Albumin Stimulates Epithelial Na+ Transport and Barrier Integrity by Activating the PI3K/AKT/SGK1 Pathway
Abstract
:1. Introduction
2. Results
2.1. Effect of BSA on Na+ and Cl− Transporters in FDLE Cells
2.1.1. Chronic Effects of BSA
2.1.2. Acute Effects of BSA
3. Discussion
4. Materials and Methods
4.1. Cell Isolation and Culture
4.2. Ussing Chamber Measurements
4.3. mRNA Expression Analyses
4.4. Western Blot Analyses
4.5. Cell Permeability Assay
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francis, G.L. Albumin and mammalian cell culture: Implications for biotechnology applications. Cytotechnology 2010, 62, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, M.; Rondeau, P.; Singh, N.R.; Tarnus, E.; Bourdon, E. The antioxidant properties of serum albumin. FEBS Lett. 2008, 582, 1783–1787. [Google Scholar] [CrossRef] [PubMed]
- Kan, M.; Yamane, I. In vitro proliferation and lifespan of human diploid fibroblasts in serum-free BSA-containing medium. J. Cell. Physiol. 1982, 111, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Evans, T.W. albumin as a drug—Biological effects of albumin unrelated to oncotic pressure. Aliment. Pharmacol. Ther. 2002, 16 (Suppl. 5), 6–11. [Google Scholar] [CrossRef]
- Factor, P.; Dumasius, V.; Saldias, F.; Brown, L.A.; Sznajder, J.I. Adenovirus-mediated transfer of an Na+/K+-ATPase beta1 subunit gene improves alveolar fluid clearance and survival in hyperoxic rats. Hum. Gene Ther. 2000, 11, 2231–2242. [Google Scholar] [CrossRef]
- Tiruppathi, C.; Finnegan, A.; Malik, A.B. Isolation and characterization of a cell surface albumin-binding protein from vascular endothelial cells. Proc. Natl. Acad. Sci. USA 1996, 93, 250–254. [Google Scholar] [CrossRef] [Green Version]
- Schnitzer, J.E.; Oh, P. Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J. Biol. Chem. 1994, 269, 6072–6082. [Google Scholar] [CrossRef]
- Hastings, R.H.; Folkesson, H.G.; Matthay, M.A. Mechanisms of alveolar protein clearance in the intact lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 286, L679–L689. [Google Scholar] [CrossRef] [Green Version]
- Ikehata, M.; Yumoto, R.; Nakamura, K.; Nagai, J.; Takano, M. Comparison of albumin uptake in rat alveolar type II and type I-like epithelial cells in primary culture. Pharm. Res. 2008, 25, 913–922. [Google Scholar] [CrossRef]
- John, T.A.; Vogel, S.M.; Minshall, R.D.; Ridge, K.; Tiruppathi, C.; Malik, A.B. Evidence for the role of alveolar epithelial gp60 in active transalveolar albumin transport in the rat lung. J. Physiol. 2001, 533, 547–559. [Google Scholar] [CrossRef]
- Yumoto, R.; Nishikawa, H.; Okamoto, M.; Katayama, H.; Nagai, J.; Takano, M. Clathrin-mediated endocytosis of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 290, L946–L955. [Google Scholar] [CrossRef] [Green Version]
- Christensen, E.I.; Birn, H. Megalin and cubilin: Synergistic endocytic receptors in renal proximal tubule. Am. J. Physiol. Renal Physiol. 2001, 280, F562–F573. [Google Scholar] [CrossRef]
- Kolleck, I.; Wissel, H.; Guthmann, F.; Schlame, M.; Sinha, P.; Rüstow, B. HDL-holoparticle uptake by alveolar type II cells: Effect of vitamin E status. Am. J. Respir. Cell Mol. Biol. 2002, 27, 57–63. [Google Scholar] [CrossRef]
- Barker, P.M.; Gowen, C.W.; Lawson, E.E.; Knowles, M.R. Decreased sodium ion absorption across nasal epithelium of very premature infants with respiratory distress syndrome. J. Pediatr. 1997, 130, 373–377. [Google Scholar] [CrossRef]
- Helve, O.; Pitkanen, O.M.; Andersson, S.; O’Brodovich, H.; Kirjavainen, T.; Otulakowski, G. Low expression of human epithelial sodium channel in airway epithelium of preterm infants with respiratory distress. Pediatrics 2004, 113, 1267–1272. [Google Scholar] [CrossRef]
- Blazer-Yost, B.L.; Esterman, M.A.; Vlahos, C.J. Insulin-stimulated trafficking of ENaC in renal cells requires PI 3-kinase activity. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003, 284, C1645–C1653. [Google Scholar] [CrossRef]
- Tiwari, S.; Nordquist, L.; Halagappa, V.K.M.; Ecelbarger, C.A. Trafficking of ENaC subunits in response to acute insulin in mouse kidney. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 293, F178–F185. [Google Scholar] [CrossRef]
- Lee, I.-H.; Dinudom, A.; Sanchez-Perez, A.; Kumar, S.; Cook, D.I. Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4-2. J. Biol. Chem. 2007, 282, 29866–29873. [Google Scholar] [CrossRef] [Green Version]
- Tallini, N.Y.; Stoner, L.C. Amiloride-sensitive sodium current in everted Ambystoma initial collecting tubule: Short-term insulin effects. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002, 283, C1171–C1181. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, T.S.; Ilatovskaya, D.V.; Levchenko, V.; Li, L.; Ecelbarger, C.M.; Staruschenko, A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. FASEB J. 2013, 27, 2723–2732. [Google Scholar] [CrossRef] [Green Version]
- Diakov, A.; Nesterov, V.; Mokrushina, M.; Rauh, R.; Korbmacher, C. Protein kinase B alpha (PKBalpha) stimulates the epithelial sodium channel (ENaC) heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms. Cell. Physiol. Biochem. 2010, 26, 913–924. [Google Scholar] [CrossRef]
- Jones, D.T.; Ganeshaguru, K.; Anderson, R.J.; Jackson, T.R.; Bruckdorfer, K.R.; Low, S.Y.; Palmqvist, L.; Prentice, H.G.; Hoffbrand, A.V.; Mehta, A.B.; et al. Albumin activates the AKT signaling pathway and protects B-chronic lymphocytic leukemia cells from chlorambucil- and radiation-induced apoptosis. Blood 2003, 101, 3174–3180. [Google Scholar] [CrossRef] [Green Version]
- Bolitho, C.; Bayl, P.; Hou, J.Y.; Lynch, G.; Hassel, A.J.; Wall, A.J.; Zoellner, H. The anti-apoptotic activity of albumin for endothelium is mediated by a partially cryptic protein domain and reduced by inhibitors of G-coupled protein and PI-3 kinase, but is independent of radical scavenging or bound lipid. J. Vasc. Res. 2007, 44, 313–324. [Google Scholar] [CrossRef]
- Silva-Aguiar, R.P.; Peruchetti, D.B.; Florentino, L.S.; Takiya, C.M.; Marzolo, M.-P.; Dias, W.B.; Pinheiro, A.A.S.; Caruso-Neves, C. Albumin Expands Albumin Reabsorption Capacity in Proximal Tubule Epithelial Cells through a Positive Feedback Loop between AKT and Megalin. Int. J. Mol. Sci. 2022, 23, 848. [Google Scholar] [CrossRef]
- Toh, W.H.; Louber, J.; Mahmoud, I.S.; Chia, J.; Bass, G.T.; Dower, S.K.; Verhagen, A.M.; Gleeson, P.A. FcRn mediates fast recycling of endocytosed albumin and IgG from early macropinosomes in primary macrophages. J. Cell Sci. 2019, 133, jcs235416. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.P.; Mintern, J.D.; Gleeson, P.A. Macropinocytosis in Different Cell Types: Similarities and Differences. Membranes 2020, 10, 177. [Google Scholar] [CrossRef]
- West, M.A.; Bretscher, M.S.; Watts, C. Distinct endocytotic pathways in epidermal growth factor-stimulated human carcinoma A431 cells. J. Cell Biol. 1989, 109, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Lindmo, K.; Stenmark, H. Regulation of membrane traffic by phosphoinositide 3-kinases. J. Cell Sci. 2006, 119, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Koivusalo, M.; Welch, C.; Hayashi, H.; Scott, C.C.; Kim, M.; Alexander, T.; Touret, N.; Hahn, K.M.; Grinstein, S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 2010, 188, 547–563. [Google Scholar] [CrossRef] [Green Version]
- King, J.S.; Kay, R.R. The origins and evolution of macropinocytosis. Philos. Trans. R. Soc. B 2019, 374, 20180158. [Google Scholar] [CrossRef]
- Tagawa, M.; Yumoto, R.; Oda, K.; Nagai, J.; Takano, M. Low-affinity transport of FITC-albumin in alveolar type II epithelial cell line RLE-6TN. Drug Metab. Pharmacokinet. 2008, 23, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Mazzochi, C.; Benos, D.J.; Smith, P.R. Interaction of epithelial ion channels with the actin-based cytoskeleton. Am. J. Physiol. Ren. Physiol. 2006, 291, F1113–F1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpushev, A.V.; Levchenko, V.; Ilatovskaya, D.V.; Pavlov, T.S.; Staruschenko, A. Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na+ channel. Hypertension 2011, 57, 996–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, H.C.; Coadwell, W.; Stephens, L.R.; Hawkins, P.T. Phosphoinositide 3-kinase-dependent activation of Rac. FEBS Lett. 2003, 546, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Campa, C.C.; Ciraolo, E.; Ghigo, A.; Germena, G.; Hirsch, E. Crossroads of PI3K and Rac pathways. Small GTPases 2015, 6, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Obendorf, J.; Fabian, C.; Thome, U.H.; Laube, M. Paracrine stimulation of perinatal lung functional and structural maturation by mesenchymal stem cells. Stem Cell Res. Ther. 2020, 11, 525. [Google Scholar] [CrossRef]
- Frank, J.A. Claudins and alveolar epithelial barrier function in the lung. Ann. N. Y. Acad. Sci. 2012, 1257, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.B.; Hammo, B.; Barry, J.; Radhakrishnan, K. Overview of Albumin Physiology and its Role in Pediatric Diseases. Curr. Gastroenterol. Rep. 2021, 23, 11. [Google Scholar] [CrossRef]
- Jassal, D.; Han, R.N.; Caniggia, I.; Post, M.; Tanswell, A.K. Growth of distal fetal rat lung epithelial cells in a defined serum-free medium. In Vitro Cell. Dev. Biol. Anim. 1991, 27, 625–632. [Google Scholar] [CrossRef]
- Kaltofen, T.; Haase, M.; Thome, U.H.; Laube, M. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport. PLoS ONE 2015, 10, e0136178. [Google Scholar] [CrossRef]
- Laube, M.; Dornis, D.; Wenzel, F.; Thome, U.H. Epidermal growth factor strongly affects epithelial Na+ transport and barrier function in fetal alveolar cells, with minor sex-specific effects. Sci. Rep. 2021, 11, 15951. [Google Scholar] [CrossRef]
- Laube, M.; Bossmann, M.; Thome, U.H. Glucocorticoids Distinctively Modulate the CFTR Channel with Possible Implications in Lung Development and Transition into Extrauterine Life. PLoS ONE 2015, 10, e0124833. [Google Scholar] [CrossRef] [Green Version]
- Bossmann, M.; Ackermann, B.W.; Thome, U.H.; Laube, M. Signaling Cascade Involved in Rapid Stimulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Dexamethasone. Int. J. Mol. Sci. 2017, 18, 1807. [Google Scholar] [CrossRef] [Green Version]
- Murray, J.T.; Cummings, L.A.; Bloomberg, G.B.; Cohen, P. Identification of different specificity requirements between SGK1 and PKBalpha. FEBS Lett. 2005, 579, 991–994. [Google Scholar] [CrossRef] [Green Version]
- Inglis, S.K.; Gallacher, M.; Brown, S.G.; McTavish, N.; Getty, J.; Husband, E.M.; Murray, J.T.; Wilson, S.M. SGK1 activity in Na+ absorbing airway epithelial cells monitored by assaying NDRG1-Thr346/356/366 phosphorylation. Pflügers Arch. Eur. J. Physiol. 2009, 457, 1287–1301. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.M.; Mansley, M.K.; Getty, J.; Husband, E.M.; Inglis, S.K.; Hansen, M.K. Effects of peroxisome proliferator-activated receptor gamma agonists on Na+ transport and activity of the kinase SGK1 in epithelial cells from lung and kidney. Br. J. Pharmacol. 2010, 159, 678–688. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laube, M.; Thome, U.H. Albumin Stimulates Epithelial Na+ Transport and Barrier Integrity by Activating the PI3K/AKT/SGK1 Pathway. Int. J. Mol. Sci. 2022, 23, 8823. https://doi.org/10.3390/ijms23158823
Laube M, Thome UH. Albumin Stimulates Epithelial Na+ Transport and Barrier Integrity by Activating the PI3K/AKT/SGK1 Pathway. International Journal of Molecular Sciences. 2022; 23(15):8823. https://doi.org/10.3390/ijms23158823
Chicago/Turabian StyleLaube, Mandy, and Ulrich H. Thome. 2022. "Albumin Stimulates Epithelial Na+ Transport and Barrier Integrity by Activating the PI3K/AKT/SGK1 Pathway" International Journal of Molecular Sciences 23, no. 15: 8823. https://doi.org/10.3390/ijms23158823
APA StyleLaube, M., & Thome, U. H. (2022). Albumin Stimulates Epithelial Na+ Transport and Barrier Integrity by Activating the PI3K/AKT/SGK1 Pathway. International Journal of Molecular Sciences, 23(15), 8823. https://doi.org/10.3390/ijms23158823