dMMR Oeso-gastric adenocarcinoma | 32 | Recruiting | No results posted |
NCT03257163 | Capecitabine + Pembrolizumab + Radiation therapy | 2 | dMMR and Epstein–Barr virus Positive GC | 40 | Recruiting | No results posted |
Cases | IHC Results | PCR Results | NGS Results | References |
---|---|---|---|---|
56 | 13 dMRR | 8 MSI-H | NP | [107] |
5 MSI-L | ||||
43 pMMR | 43 MSS | |||
580 | 61 dMRR | 60 MSI-H | NP | [51] |
1 MSS | ||||
519 pMMR | 519 MSS | |||
60 | 6 dMRR | 6 MSI-H | NP | [52] |
54 pMMR | 4 MSI-H | |||
50 MSS | ||||
16 | 9 dMMR | 9 MSI-H | NP | [108] |
paMMR | 1 MSI-H | |||
lo-paMMR | 1 MSI-H | |||
5 pMMR | 5 MSS | |||
50 | 4 dMMR | 4 MSI-H | NP | [109] |
46 pMMR | 44 MSS | |||
2 MSI-H |
Cases | IHC Results | PCR Results | NGS Results | References |
---|---|---|---|---|
30 | 3 dMMR | 3 MSI-H | NP | [113] |
27 pMMR | 27 MSS | |||
834 | 228 dMMR | 41 MSI-H | NP | [118] |
187 MSS | ||||
606 pMMR | 83 MSI-H | |||
523 MSS | ||||
26 | 7 dMMR | 7 MSI-H | NP | [119] |
19 pMMR | 1 MSI-H | |||
18 MSS | ||||
42 | 4 dMMR | 4 MSI-H | NP | [120] |
38 pMMR | 2 MSI-H | |||
3 MSI-L | ||||
33 MSS |
Clinical Trial | Drug Treatment | Phase | Tumor Type | N. Patients | Status | Conclusion |
---|---|---|---|---|---|---|
NCT03836352 | DPX-Survivac + Cyclophosphamide + Pembrolizumab vs. DPX-Survivac + Pembrolizumab | 2 | Solid tumors, including OC and MSI-H | 184 | Active, not recruiting | No results posted |
Clinical Trial | Drug Treatment | Phase | Tumor Type | N. Patients | Status | Conclusion |
---|---|---|---|---|---|---|
NCT04906382 | Carboplatin + Paclitaxel + Tislelizumab | 1 | dMMR EC | 20 | Recruiting | No results posted |
NCT05112601 | Ipilimumab + Nivolumab vs. Nivolumab alone | 2 | dMMR recurrent EC | 12 | Recruiting | No results posted |
NCT02912572 | Avelumab alone vs. Avelumab + Talazoparib vs. Avelumab + Axitinib | 2 | mEC MSI-H | 105 | Recruiting | No results posted |
NCT04774419 | Intensity modulated radiation therapy (IMRT) + TSR-042 | 2 | EC dMMR/MSI-H | 31 | Recruiting | No results posted |
NCT05036681 | Futibatinib vs. Pembrolizumab | 2 | MSS mEC | 30 | Recruiting | No results posted |
NCT05173987 Keynote C93 | Pembrolizumab alone vs. carboplatin + paclitaxel + docetaxel + cisplatin | 3 | dMMR EC | 350 | Recruiting | No results posted |
NCT03241745 | Nivolumab | 2 | EC dMMR/MSI-H | 35 | Active, not recruiting | No results posted |
NCT05201547 | Dostarlimab alone vs. Carboplatin-Paclitaxel | 3 | EC dMMR | 142 | Not yet recruiting | No results posted |
Cases | IHC Results | PCR Results | NGS Results | References |
---|---|---|---|---|
108 | 33 dMMR | 27 MSI-H | NP | [144] |
6 MSS | ||||
75 pMMR | 75 MSS | |||
98 | 18 dMMR | 8 MSI-H | NP | [145] |
10 MSS/MSI-L | ||||
5 loMMR | 2 MSI-H | |||
3 MSS/MSI-L | ||||
75 pMMR | 75 MSS | |||
100 | 52 dMMR | 51 MSI-H | NP | [146] |
1 MSS | ||||
10 loMMR | 6 MSI-H | |||
4 MSS | ||||
9 paMMR | 3 MSI-H | |||
1 MSI-L | ||||
5 MSS | ||||
18 pMMR | 18 MSS | |||
11 NA | 8 MSI-H | |||
3 MSS | ||||
89 | 26 dMMR | 23 MSI-H | NP | [147] |
3 MSS | ||||
63 pMMR | 3 MSI-H | |||
60 MSS | ||||
99 | 29 dMMR | NA | 16 MSI | [148] |
13 MSS | ||||
70 pMMR | 2 MSI | |||
68 MSS | ||||
21 | 9 dMMR | 6 MSI-H | 8 MSI | [83] |
2 MSS | ||||
1 MSI-L | 1 MSS | |||
3 loMMR | 2 MSS | 2 MSS | ||
1 MSI-H | 1 MSI | |||
9 pMMR | 9 MSS | 9 MSS | ||
15 | 6 dMMR | 5 MSI-H | 6 MSI | [86] |
1 NA | ||||
3 loMMR | 2 MSI-H | 1 MSI | ||
1 MSS | ||||
1 MSS | 1 MSS | |||
1 paMMR | 1 MSS | 1 MSS | ||
5 pMMR | 5 MSS | 5 MSS |
Clinical Trial | Drug Treatment | Phase | Tumor Type | N. Patients | Status | Conclusion |
---|---|---|---|---|---|---|
NCT01876511 KEYNOTE-016 | Pembrolizumab | 2 | MSI CRC MSS CRC MSI Non-CRC | 113 | Completed | ORR: disappearance of all target lesions; PR: 30% decrease in the diameters of the target lesions. |
NCT04328740 | TP-1454 monotherapy vs. TP-1454 + Ipilimumab + Nivolumab | 1 | Advanced solid tumor Advanced/metastatic RCC, MSI-H or dMMR mCRC, NSCLC | 44 | Recruiting | No results posted |
NCT02332668 KEYNOTE-051 | Pembrolizumab | 1–2 | Melanoma, Lymphoma, Solid tumor, Classical Hodgkin Lymphoma; MSI-H solid tumor | 320 | Recruiting | No results posted |
NCT04521075 | Fecal microbial transplantation by capsules | 1–2 | Metastatic or inoperable melanoma, MSI-H, dMMR or NSCLC | 42 | Recruiting | No results posted |
NCT03607890 | Nivolumab + Relatlimab | 2 | Advanced dMMR cancers resistant to Prior PD-(L)1 inhibitor | 42 | Recruiting | No results posted |
NCT03667170 | Envafolimab | 2 | dMMR/MSI-H advanced solid tumors | 200 | Recruiting | No results posted |
NCT03236935 | L-NMMA + Pembrolizumab | 1 | NSCLC, Malignant melanoma Head and neck squamous cell carcinoma Classical Hodgkin Lymphoma Urothelial carcinoma Bladder DNA repair-deficiency disorders | 12 | Active, not recruiting | No results posted |
NCT03053466 | APL-501 | 1 | Solid tumors MSI-H or dMMR | 30 | Active, not recruiting | No results posted |
NCT04800627 | Pembrolizumab + Pevonedistat | 1–2 | dMMR/MSI-H metastatic or locally advanced unresectable solid tumor | 2 | Active, not recruiting | No results posted |
NCT02983578 | Danvatirsen + Durvalumab | 2 | Advanced and refractory pancreatic, NSCLC and dMMR CRC | 53 | Active, not recruiting | Not result posted |
NCT03241745 | Nivolumab | 2 | MSI/dMMR/Hypermutated uterine cancer | 35 | Active, not recruiting | No results posted |
NCT04326829 | QL1604 | 2 | dMMR or MSI-H advanced solid tumors | 86 | Not yet recruiting | No results posted |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amato, M.; Franco, R.; Facchini, G.; Addeo, R.; Ciardiello, F.; Berretta, M.; Vita, G.; Sgambato, A.; Pignata, S.; Caraglia, M.; et al. Microsatellite Instability: From the Implementation of the Detection to a Prognostic and Predictive Role in Cancers. Int. J. Mol. Sci. 2022, 23, 8726. https://doi.org/10.3390/ijms23158726
Amato M, Franco R, Facchini G, Addeo R, Ciardiello F, Berretta M, Vita G, Sgambato A, Pignata S, Caraglia M, et al. Microsatellite Instability: From the Implementation of the Detection to a Prognostic and Predictive Role in Cancers. International Journal of Molecular Sciences. 2022; 23(15):8726. https://doi.org/10.3390/ijms23158726
Chicago/Turabian StyleAmato, Martina, Renato Franco, Gaetano Facchini, Raffaele Addeo, Fortunato Ciardiello, Massimiliano Berretta, Giulia Vita, Alessandro Sgambato, Sandro Pignata, Michele Caraglia, and et al. 2022. "Microsatellite Instability: From the Implementation of the Detection to a Prognostic and Predictive Role in Cancers" International Journal of Molecular Sciences 23, no. 15: 8726. https://doi.org/10.3390/ijms23158726
APA StyleAmato, M., Franco, R., Facchini, G., Addeo, R., Ciardiello, F., Berretta, M., Vita, G., Sgambato, A., Pignata, S., Caraglia, M., Accardo, M., & Zito Marino, F. (2022). Microsatellite Instability: From the Implementation of the Detection to a Prognostic and Predictive Role in Cancers. International Journal of Molecular Sciences, 23(15), 8726. https://doi.org/10.3390/ijms23158726