On the Aggregation of Apolipoprotein A-I
Abstract
:1. Introduction
2. Results
2.1. Self-Assembly of ApoA-I and the Effects of Changing Extrinsic and Intrinsic Factors
2.2. Self-Assembly of the ApoA-I Mutant K107Δ
3. Discussion
4. Materials and Methods
4.1. Expression and Purification of Recombinant Human ApoA-I
4.2. Preparation of ApoA-I Samples
4.3. Oxidation Using H2O2
4.4. Shaking
4.5. Thioflavin-T Fluorescence Intensity
4.6. Circular Dichroism Spectroscopy
4.7. Dynamic Light Scattering
4.8. Cryo Transmission Electron Microscopy (Cryo-TEM)
4.9. Atomic Force Microscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feig, J.E.; Feig, J.L.; Dangas, G.D. The Role of HDL in Plaque Stabilization and Regression: Basic Mechanisms and Clinical Implications. Coron. Artery Dis. 2016, 27, 592. [Google Scholar] [CrossRef]
- Munjal, A.; Khandia, R. Chapter Three—Atherosclerosis: Orchestrating Cells and Biomolecules Involved in Its Activation and Inhibition. In Inflammatory Disorders—Part B; Donev, R., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 120, pp. 85–122. [Google Scholar] [CrossRef]
- Obici, L.; Franceschini, G.; Calabresi, L.; Giorgetti, S.; Stoppini, M.; Merlini, G.; Bellotti, V. Structure, Function and Amyloidogenic Propensity of Apolipoprotein A-I. Amyloid 2006, 13, 191–205. [Google Scholar] [CrossRef]
- Ramella, N.A.; Rimoldi, O.J.; Prieto, E.D.; Schinella, G.R.; Sanchez, S.A.; Jaureguiberry, M.S.; Vela, M.E.; Ferreira, S.T.; Tricerri, M.A. Human Apolipoprotein A-I-Derived Amyloid: Its Association with Atherosclerosis. PLoS ONE 2011, 6, e22532. [Google Scholar] [CrossRef] [Green Version]
- Westermark, P.; Benson, M.D.; Buxbaum, J.N.; Cohen, A.S.; Frangione, B.; Ikeda, S.-I.; Masters, C.L.; Merlini, G.; Saraiva, M.J.; Sipe, J.D. Amyloid: Toward Terminology Clarification. Report from the Nomenclature Committee of the International Society of Amyloidosis. Amyloid 2005, 12, 1–4. [Google Scholar] [CrossRef]
- Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.-I.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Amyloid Fibril Proteins and Amyloidosis: Chemical Identification and Clinical Classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 2016, 23, 209–213. [Google Scholar] [CrossRef]
- Chiti, F.; Dobson, C.M. Protein Misfolding, Functional Amyloid, and Human Disease. Annu. Rev. Biochem. 2006, 75, 333–366. [Google Scholar] [CrossRef] [Green Version]
- Chiti, F.; Dobson, C.M. Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade. Annu. Rev. Biochem. 2017, 86, 27–68. [Google Scholar] [CrossRef]
- Ouimet, M.; Barrett, T.J.; Fisher, E.A. HDL and Reverse Cholesterol Transport. Circ. Res. 2019, 124, 1505–1518. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Brewer Jr, H.B.; Chapman, M.J.; Fazio, S.; Hussain, M.M.; Kontush, A.; Krauss, R.M.; Otvos, J.D.; Remaley, A.T.; Schaefer, E.J. HDL Measures, Particle Heterogeneity, Proposed Nomenclature, and Relation to Atherosclerotic Cardiovascular Events. Clin. Chem. 2011, 57, 392–410. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.K.; Zhang, L.; Catte, A.; Li, L.; Oda, M.N.; Ren, G.; Segrest, J.P. Assessment of the Validity of the Double Superhelix Model for Reconstituted High Density Lipoproteins: A Combined Computational-Experimental Approach. J. Biol. Chem. 2010, 285, 41161–41171. [Google Scholar] [CrossRef] [Green Version]
- Murray, S.C.; Gillard, B.K.; Ludtke, S.J.; Pownall, H.J. Direct Measurement of the Structure of Reconstituted High-Density Lipoproteins by Cryo-EM. Biophys. J. 2016, 110, 810–816. [Google Scholar] [CrossRef] [Green Version]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y.; Ali, F. Atherosclerotic Cardiovascular Disease: A Review of Initiators and Protective Factors. Inflammopharmacology 2016, 24, 1–10. [Google Scholar] [CrossRef]
- Vus, K.; Girych, M.; Trusova, V.; Gorbenko, G.; Kinnunen, P.; Mizuguchi, C.; Saito, H. Fluorescence Study of the Effect of the Oxidized Phospholipids on Amyloid Fibril Formation by the Apolipoprotein A-I N-Terminal Fragment. Chem. Phys. Lett. 2017, 688, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mizuguchi, C.; Nakamura, M.; Kurimitsu, N.; Ohgita, T.; Nishitsuji, K.; Baba, T.; Shigenaga, A.; Shimanouchi, T.; Okuhira, K.; Otaka, A.; et al. Effect of Phosphatidylserine and Cholesterol on Membrane-Mediated Fibril Formation by the N-Terminal Amyloidogenic Fragment of Apolipoprotein A-I. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kurimitsu, N.; Mizuguchi, C.; Fujita, K.; Taguchi, S.; Ohgita, T.; Nishitsuji, K.; Shimanouchi, T.; Saito, H. Phosphatidylethanolamine Accelerates Aggregation of the Amyloidogenic N-Terminal Fragment of ApoA-I. FEBS Lett. 2020, 594, 1443–1452. [Google Scholar] [CrossRef]
- Ramella, N.A.; Schinella, G.R.; Ferreira, S.T.; Prieto, E.D.; Vela, M.E.; Ríos, J.L.; Tricerri, M.A.; Rimoldi, O.J. Human Apolipoprotein A-I Natural Variants: Molecular Mechanisms Underlying Amyloidogenic Propensity. PLoS ONE 2012, 7, e43755. [Google Scholar] [CrossRef] [Green Version]
- Wisniewski, T.; Golabek, A.A.; Kida, E.; Wisniewski, K.E.; Frangione, B. Conformational Mimicry in Alzheimer’s Disease: Role of Apolipoproteins in Amyloidogenesis. Am. J. Pathol. 1995, 147, 238–244. [Google Scholar]
- Mizuguchi, C.; Nakagawa, M.; Namba, N.; Sakai, M.; Kurimitsu, N.; Suzuki, A.; Fujita, K.; Horiuchi, S.; Baba, T.; Ohgita, T.; et al. Mechanisms of Aggregation and Fibril Formation of the Amyloidogenic N-Terminal Fragment of Apolipoprotein A-I. J. Biol. Chem. 2019, 294, 13515–13524. [Google Scholar] [CrossRef]
- Wong, Y.Q.; Binger, K.J.; Howlett, G.J.; Griffin, M.D.W. Methionine Oxidation Induces Amyloid Fibril Formation by Full-Length Apolipoprotein A-I. Proc. Natl. Acad. Sci. USA 2010, 107, 1977–1982. [Google Scholar] [CrossRef] [Green Version]
- Chan, G.K.L.; Witkowski, A.; Gantz, D.L.; Zhang, T.O.; Zanni, M.T.; Jayaraman, S.; Cavigiolio, G. Myeloperoxidase-Mediated Methionine Oxidation Promotes an Amyloidogenic Outcome for Apolipoprotein A-I *. J. Biol. Chem. 2015, 290, 10958–10971. [Google Scholar] [CrossRef] [Green Version]
- Witkowski, A.; Chan, G.K.L.; Boatz, J.C.; Li, N.J.; Inoue, A.P.; Wong, J.C.; Van Der Wel, P.C.A.; Cavigiolio, G. Methionine Oxidized Apolipoprotein A-I at the Crossroads of HDL Biogenesis and Amyloid Formation. FASEB J. 2018, 32, 3149–3165. [Google Scholar] [CrossRef] [Green Version]
- Genschel, J.; Haas, R.; Pröpsting, M.J.; Schmidt, H.H.J. Apolipoprotein A-I Induced Amyloidosis. FEBS Lett. 1998, 430, 145–149. [Google Scholar] [CrossRef] [Green Version]
- Adachi, E.; Nakajima, H.; Mizuguchi, C.; Dhanasekaran, P.; Kawashima, H.; Nagao, K.; Akaji, K.; Lund-Katz, S.; Phillips, M.C.; Saito, H. Dual Role of an N-Terminal Amyloidogenic Mutation in Apolipoprotein A-I: Destabilization of Helix Bundle and Enhancement of Fibril Formation. J. Biol. Chem. 2013, 288, 2848–2856. [Google Scholar] [CrossRef] [Green Version]
- Rosú, S.A.; Rimoldi, O.J.; Prieto, E.D.; Curto, L.M.; Delfino, J.M.; Ramella, N.A.; Tricerri, M.A. Amyloidogenic Propensity of a Natural Variant of Human Apolipoprotein A-I: Stability and Interaction with Ligands. PLoS ONE 2015, 10, e0124946. [Google Scholar] [CrossRef] [Green Version]
- Gisonno, R.A.; Prieto, E.D.; Gorgojo, J.P.; Curto, L.M.; Rodriguez, M.E.; Rosú, S.A.; Gaddi, G.M.; Finarelli, G.S.; Cortez, M.F.; Schinella, G.R.; et al. Fibrillar Conformation of an Apolipoprotein A-I Variant Involved in Amyloidosis and Atherosclerosis. Biochim. Biophys. Acta Gen. Subj. 2020, 1864, 129515. [Google Scholar] [CrossRef]
- Davidson, W.S.; Hazlett, T.; Mantulin, W.W.; Jonas, A. The Role of Apolipoprotein AI Domains in Lipid Binding. Proc. Natl. Acad. Sci. USA 1996, 93, 13605–13610. [Google Scholar] [CrossRef] [Green Version]
- Brouillette, C.G.; Anantharamaiah, G.M.; Engler, J.A.; Borhani, D.W. Structural Models of Human Apolipoprotein A-I: A Critical Analysis and Review. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2001, 1531, 4–46. [Google Scholar] [CrossRef]
- Geddes, A.J.; Parker, K.D.; Atkins, E.D.T.; Beighton, E. “Cross-β” Conformation in Proteins. J. Mol. Biol. 1968, 32, 343–358. [Google Scholar] [CrossRef]
- Keliényi, G. On the Histochemistry of Azo Group-Free Thiazole Dyes. J. Histochem. Cytochem. 1967, 15, 172–180. [Google Scholar] [CrossRef]
- LeVine, H., 3rd. Thioflavine T Interaction with Synthetic Alzheimer’s Disease Beta-Amyloid Peptides: Detection of Amyloid Aggregation in Solution. Protein Sci. 1993, 2, 404–410. [Google Scholar] [CrossRef]
- Rayleigh, L. XXXIV. On the Transmission of Light through an Atmosphere Containing Small Particles in Suspension, and on the Origin of the Blue of the Sky. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1899, 47, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Manning, M.C.; Woody, R.W. Theoretical Study of the Contribution of Aromatic Side Chains to the Circular Dichroism of Basic Bovine Pancreatic Trypsin Inhibitor. Biochemistry 1989, 28, 8609–8613. [Google Scholar] [CrossRef]
- Khrapunov, S. Circular Dichroism Spectroscopy Has Intrinsic Limitations for Protein Secondary Structure Analysis. Anal. Biochem. 2009, 389, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Krysmann, M.J.; Castelletto, V.; Kelarakis, A.; Hamley, I.W.; Hule, R.A.; Pochan, D.J. Self-Assembly and Hydrogelation of an Amyloid Peptide Fragment. Biochemistry 2008, 47, 4597–4605. [Google Scholar] [CrossRef]
- Nestruck, A.C.; Suzue, G.; Marcel, Y.L. Studies on the Polymorphism of Human Apolipoprotein A-I. Biochim. Biophys. Acta (BBA)/Lipids Lipid Metab. 1980, 617, 110–121. [Google Scholar] [CrossRef]
- Das, M.; Mei, X.; Jayaraman, S.; Atkinson, D.; Gursky, O. Amyloidogenic Mutations in Human Apolipoprotein A-I Are Not Necessarily Destabilizing—A Common Mechanism of Apolipoprotein A-I Misfolding in Familial Amyloidosis and Atherosclerosis. FEBS J. 2014, 281, 2525–2542. [Google Scholar] [CrossRef] [Green Version]
- Serio, T.R.; Cashikar, A.G.; Kowal, A.S.; Sawicki, G.J.; Moslehi, J.J.; Serpell, L.; Arnsdorf, M.F.; Lindquist, S.L. Nucleated Conformational Conversion and the Replication of Conformational Information by a Prion Determinant. Science 2000, 289, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Podrez, E.A.; Abu-Soud, H.M.; Hazen, S.L. Myeloperoxidase-Generated Oxidants and Atherosclerosis. Free Radic. Biol. Med. 2000, 28, 1717–1725. [Google Scholar] [CrossRef]
- Lau, D.; Baldus, S. Myeloperoxidase and Its Contributory Role in Inflammatory Vascular Disease. Pharmacol. Ther. 2006, 111, 16–26. [Google Scholar] [CrossRef]
- Frankel, R.; Bernfur, K.; Sparr, E.; Linse, S. Purification and HDL-like Particle Formation of Apolipoprotein A-I after Co-Expression with the EDDIE Mutant of Npro Autoprotease. Protein Expr. Purif. 2021, 187, 105946. [Google Scholar] [CrossRef]
- Pownall, H.J.; Massey, J.B.B.T.-M. [29] Spectroscopic Studies of Lipoproteins. In Plasma Lipoproteins Part A: Preparation, Structure, and Molecular Biology; Academic Press: Cambridge, MA, USA, 1986; Volume 128, pp. 515–518. [Google Scholar] [CrossRef]
- Dalgleish, D.G.; Peacocke, A.R. Circular-Dichroism Studies on Two β-Lactamases from Bacillus Cereus. Biochem. J. 1971, 125, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A. Über Die von Der Molekularkinetischen Theorie Der Wärme Geforderte Bewegung von in Ruhenden Flüssigkeiten Suspendierten Teilchen. Ann. Phys. 1905, 322, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, W. LXXV. A Dynamical Theory of Diffusion for Non-Electrolytes and the Molecular Mass of Albumin. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1905, 9, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, J.L.; Titchmarsh, J.M.; Cockayne, D.J.H.; Doole, R.C.; Hetherington, C.J.D.; Kirkland, A.I.; Sawada, H. A Versatile Double Aberration-Corrected, Energy Filtered HREM/STEM for Materials Science. Ultramicroscopy 2005, 103, 7–15. [Google Scholar] [CrossRef]
- Stine, W.B.; Snyder, S.W.; Ladror, U.S.; Wade, W.S.; Miller, M.F.; Perun, T.J.; Holzman, T.F.; Krafft, G.A. The Nanometer-Scale Structure of Amyloid-Β Visualized by Atomic Force Microscopy. J. Protein Chem. 1996, 15, 193–203. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frankel, R.; Sparr, E.; Linse, S. On the Aggregation of Apolipoprotein A-I. Int. J. Mol. Sci. 2022, 23, 8780. https://doi.org/10.3390/ijms23158780
Frankel R, Sparr E, Linse S. On the Aggregation of Apolipoprotein A-I. International Journal of Molecular Sciences. 2022; 23(15):8780. https://doi.org/10.3390/ijms23158780
Chicago/Turabian StyleFrankel, Rebecca, Emma Sparr, and Sara Linse. 2022. "On the Aggregation of Apolipoprotein A-I" International Journal of Molecular Sciences 23, no. 15: 8780. https://doi.org/10.3390/ijms23158780
APA StyleFrankel, R., Sparr, E., & Linse, S. (2022). On the Aggregation of Apolipoprotein A-I. International Journal of Molecular Sciences, 23(15), 8780. https://doi.org/10.3390/ijms23158780