24-Epibrassinolide Promotes Fatty Acid Accumulation and the Expression of Related Genes in Styrax tonkinensis Seeds
Abstract
:1. Introduction
2. Results
2.1. Effects of EBL5 on Fatty Acid Composition, Fatty Acid Concentration, and Fatty Acid Biosynthesis-Related Enzyme Activity
2.2. Transcriptome Sequencing Analysis
2.3. Functional Annotation and Classification
2.4. Gene Expression Analysis
2.5. Enrichment Analysis of DEGs
2.6. Expression Levels of Genes Involved in Fatty Acid Biosynthesis
3. Discussion
3.1. Fatty Acid Accumulation and Compositions in S. tonkinensis Seeds
3.2. Expression Levels of the Genes Involved in Fatty Acid Biosynthesis
3.3. Transcription Factors Involved in Fatty Acid Biosynthesis
4. Materials and Methods
4.1. Site Condition and Plant Materials
4.2. Experimental Design and Treatment
4.3. Sample Collection
4.4. Fatty Acid Extraction and GC-MS Analysis
4.5. Enzyme Activity Assay
4.6. RNA Extraction
4.7. Library Preparation and Illumina Hiseq Xten/NovaSeq 6000 Sequencing
4.8. De Novo Assembly and Annotation
4.9. Differential Expression Analysis and Functional Enrichment
4.10. qRT-PCR Validation
4.11. Statistics Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiong, B.; Zhang, Z.; Dong, S. Biodiesel from Lindera glauca oil, a potential non-food feedstock in Southern China. Ind. Crop Prod. 2018, 122, 107–113. [Google Scholar] [CrossRef]
- Dai, G.; Yang, J.; Lu, S.; Huang, C.; Jin, J.; Jiang, P.; Yan, P. The potential impact of invasive woody oil plants on protected areas in china under future climate conditions. Sci. Rep. 2018, 8, 1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adewale, P.; Dumont, M.J.; Ngadi, M. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Renew. Sustain. Energ. Rev. 2015, 45, 574–588. [Google Scholar] [CrossRef]
- Fei, X.T.; Ma, Y.; Hu, H.C.; Wei, A.Z. Transcriptome analysis and GC-MS profiling of key genes in fatty acid synthesis of Zanthoxylum bungeanum seeds. Ind. Crop Prod. 2020, 156, 112870. [Google Scholar] [CrossRef]
- Cardoso, A.L.; Neves, S.C.G.; da Silva, M.J. Kinetic study of alcoholysis of the fatty acids catalyzed by tin chloride (II): An alternative catalyst for biodiesel production. Energy Fuels 2009, 23, 1718–1722. [Google Scholar] [CrossRef]
- Wang, X.; Li, W.; Li, N.; Li, J. Omega-3 fatty acids-supplemented parenteral nutrition decreases hyperinflammatory response and attenuates systemic disease sequelae in severe acute pancreatitis: A randomized and controlled study. J. Parenter. Enter. Nutr. 2008, 32, 236–241. [Google Scholar] [CrossRef]
- Bloedon, L.T.; Szapary, P.O. Flaxseed and cardiovascular risk. Nutr. Rev. 2004, 64, 18–27. [Google Scholar] [CrossRef]
- Baud, S.; Guyon, V.; Kronenberger, J.; Wuillème, S.; Miquel, M.; Caboche, M.; Lepiniec, L.; Rochat, C. Multifunctional acetyl-CoA carboxylase 1 is essential for very long chain fatty acid elongation and embryo development in Arabidopsis. Plant J. 2003, 33, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Smooker, A.M.; Wells, R.; Morgan, C.; Beaudoin, F.; Cho, K.; Fraser, F.; Bancroft, I. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor. Appl. Genet. 2011, 122, 1075–1090. [Google Scholar] [CrossRef]
- Taylor, D.C.; Zhang, Y.; Kumar, A.; Francis, T.; Giblin, E.M.; Barton, D.; Ferrie, J.R.; Laroche, A.; Shah, S.; Zhu, W.; et al. Molecular modification of triacylglycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany 2009, 87, 533–543. [Google Scholar] [CrossRef] [Green Version]
- Jako, C.; Kumar, A.; Wei, Y.; Zou, J.; Barton, D.L.; Giblin, E.M.; Taylor, D.C. Seed-specific overexpression of an Arabidopsis cDNA encoding a diacylglycerel acyltransferase enhances seed oil content and seed weight. Plant Physiol. 2001, 126, 861–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, D.; Dai, Z.; Yang, Z.; Tang, Q.; Deng, C.; Xu, Y.; Wang, J.; Chen, J.; Zhao, D.; Zhang, S.; et al. Combined genome-wide association analysis and transcriptome sequencing to identify candidate genes for flax seed fatty acid metabolism. Plant Sci. 2019, 286, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Luo, Y.; Wang, X.J.; Yu, F.Y. Fruit spray of 24-epibrassinolide and fruit shade alter pericarp photosynthesis activity and seed lipid accumulation in Styrax tonkinensis. J. Plant Growth Regul. 2018, 37, 1066–1084. [Google Scholar] [CrossRef]
- Chen, C.; Cao, Y.Y.; Wang, X.J.; Wu, Q.K.; Yu, F.Y. Do stored reserves and endogenous hormones in overwintering twigs determine flower bud differentiation of summer blooming plant-Styrax tonkinensis. Int. J. Agric. Biol. 2019, 22, 815–820. [Google Scholar]
- Burger, P.; Casale, A.; Kerdudo, A. New insights in the chemical composition of benzoin balsams. Food Chem. 2016, 210, 613–622. [Google Scholar] [CrossRef]
- Courel, B.; Adam, P.; Schaeffer, P. The potential of triterpenoids as chemotaxonomic tools to identify and differentiate genuine, adulterated and archaeological balsams. Microchem. J. 2019, 147, 411–421. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Wang, X.J.; Luo, Y.; Yu, F.Y. Carbon competition between fatty acids and starch during benzoin seeds maturation slows oil accumulation speed. Trees-Struct. Funct. 2017, 31, 1025–1039. [Google Scholar] [CrossRef]
- Wu, Q.K.; Cao, Y.Y.; Chen, C.; Gao, Z.Z.; Yu, F.Y.; Guy, R.D. Transcriptome analysis of metabolic pathways associated with oil accumulation in developing seed kernels of Styrax tonkinensis, a woody biodiesel species. BMC Plant Biol. 2020, 20, 121. [Google Scholar] [CrossRef] [Green Version]
- Aghdasi, S.; AghaAlikhani, M.; Modarres-Sanavy, S.A.M.; Kahrizi, D. Exogenous used boron and 24-epibrassinolide improved oil quality and mitigate late-season water deficit stress in camelina. Ind. Crop Prod. 2021, 171, 113885. [Google Scholar] [CrossRef]
- Hosseinpour, M.; Ebadi, A.; Habibi, H.; Nabizadeh, E.; Jahanbakhsh, S. Enhancing enzymatic and nonenzymatic response of Echinacea purpurea by exogenous 24-epibrassinolide under drought stress. Ind. Crop Prod. 2020, 146, 112045. [Google Scholar] [CrossRef]
- Hu, Y.J.; Shi, L.X.; Sun, W.; Guo, J.X. Effects of abscisic acid and brassinolide on photosynthetic characteristics of Leymus chinensis from Songnen Plain grassland in Northeast China. Bot. Stud. 2013, 54, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedina, E.; Yarin, A.; Mukhitova, F.; Blufard, A.; Chechetkin, I. Brassinosteroid induced changes of lipid composition in leaves of Pisum sativum L. during senescence. Steroids 2017, 117, 25–28. [Google Scholar] [CrossRef]
- Zhao, X.C.; Yang, G.Y.; Liu, X.Q.; Yu, Z.D.; Peng, S.B. Intergrated analysis of seed microRNA and mRNA transcriptome reveals important functional genes and microRNA-targets in the process of walnut (Juglans regia) seed oil accumulation. Int. J. Mol. Sci. 2020, 21, 9093. [Google Scholar] [CrossRef]
- Sarno, M.; Ponticorvo, E. A new nanohybrid for electrocatalytic biodiesel production from waste Amalfi coast lemon seed oil. Fuel 2020, 267, 117178. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.-J.; Qu, X.-J.; Wang, W.; Luo, M.; Zhao, C.-J.; Zu, Y.-G. Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst. Bioresour. Technol. 2012, 108, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Zafari, M.; Ebadi, A.; Sedghi, M.; Jahanbakhsh, S. Alleviating effect of 24-epibrassinolide on seed oil content and fatty acid composition under drought stress in safflower. J. Food Compos. Anal. 2020, 92, 103544. [Google Scholar] [CrossRef]
- Flores, G.; Luisa, R.D.C.M. Enhancement of nutritionally significant constituents of black currant seeds by chemical elicitor application. Food Chem. 2016, 194, 1260–1265. [Google Scholar] [CrossRef]
- Ramos, M.J.; Fernández, C.M.; Casas, A.; Rodrguez, L.; Prez, N. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol. 2009, 100, 261–268. [Google Scholar] [CrossRef]
- Reddy, A.N.R.; Saleh, A.A.; Islam, M.S.; Hamdan, S.; Rahman, M.R.; Masjuki, H.H. Experimental evaluation of fatty acid composition influence on Jatropha biodiesel physicochemical properties. J. Renew. Sustain. Energy 2018, 10, 13103. [Google Scholar] [CrossRef]
- Nan, S.Z.; Zhang, L.J.; Hu, X.W.; Miao, X.M.; Han, X.X.; Fu, H. Transcriptomic analysis reveals key genes involved in oil and linoleic acid biosynthesis during Artemisia sphaerocephala seed development. Int. J. Mol. Sci. 2021, 22, 8369. [Google Scholar] [CrossRef]
- Riezman, H. The long and short of fatty acid synthesis. Cell 2007, 130, 587–588. [Google Scholar] [CrossRef] [PubMed]
- Rawsthorne, S. Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 2002, 41, 182–196. [Google Scholar] [CrossRef]
- Wang, L.; Shen, W.; Kazachkov, M. Metabolic interactions between the lands cycle and the Kennedy pathway of glycerolipid synthesis in Arabidopsis developing seeds. Plant Cell 2012, 24, 4652–4669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podkovyrov, S.M.; Larson, T.J. Identification of promoter and stringent regulation of transcription of the fabH, fabD and fabG genes encoding fatty acid biosynthesis enzymes of Escherichia coli. Nucleic Acids Res. 1996, 24, 1747–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokotylo, I.V.; Kretynin, S.V.; Khripach, V.A.; Ruelland, E.; Blume, Y.B.; Kravets, V.S. Influence of 24-epibrassinolide on lipid signalling and metabolism in Brassica napus. Plant Growth Regul. 2014, 73, 9–17. [Google Scholar] [CrossRef]
- Voelker, T.A. Plant acyl-ACP thioesterases; chain-length determining enzymes in plant fatty acid biosynthesis. Genet. Eng. 1996, 18, 111–133. [Google Scholar]
- Ginalski, K.; Rychlewski, L. Detection of reliable and unexpected protein fold predictions using 3D-Jury. Nucleic Acids Res. 2003, 31, 3291–3292. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.; Wang, K.L.; Zhou, C.F.; Xie, Y.H.; Yao, X.H.; Yin, H.F. Seed transcriptomics analysis in Camellia oleifera uncovers genes associated with oil content and fatty acid composition. Int. J. Mol. Sci. 2018, 19, 118. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Cui, Q.Q.; Xu, Y.J.; Yang, S.S.; Gao, M.; Wang, Y.D. Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fatty acid accumulation in Rhodotorula glutinis and Arabidopsis thaliana. Mol. Genet. Genom. 2015, 290, 1605–1613. [Google Scholar] [CrossRef]
- Okuley, J.; Lightner, J.; Feldmann, K.; Yadav, N.; Lark, E.; Browse, J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid-synthesis. Plant Cell 1994, 6, 147–158. [Google Scholar]
- Zhao, Y.P.; Wang, Y.M.; Huang, Y.; Cui, Y.P.; Hua, J.P. Gene network of oil accumulation reveals expression profiles in developing embryos and fatty acid composition in Upland cotton. J. Plant Physiol. 2018, 228, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Thelen, J.J.; Ohlrogge, J.B. Metabolic engineering of fatty acid biosynthesis in plants. Metab. Eng. 2002, 4, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Nagano, Y. Plant acetyl-CoA carboxylase: Structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci. Biotechnol. Biochem. 2004, 68, 1175–1184. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Chaudhary, A.; Singh, D.; Teotia, S. Transcription regulation of seed oil accumulation in Arabidopsis thaliana: Role of transcription factors and chromatin remodelers. J. Plant Biochem. Biot. 2020, 29, 754–768. [Google Scholar] [CrossRef]
- Niu, Y.; Wu, L.; Li, Y.; Huang, H.; Qian, M.; Sun, W.; Zhu, H.; Xu, Y.; Fan, Y.; Mahmood, U.; et al. Deciphering the transcriptional regulatory networks that control size, color, and oil content in Brassica rape seeds. Biotechnol. Biofuels 2020, 13, 90. [Google Scholar] [CrossRef]
- Ge, Y.; Dong, X.S.; Liu, Y.Z.; Yang, Y.; Zhan, R.L. Molecular and biochemical analyses of avocado (Persea americana) reveal differences in the oil accumulation pattern between the mesocarp and seed during the fruit developmental period. Sci. Hortic. 2021, 276, 109717. [Google Scholar] [CrossRef]
- Mendes, A.; Kelly, A.A.; van Erp, H.; Shaw, E.; Powers, S.J.; Kurup, S.; Eastmond, P.J. bZIP67 regulates the omega-3 fatty acid content of Arabidopsis seed oil by activating fatty acid desaturase3. Plant Cell 2013, 25, 3104–3116. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.G.; Kim, H.; Suh, M.C.; Kim, H.U.; Seo, P.J. The MYB96 transcription factor regulates triacylglycerol accumulation by activating DGAT1 and PDAT1 expression in Arabidopsis seeds. Plant Cell Physiol. 2018, 59, 1432–1442. [Google Scholar] [CrossRef]
- Jofuku, K.D.; Omidyar, P.K.; Gee, Z.; Okamuro, J.K. Control of seed mass and seed yield by the floral homeotic gene APETALA2. Proc. Natl. Acad. Sci. USA 2005, 102, 3117–3122. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Li, X.; Munir, R.; Khan, A.R.; Azhar, W.; Yasin, M.U.; Jiang, Q.; Bancroft, I.; Gan, Y. The WRKY6 transcription factor affects seed oil accumulation and alters fatty acid compositions in Arabidopsis thaliana. Physiol. Plant 2020, 169, 612–624. [Google Scholar] [CrossRef]
- Ji, X.Y. Comparative analysis of volatile organic compounds and bioactive compounds in typical coniferous and broad-leaved tree species. J. Essent. Oil Bear. Plants 2021, 23, 1105–1117. [Google Scholar] [CrossRef]
- Chen, C.; Cao, Y.Y.; Chen, H.; Ni, M.; Yu, F.Y. Floral scent compounds and emission patterns of three Styrax species. Dendrobiology 2021, 85, 30–38. [Google Scholar] [CrossRef]
- Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem. 2005, 280, 5636–5645. [Google Scholar] [CrossRef] [Green Version]
- Bays, N.; Hill, A.D.; Kariv, I. A simplified scintillation proximity assay for fatty acid synthase activity: Development and comparison with other FAS activity assays. J. Biomol. Screen. 2009, 14, 636–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Conesa, A.; Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.-Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | DAF | Library ID | Raw Data | Clean Data | Clean Ratio (%) | ||
---|---|---|---|---|---|---|---|
Reads | Bases | Reads | Bases | ||||
CK | 50 | ST1 | 52,576,118 | 7,938,993,818 | 52,069,462 | 7,661,446,106 | 99.04 |
ST2 | 58,412,370 | 8,820,267,870 | 58,030,022 | 8,551,294,813 | 99.35 | ||
ST3 | 49,291,606 | 7,443,032,506 | 48,938,812 | 7,185,882,099 | 99.28 | ||
70 | ST4 | 51,841,414 | 7,828,053,514 | 51,474,434 | 7,555,435,732 | 99.29 | |
ST5 | 51,238,464 | 7,737,008,064 | 50,877,488 | 7,488,832,185 | 99.30 | ||
ST6 | 44,519,776 | 6,722,486,176 | 44,152,016 | 6,490,325,526 | 99.17 | ||
100 | ST7 | 52,769,788 | 7,968,237,988 | 52,359,108 | 7,645,287,938 | 99.22 | |
ST8 | 45,504,386 | 6,871,162,286 | 45,000,182 | 6,644,260,279 | 98.89 | ||
ST9 | 52,755,456 | 7,966,073,856 | 52,287,670 | 7,623,692,244 | 99.11 | ||
130 | ST10 | 54,480,322 | 8,226,528,622 | 54,005,880 | 7,888,438,631 | 99.13 | |
ST11 | 50,006,582 | 7,550,993,882 | 49,610,496 | 7,278,763,737 | 99.21 | ||
ST12 | 58,199,588 | 8,788,137,788 | 57,780,438 | 8,505,039,657 | 99.28 | ||
EBL5 | 50 | ST13 | 48,743,066 | 7,360,202,966 | 48,351,776 | 7,148,014,849 | 99.20 |
ST14 | 53,107,548 | 8,019,239,748 | 52,747,854 | 7,781,457,002 | 99.32 | ||
ST15 | 52,110,960 | 7,868,754,960 | 51,625,538 | 7,579,374,419 | 99.07 | ||
70 | ST16 | 48,385,070 | 7,306,145,570 | 48,059,442 | 7,107,199,135 | 99.33 | |
ST17 | 48,352,048 | 7,301,159,248 | 47,947,800 | 7,060,381,020 | 99.16 | ||
ST18 | 48,578,174 | 7,335,304,274 | 48,188,350 | 7,109,430,178 | 99.20 | ||
100 | ST19 | 47,260,856 | 7,136,389,256 | 46,768,994 | 6,894,657,098 | 98.96 | |
ST20 | 40,949,022 | 6,183,302,322 | 40,313,670 | 5,858,080,882 | 98.45 | ||
ST21 | 47,964,600 | 7,242,654,600 | 47,474,716 | 6,980,363,633 | 98.98 | ||
130 | ST22 | 56,293,326 | 8,500,292,226 | 55,793,860 | 8,189,033,282 | 99.11 | |
ST23 | 50,022,084 | 7,553,334,684 | 49,528,614 | 7,341,248,924 | 99.01 | ||
ST24 | 48,076,766 | 7,259,591,666 | 47,675,840 | 7,001,365,324 | 99.16 |
Type | Unigenes |
---|---|
Total number | 117,904 |
Total base | 132,077,283 |
Largest length (bp) | 16,018 |
Smallest length (bp) | 201 |
Average length (bp) | 1120 |
N50 length (bp) | 1705 |
Fragment mapped percent (%) | 60.66 |
GC content (%) | 42.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Chen, H.; Han, C.; Liu, Z.; Yu, F.; Wu, Q. 24-Epibrassinolide Promotes Fatty Acid Accumulation and the Expression of Related Genes in Styrax tonkinensis Seeds. Int. J. Mol. Sci. 2022, 23, 8897. https://doi.org/10.3390/ijms23168897
Chen C, Chen H, Han C, Liu Z, Yu F, Wu Q. 24-Epibrassinolide Promotes Fatty Acid Accumulation and the Expression of Related Genes in Styrax tonkinensis Seeds. International Journal of Molecular Sciences. 2022; 23(16):8897. https://doi.org/10.3390/ijms23168897
Chicago/Turabian StyleChen, Chen, Hong Chen, Chao Han, Zemao Liu, Fangyuan Yu, and Qikui Wu. 2022. "24-Epibrassinolide Promotes Fatty Acid Accumulation and the Expression of Related Genes in Styrax tonkinensis Seeds" International Journal of Molecular Sciences 23, no. 16: 8897. https://doi.org/10.3390/ijms23168897
APA StyleChen, C., Chen, H., Han, C., Liu, Z., Yu, F., & Wu, Q. (2022). 24-Epibrassinolide Promotes Fatty Acid Accumulation and the Expression of Related Genes in Styrax tonkinensis Seeds. International Journal of Molecular Sciences, 23(16), 8897. https://doi.org/10.3390/ijms23168897