Altered Thermal Behavior of Blood Plasma Proteome Related to Inflammatory Cytokines in Early Pregnancy Loss
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Calorimetric Profiles of Blood Plasma Derived from Healthy Non-Pregnant and Pregnant Women
2.3. Calorimetric Profiles of Blood Plasma Derived from Patients with Early Pregnancy Loss
2.4. Plasma Protein Fractions of Control and EPL Samples
2.5. Carriage of Thrombophilia Polymorphism in 675 4G/4G in the PAI-1 Thrombophilia Gene
2.6. Blood Plasma Cytokine Levels (TNF-α and IL-6) of Control and EPL Samples
3. Discussion
4. Materials and Methods
4.1. Selection of Patients and Healthy Controls
4.2. Blood Collection
4.3. Sample Preparation
4.4. Characterization of the Protein Content
4.5. DSC Experiments
4.6. DNA Analysis
4.7. ELISA for Cytokines
4.8. Statistical Approaches
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hachem, H.; Crepaux, V.; May-Panloup, P.; Descamps, P.; Legendre, G.; Bouet, P.E. Recurrent pregnancy loss: Current perspectives. Int. J. Womens Health 2017, 9, 331–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pylyp, L.Y.; Spynenko, L.O.; Verhoglyad, N.V.; Mishenko, A.O.; Mykytenko, D.O.; Zukin, V.D. Chromosomal abnormalities in products of conception of first-trimester miscarriages detected by conventional cytogenetic analysis: A review of 1000 cases. J. Assist. Reprod Genet. 2018, 35, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Hardy, P.J.; Hardy, K. Chromosomal instability in first trimester miscarriage: A common cause of pregnancy loss? Transl. Pediatr. 2018, 7, 211–218. [Google Scholar] [CrossRef]
- Dawood, F. Pregnancy and Thrombophilia. J. Blood Dis. Transf. 2013, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Kovacheva, K.; Ivanov, P.; Konova, E.; Simeonova, M.; Komsa-Penkova, R. Genetic thrombophilic defects (Factor V Leiden, prothrombin G20210A, MTHFR C677T) in women with recurrent fetal loss. Akush. Ginekol. 2007, 46, 10–16. [Google Scholar]
- Racicot, K.; Mor, G. Risks associated with viral infections during pregnancy. J. Clin. Investig. 2017, 127, 1591–1599. [Google Scholar] [CrossRef] [Green Version]
- Halit Pinar, M.; Gibbins, K.; He, M.; Kostadinov, S.; Silver, R. Early Pregnancy Losses: Review of Nomenclature, Histopathology, and Possible Etiologies. Fetal Pediatr. Pathol. 2018, 37, 191–209. [Google Scholar] [CrossRef]
- Brigham, S.; Conlon, C.; Farquharson, R. A longitudinal study of pregnancy outcome following idiopathic recurrent miscarriage. Hum. Reprod. 1999, 14, 2868–2871. [Google Scholar] [CrossRef]
- Mor, G.; Cardenas, I. The immune system in pregnancy: A unique complexity. Am. J. Reprod. Immunol. 2010, 63, 425–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scherjon, S.; Lashley, L.; van der Hoorn, M.-L.; Claas, F. Fetus specific T cell modulation during fertilization, implantation and pregnancy. Placenta 2011, 32, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Schäfer-Somi, S. Cytokines during early pregnancy of mammals: A review. Anim. Reprod. Sci. 2003, 75, 73–94. [Google Scholar] [CrossRef]
- Yockey, L.J.; Iwasaki, A. Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Immunity 2018, 49, 397–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatek, M.; Gęca, T.; Kwaśniewska, A. Pro- and Anti-Inflammatory Cytokines in the First Trimester-Comparison of Missed Miscarriage and Normal Pregnancy. Int. J. Env. Res. Public Health 2021, 12, 8538. [Google Scholar] [CrossRef]
- Prins, J.; Gomez-Lopez, N.; Robertson, S. Interleukin-6 in pregnancy and gestational disorders. J. Reprod Immunol. 2012, 95, 1–14. [Google Scholar] [CrossRef]
- Haider, S.; Knofler, M. Human tumour necrosis factor: Physiological and pathological roles in placenta and endometrium. Placenta 2009, 30, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadis, E.; White, C.A.; Jones, R.L.; Salamonsen, L.A. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum. Reprod. Update 2005, 11, 613–630. [Google Scholar] [CrossRef] [Green Version]
- Azizieh, F.; Raghupathy, R. Tumor Necrosis Factor-α and Pregnancy Complications: A Prospective Study. Med. Princ. Pract. 2015, 24, 165–170. [Google Scholar] [CrossRef]
- Mor, G.; Aldo, P.; Alvero, A. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 2017, 17, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Calleja-Agius, J.; Jauniaux, E.; Pizzey, A.; Muttukrishna, S. Investigation of systemic inflammatory response in first-trimester pregnancy failure. Hum. Reprod. 2012, 27, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. Placental Oxidative Stress: From Miscarriage to Preeclampsia. J. Soc. Gynecol. Investig. 2004, 11, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Joseph, J.C.; Baker, C.; Sprang, M.L.; Bermes, E.W. Changes in plasma proteins during pregnancy. J. Ann. Clin. Lab. Sci. 1978, 8, 130–141. [Google Scholar]
- Said, J.; Ignjatovic, V.; Monagle, P.; Walker, S.; Higgins, J.; Brennecke, S.P. Altered reference ranges for protein C and protein S during early pregnancy: Implications for the diagnosis of protein C and protein S deficiency during pregnancy. Thromb. Haemost. 2010, 103, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Trauscht-Van Horn, J.; Capeless, E.L.; Easterling, T.R.; Bovill, E.G. Pregnancy loss and thrombosis with protein C deficiency. Am. J. Obstet. Gynecol. 1992, 167, 968–972. [Google Scholar] [CrossRef]
- Khosravi, F.; Zarei, S.; Ahmadvand, N.; Akbarzadeh-Pasha, Z.; Savadi, E.; Zarnani, A.H.; Sadeghi, M.R.; Jeddi-Tehrani, M. Association between plasminogen activator inhibitor 1 gene mutation and different subgroups of recurrent miscarriage and implantation failure. J. Assist. Reprod. Genet. 2014, 31, 121–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glueck, C.J.; Sieve, L.; Zhu, B.; Wang, P. Plasminogen activator inhibitor activity, 4G5G polymorphism of the plasminogen activator inhibitor 1 gene, and first-trimester miscarriage in women with polycystic ovary syndrome. Metabolism 2006, 55, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Vattai, A.; Zhang, X.; Zhu, J.; Thaler, C.J.; Mahner, S.; Jeschke, U.; von Schönfeldt, V. Role of Plasminogen Activator Inhibitor Type 1 in Pathologies of Female Reproductive Diseases. Int. J. Mol. Sci. 2017, 18, 1651. [Google Scholar] [CrossRef] [Green Version]
- Muttukrishna, S. Role of inhibin in normal and high-risk pregnancy. Semin. Reprod Med. 2004, 22, 227–234. [Google Scholar] [CrossRef]
- Löb, S.; Vattai, A.; Kuhn, C.; Schmoeckel, E.; Mahner, S.; Wöckel, A.; Kolben, T.; Keil, C.; Jeschke, U.; Vilsmaier, T. Pregnancy Zone Protein (PZP) is significantly upregulated in the decidua of recurrent and spontaneous miscarriage and negatively correlated to Glycodelin A (GdA). J. Reprod. Immunol. 2021, 143, 103267. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.; Doré-Green, F. Detection and characterization of human secretory “pregnancy-associated endometrial α2-globulin” in uterine luminal fluid. J. Reprod. Immunol. 1987, 11, 13–29. [Google Scholar] [CrossRef]
- Wu, P.; van den Berg, C.; Alfirevic, Z.; O’Brien, S.; Röthlisberger, M.; Baker, P.; Kenny, L.; Kublickiene, K.; Duvekot, J. Early Pregnancy Biomarkers in Pre-Eclampsia: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2015, 16, 23035–23056. [Google Scholar] [CrossRef] [Green Version]
- Garbett, N.; Brock, G. Differential scanning calorimetry as a complementary diagnostic tool for the evaluation of biological samples. Biochim. Biophys. Acta BBA Gen. Subj. 2016, 1860, 981–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, S.; Garcia-Gonzalez, M.A.; Lanas, A.; Velazquez-Campoy, A.; Abian, O. Deconvolution Analysis for Classifying Gastric Adenocarcinoma Patients Based on Differential Scanning Calorimetry Serum Thermograms. Sci. Rep. 2015, 5, 7988. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.A.; Jin, J.H.; Kim, K.H.; Lim, D.G.; Cheong, H.; Kim, Y.H.; Ju, W.; Kim, S.C.; Jeong, S.H. Investigation of early and advanced stages in ovarian cancer using human plasma by differential scanning calorimetry and mass spectrometry. Arch. Pharm. Res. 2016, 39, 668–676. [Google Scholar] [CrossRef]
- Michnik, A.; Drzazga, Z.; Michalik, K.; Barczyk, A.; Santura, I.; Sozanska, E.; Pierzchała, W. Differential scanning calorimetry study of blood serum in chronic obstructive pulmonary disease. J. Therm. Anal. Calorim. 2010, 102, 57–60. [Google Scholar] [CrossRef]
- Todinova, S.; Krumova, S.; Kurtev, P.; Dimitrov, V.; Djongov, L.; Dudunkov, Z.; Taneva, S.G. Calorimetry-based profiling of blood plasma from colorectal cancer patients. Biochim. Biophys. Acta BBA Gen. Subj. 2012, 1820, 1879–1885. [Google Scholar] [CrossRef]
- Chagovetz, A.A.; Quinn, C.; Damarse, N.; Hansen, L.D.; Chagovetz, A.M.; Jensen, R.L. Differential Scanning Calorimetry of Gliomas: A New Tool in Brain Cancer Diagnostics? Neurosurgery 2013, 73, 289–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todinova, S.; Krumova, S.; Radoeva, R.; Gartcheva, l.; Taneva, S.G. Calorimetric markers of Bence Jones and nonsecretory multiple myeloma serum proteome. Anal. Chem. 2014, 86, 12355–12361. [Google Scholar] [CrossRef] [PubMed]
- Koynova, R.; Antonova, B.; Sezanova, B.; Tenchov, B. Beneficial effect of sequential chemotherapy treatments of lung cancer patients revealed by calorimetric monitoring of blood plasma proteome denaturation. Thermochim. Acta 2018, 659, 1–7. [Google Scholar] [CrossRef]
- Zapf, I.; Moezzi, M.; Fekecs, T.; Nedvig, K.; Lorinczy, D.; Ferencz, A. Influence of oxidative injury and monitoring of blood plasma by DSC on breast cancer patients. J. Therm. Anal. Calorim. 2016, 123, 2029–2035. [Google Scholar] [CrossRef]
- Csík, G.; Zupkó, I.; Regdon, G.; Falkay, G.; Lőrinczy, D. DSC investigation of early pregnant uterus of the rat. J. Therm. Anal. Calorim. 2009, 95, 695–698. [Google Scholar] [CrossRef]
- Blicharski, T.; Tomaszewska, E.; Dobrowolski, P.; Hułas-Stasiak, M.; Muszyński, S. A metabolite of leucine (β-hydroxy-βmethylbutyrate) given to sows during pregnancy alters bone development of their newborn offspring by hormonal modulation. PLoS ONE 2017, 12, e0179693. [Google Scholar] [CrossRef] [PubMed]
- Garbett, N.; Mekmaysy, C.; Helm, C.; Jenson, A.; Chaires, J. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp. Mol. Pathol. 2009, 86, 186–191. [Google Scholar] [CrossRef]
- Fish, D.; Brewood, G.; Kim, J.; Garbett, N.; Chaires, J.; Benight, A. Statistical analysis of plasma thermograms measured by differential scanning calorimetry. Biophys. Chem. 2010, 152, 184–190. [Google Scholar]
- Maher, J.; Goldenberg, R.; Tamura, T.; Cliver, S.; Hoffman, H.; Davis, R.; Boots, L. Albumin levels in pregnancy: A hypothesis—Decreased levels of albumin are related to increased levels of alpha-fetoprotein. Early Hum. Dev. 1993, 34, 209–215. [Google Scholar] [CrossRef]
- Amino, N.; Tanizawa, O.; Miyai, K.; Tanaka, F.; Hayashi, C.; Kawashima, M.; Ichihara, K. Changes of serum immunoglobulins IgG, IgA, IgM, and IgE during pregnancy. Obstet. Gynecol. 1978, 52, 415–420. [Google Scholar]
- Póka, R.; Damjanovich, P.; Károlyi, P.; Miszti-Blasius, K.; Kerényi, A.; Kappelmayer, J. Fibrinogen levels in pregnancy have a prognostic role in preeclampsia and in massive obstetric haemorrhage. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 206, 251–263. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C. Differential scanning calorimetry as a tool for protein folding and stability. Arch. Biochem. Biophys. 2013, 531, 100–109. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, N.; Zhang, D.; Ren, Q.; Ganz, T.; Liu, S.; Nemeth, E. Iron homeostasis in pregnancy and spontaneous abortion. Am. J. Hematol. 2019, 94, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Zapf, I.; Fekecs, T.; Ferencz, A.; Tizedes, G.; Pavlovics, G.; Kálmánd, E.; Lorinczy, D. DSC analysis of human plasma in breast cancer patients. Thermochim. Acta 2011, 524, 88–91. [Google Scholar] [CrossRef]
- Garbett, N.; Merchant, M.; Helm, C.; Jenson, A.; Klein, J.; Chaires, J. Detection of cervical cancer biomarker patterns in blood plasma and urine by differential scanning calorimetry and mass spectrometry. PLoS ONE 2014, 9, e84710. [Google Scholar] [CrossRef]
- Krumova, S.; Todinova, S.; Mavrov, D.; Marinovc, P.; Atanassova, V.; Atanassov, K.; Taneva, S.G. Intercriteria analysis of calorimetric data of blood serum proteome. Biochim. Biophys. Acta BBA Gen. Subj. 2017, 1861, 409–417. [Google Scholar] [CrossRef]
- Gagnon, A.; Wilson, R.D. Obstetrical complications associated with abnormal maternal serum markers analytes. J. Obstet. Gynaecol. Can. 2008, 30, 918–932. [Google Scholar] [CrossRef]
- Desai, N.; Krantz, D.; Roman, A.; Fleischer, A.; Boulis, S.; Rochelson, B. Elevated first trimester PAPP-A is associated with increased risk of placenta accrete. Prenat. Diagn. 2014, 34, 159–162. [Google Scholar] [CrossRef]
- Singnoi, W.; Wanapirak, C.; Sekararithi, R.; Tongsong, T. A cohort study of the association between maternal serum Inhibin-A and adverse pregnancy outcomes: A population-based study. BMC Pregnancy Childbirth 2019, 19, 124. [Google Scholar] [CrossRef]
- Sitar, M.; Aydin, S.; Cakatay, U. Human Serum Albumin and Its Relation with Oxidative Stress. Clin. Lab. 2013, 59, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Sancataldo, G.; Vetri, V.; Fodera, V.; Di Cara, G.; Militello, V.; Leone, M. Oxidation enhances human serum albumin thermal stability and changes the routes of amyloid fibril formation. PLoS ONE 2014, 9, e84552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musante, L.; Bruschi, M.; Candiano, G.; Petretto, A.; Dimasi, N.; Del Boccio, P.; Urbani, A.; Rialdi, G.; Ghiggeri, G.M. Characterization of oxidation end product of plasma albumin ‘in vivo’. Biochem. Biophys. Res. Commun. 2006, 349, 668–673. [Google Scholar] [CrossRef]
- Jenkins, C.; Wilson, R.; Roberts, J.; Miller, H.; McKillop, J.H.; Walker, J.J. Antioxidants: Their Role in Pregnancy and Miscar-riage. Antioxid. Redox Signal. 2004, 2, 623–628. [Google Scholar] [CrossRef]
- Omeljaniuka, W.J.; Socha, K.; Borawska, M.; Charkiewicz, A.; Laudański, T.; Kulikowski, M.; Kobylec, E. Antioxidant status in women who have had a miscarriage. Adv. Med. Sci. 2015, 60, 329–334. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. Defining pregnancy phases with cytokine shift. J. Pregnancy Reprod. 2017, 1, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Bauer, S.; Pollheimer, J.; Hartmann, J.; Husslein, P.; Aplin, J.D.; Knofler, M. Tumor necrosis factor-α inhibits trophoblast migration through elevation of plasminogen activator inhibitor-1 in first-trimester villous explant cultures. J. Clin. Endocrinol. Metab. 2004, 89, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Zhai, J.; Li, Z.; Zhou, Y.; Yang, X. The role of plasminogen activator inhibitor-1 in gynecological and obstetrical diseases: An update review. J. Reprod. Immunol. 2022, 150, 103490. [Google Scholar] [CrossRef]
- Raghupathy, R.; Makhseed, M.; Azizieh, F.; Omu, A.; Gupta, M.; Farhat, R. Cytokine production by maternal lymphocytes during normal human pregnancy and in unexplained recurrent spontaneous abortion. Hum. Reprod. 2000, 15, 713–718. [Google Scholar] [CrossRef] [Green Version]
- Mor, G.; Cardenas, I.; Abrahams, V.; Guller, S. Inflammation and pregnancy: The role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 2011, 1221, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Saini, V.; Arora, S.; Yadav, A.; Bhattacharjee, J. Cytokines in recurrent pregnancy loss. Clin. Chim. Acta. 2011, 412, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Makhseed, M.; Raghupathy, R.; Azizieh, F.; Omu, A.; Al-Shamali, E.; Ashkanani, L. Th1 and Th2 cytokine profiles in recurrent aborters with successful pregnancy and with subsequent abortions. Hum. Reprod. 2001, 16, 2219–2226. [Google Scholar] [CrossRef]
- Ryan, M.T.; Chopra, R.K. Paradoxical effect of fatty-acid on steroid–albumin interaction. Biochim. Biophys. Acta 1976, 427, 337–349. [Google Scholar] [CrossRef]
- Komsa-Penkova, R.; Kovacheva, K.; Kotseva, K.; Angelova, S.; Savov, A.; Semionova, M. Selected Methods of DNA Analysis and Clinical Applications, 1st ed.; MU-Pleven: Pleven, Bulgaria, 2004. [Google Scholar]
- Afshari, J.T.; Ghomian, N.; Shameli, A.; Shakeri, M.T.; Fahmidehkar, M.A.; Mahajer, E.; Khoshnavaz, R.; Emadzadeh, M. Determination of Interleukin-6 and Tumor Necrosis Factor-alpha concentrations in Iranian-Khorasanian patients with preeclampsia. BMC Pregnancy Childbirth 2005, 5, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Groups (№ of Cases) | Age (Years) | GW | BMI (kg/m2) | TP (g/L) | HSA (g/L) | CRP (mg/L) | Fg (g/L) |
---|---|---|---|---|---|---|---|
NPC (n = 18) | 36 ± 6 | - | 20.1 ± 1.1 | 72.6 ± 2.7 | 46.8 ± 1.9 | 3.4 ± 1.1 | 3.2 ± 0.6 |
PC1 (n = 8) | 31 ± 4 | 7 ÷ 12 | 21.6 ± 1.3 | 69.7 ± 2.9 | 45.9 ± 1.7 | 5.8 ± 0.9 ** | 3.5 ± 0.8 |
EPL (n = 26) | 34 ± 8 | 6 ÷ 12 | 22.4 ± 3.6 | 70.0 ± 3.2 | 45.9 ± 1.7 | 3.3 ± 0.6 * | 3.7 ± 0.7 |
Groups | cPFg (cal·g−1·K−1) | TmHSA (°C) | cPHSA (cal·g−1·K−1) | TmIgs (°C) | cPIgs (cal·g−1·K−1) | cPHSA/cPIgs | ΔH (cal·g−1) | TFMs (°C) |
---|---|---|---|---|---|---|---|---|
NPC | 0.019 ± 0.008 | 61.6 ± 0.4 | 0.37 ± 0.03 | 68.4 ± 0.7 | 0.19 ± 0.04 | 2.00 ± 0.3 | 4.2 ± 0.5 | 65.2 ± 0.4 |
PC1 | 0.031 ± 0.003 * | 62.2 ± 0.4 | 0.41 ± 0.04 | 68.5 ± 0.5 | 0.2 ± 0.03 | 2.05 ± 0.4 | 4.6 ± 0.3 | 64.7 ± 0.6 |
Groups (№ of Cases) | cPFg (cal·g−1·K−1) | TmHSA (°C) | cPHSA (cal·g−1·K−1) | TmIgs (°C) | cPIgs (cal·g−1·K−1) | cPHSA/cPIgs | ΔH (cal·g−1) | TFM (°C) | r | P | ρ |
---|---|---|---|---|---|---|---|---|---|---|---|
PC1 (n = 8) | 0.031 ± 0.003 | 62.2 ± 0.4 | 0.41 ± 0.04 | 68.5 ± 0.5 | 0.2 ± 0.03 | 2.05 ± 0.4 | 4.6 ± 0.3 | 64.7 ± 0.6 | |||
EPL1 (n = 11) | 0.020 ± 0.005 * | 61.5 ± 0.1 | 0.37 ± 0.02 * | 68.5 ± 0.4 | 0.20 ± 0.03 | 1.85 ± 0.2 | 4.5 ± 0.3 | 65.3 ± 0.3 | 0.94 | 0.82 | 0.81 |
EPL2 (n = 12) | 0.023 ± 0.004 | 63.6 ± 0.2 * | 0.31 ± 0.04 * | 68.5 ± 0.3 | 0.25 ± 0.03 * | 1.24 ± 0.3 * | 4.7 ± 0.1 * | 67.0 ± 0.2 * | 0.86 | 0.67 | 0.70 |
Ungrouped: | |||||||||||
EPLcase4 | 0.021 | 58.3 * | 0.27 * | 67.1 * | 0.15 * | 1.75 * | 4.1 * | 64.1 | 0.63 | 0.89 | 0.81 |
EPLcase10 | 0.035 | 66.7 * | 0.32 | 69.3 | 0.31 | n.d. | 4.8 * | 68.3 * | 0.34 | 0.86 | 0.68 |
EPLcase12 | 0.014 | 69.0 * | n.d. | 68.9 | 0.32 | n.d. | 4.3 | 69.6 * | 0.26 | 0.81 | 0.52 |
Groups | HSA (%) | α1 (%) | α2 (%) | β1 (%) | β2 (%) | γ (%) |
---|---|---|---|---|---|---|
Reference values | 54.7–69.66 | 2.63–5.03 | 4.87–10.48 | 5.35–9.19 | 2.38–7.11 | 9.69–18.9 |
PC1 | 56.6 ± 3.2 | 5.2 ± 0.5 | 11.0 ± 0.2 * | 8.6 ± 0.8 | 5.6 ± 0.7 | 12.3 ± 0.7 |
EPL1 | 57.9 ± 3.4 | 5.8 ± 0.9 * | 10.0 ± 1.0 | 7.0 ± 0.6 | 7.5 ± 0.6 | 11.7 ± 2.8 |
EPL2 | 59.0 ± 3.1 | 6.0 ± 0.7 * | 9.1 ± 1.1 | 7.2 ± 0.5 | 8.2 ± 0.9 * | 12.7 ± 2.1 |
Ungrouped | ||||||
EPLcase4 | 51.2 | 6.0 * | 8.9 | 8.3 | 6.9 | 18.7 |
EPLcase10 | 62.1 | 5.6 * | 4.5 | 9.3 * | 8.6 * | 9.9 |
EPLcase12 | 57.3 | 5.3 * | 8.9 | 9.7 * | 8.4 * | 10.4 |
Groups | 4G/4G (PAI-1) Carriers (%) | OR | 95% CI | CHI Squared | p-Value |
---|---|---|---|---|---|
EPL2 | 58.3 | 6.4400 | 1.4358–28.885 | 6.5533 | 0.010469 |
EPL1 | 27.2 | 1.0222 | 0.1670–6.2581 | 0.056 | 0.9810 |
NPC + PC1 | 19.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komsa-Penkova, R.; Danailova, A.; Krumova, S.; Georgieva, G.; Giosheva, I.; Gartcheva, L.; Iliev, I.; Gartchev, E.; Kercheva, K.; Savov, A.; et al. Altered Thermal Behavior of Blood Plasma Proteome Related to Inflammatory Cytokines in Early Pregnancy Loss. Int. J. Mol. Sci. 2022, 23, 8764. https://doi.org/10.3390/ijms23158764
Komsa-Penkova R, Danailova A, Krumova S, Georgieva G, Giosheva I, Gartcheva L, Iliev I, Gartchev E, Kercheva K, Savov A, et al. Altered Thermal Behavior of Blood Plasma Proteome Related to Inflammatory Cytokines in Early Pregnancy Loss. International Journal of Molecular Sciences. 2022; 23(15):8764. https://doi.org/10.3390/ijms23158764
Chicago/Turabian StyleKomsa-Penkova, Regina, Avgustina Danailova, Sashka Krumova, Galya Georgieva, Ina Giosheva, Lidia Gartcheva, Ivan Iliev, Emil Gartchev, Kameliya Kercheva, Alexey Savov, and et al. 2022. "Altered Thermal Behavior of Blood Plasma Proteome Related to Inflammatory Cytokines in Early Pregnancy Loss" International Journal of Molecular Sciences 23, no. 15: 8764. https://doi.org/10.3390/ijms23158764
APA StyleKomsa-Penkova, R., Danailova, A., Krumova, S., Georgieva, G., Giosheva, I., Gartcheva, L., Iliev, I., Gartchev, E., Kercheva, K., Savov, A., & Todinova, S. (2022). Altered Thermal Behavior of Blood Plasma Proteome Related to Inflammatory Cytokines in Early Pregnancy Loss. International Journal of Molecular Sciences, 23(15), 8764. https://doi.org/10.3390/ijms23158764