In Vitro Models of Biological Barriers for Nanomedical Research
Abstract
:1. Introduction
2. The Blood–Brain Barrier
3. The Tumor Microenvironment Barrier
4. The Endothelial Barrier
5. The Lung Barrier
6. The Intestinal Barrier
7. The Skin Barrier
8. Conclusions
Funding
Conflicts of Interest
References
- Weber, D.O. Nanomedicine. Health Forum J. 1999, 42, 36–37. [Google Scholar]
- Codullo, V.; Cova, E.; Pandolfi, L.; Breda, S.; Morosini, M.; Frangipane, V.; Malatesta, M.; Calderan, L.; Cagnone, M.; Pacini, C.; et al. Imatinib-Loaded Gold Nanoparticles Inhibit Proliferation of Fibroblasts and Macrophages from Systemic Sclerosis Patients and Ameliorate Experimental Bleomycin-Induced Lung Fibrosis. J. Control Release 2019, 310, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Hassett, K.J.; Benenato, K.E.; Jacquinet, E.; Lee, A.; Woods, A.; Yuzhakov, O.; Himansu, S.; Deterling, J.; Geilich, B.M.; Ketova, T.; et al. Optimization of Lipid Nanoparticles for Intramuscular Administration of MRNA Vaccines. Mol. Nucleic Acids 2019, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inchaurraga, L.; Martínez-López, A.L.; Cattoz, B.; Griffiths, P.C.; Wilcox, M.; Pearson, J.P.; Quincoces, G.; Peñuelas, I.; Martin-Arbella, N.; Irache, J.M. The Effect of Thiamine-Coating Nanoparticles on Their Biodistribution and Fate Following Oral Administration. Eur. J. Pharm. Sci. 2019, 128, 81–90. [Google Scholar] [CrossRef]
- Ak, G.; Bozkaya, Ü.F.; Yılmaz, H.; Sarı Turgut, Ö.; Bilgin, İ.; Tomruk, C.; Uyanıkgil, Y.; Hamarat Şanlıer, Ş. An Intravenous Application of Magnetic Nanoparticles for Osteomyelitis Treatment: An Efficient Alternative. Int. J. Pharm. 2021, 592, 119999. [Google Scholar] [CrossRef]
- Arango, J.M.; Padro, D.; Blanco, J.; Lopez-Fernandez, S.; Castellnou, P.; Villa-Valverde, P.; Ruiz-Cabello, J.; Martin, A.; Carril, M. Fluorine Labeling of Nanoparticles and In Vivo 19F Magnetic Resonance Imaging. ACS Appl. Mater. Interfaces 2021, 13, 12941–12949. [Google Scholar] [CrossRef]
- Changsan, N.; Sinsuebpol, C. Dry Powder Inhalation Formulation of Chitosan Nanoparticles for Co-Administration of Isoniazid and Pyrazinamide. Pharm. Dev. Technol. 2021, 26, 181–192. [Google Scholar] [CrossRef]
- Costanzo, M.; Esposito, E.; Sguizzato, M.; Lacavalla, M.A.; Drechsler, M.; Valacchi, G.; Zancanaro, C.; Malatesta, M. Formulative Study and Intracellular Fate Evaluation of Ethosomes and Transethosomes for Vitamin D3 Delivery. Int. J. Mol. Sci. 2021, 22, 5341. [Google Scholar] [CrossRef]
- Zou, J.-J.; Le, J.-Q.; Zhang, B.-C.; Yang, M.-Y.; Jiang, J.-L.; Lin, J.-F.; Wu, P.-Y.; Li, C.; Chen, L.; Shao, J.-W. Accelerating Transdermal Delivery of Insulin by Ginsenoside Nanoparticles with Unique Permeability. Int. J. Pharm. 2021, 605, 120784. [Google Scholar] [CrossRef]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique, 1st ed.; Methuen & Co.: London, UK, 1959; pp. 1–252. [Google Scholar]
- Albanese, A.; Tang, P.S.; Chan, W.C.W. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Malatesta, M. Transmission Electron Microscopy as a Powerful Tool to Investigate the Interaction of Nanoparticles with Subcellular Structures. Int. J. Mol. Sci. 2021, 22, 12789. [Google Scholar] [CrossRef]
- Gamboa, J.M.; Leong, K.W. In Vitro and in Vivo Models for the Study of Oral Delivery of Nanoparticles. Adv. Drug Deliv. Rev. 2013, 65, 800–810. [Google Scholar] [CrossRef] [Green Version]
- Trickler, W.J.; Lantz-McPeak, S.M.; Robinson, B.L.; Paule, M.G.; Slikker, W.; Biris, A.S.; Schlager, J.J.; Hussain, S.M.; Kanungo, J.; Gonzalez, C.; et al. Porcine Brain Microvessel Endothelial Cells Show Pro-Inflammatory Response to the Size and Composition of Metallic Nanoparticles. Drug Metab. Rev. 2014, 46, 224–231. [Google Scholar] [CrossRef]
- Gholizadeh-Ghaleh Aziz, S.; Pashaiasl, M.; Khodadadi, K.; Ocheje, O. Application of Nanomaterials in Three-Dimensional Stem Cell Culture. J. Cell Biochem. 2019, 120, 18550–18558. [Google Scholar] [CrossRef]
- Van Zundert, I.; Fortuni, B.; Rocha, S. From 2D to 3D Cancer Cell Models-The Enigmas of Drug Delivery Research. Nanomaterials 2020, 10, 2236. [Google Scholar] [CrossRef]
- Giusti, S.; Sbrana, T.; La Marca, M.; Di Patria, V.; Martinucci, V.; Tirella, A.; Domenici, C.; Ahluwalia, A. A Novel Dual-Flow Bioreactor Simulates Increased Fluorescein Permeability in Epithelial Tissue Barriers. Biotechnol. J. 2014, 9, 1175–1184. [Google Scholar] [CrossRef]
- Carton, F.; Calderan, L.; Malatesta, M. Incubation under Fluid Dynamic Conditions Markedly Improves the Structural Preservation in Vitro of Explanted Skeletal Muscles. Eur. J. Histochem. 2017, 61, 2862. [Google Scholar] [CrossRef] [Green Version]
- Schmid, J.; Schwarz, S.; Meier-Staude, R.; Sudhop, S.; Clausen-Schaumann, H.; Schieker, M.; Huber, R. A Perfusion Bioreactor System for Cell Seeding and Oxygen-Controlled Cultivation of Three-Dimensional Cell Cultures. Tissue Eng. Part C Methods 2018, 24, 585–595. [Google Scholar] [CrossRef]
- Cappellozza, E.; Zanzoni, S.; Malatesta, M.; Calderan, L. Integrated Microscopy and Metabolomics to Test an Innovative Fluid Dynamic System for Skin Explants In Vitro. Microsc. Microanal. 2021, 27, 923–934. [Google Scholar] [CrossRef]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Bhatia, S.N.; Ingber, D.E. Microfluidic Organs-on-Chips. Nat. Biotechnol. 2014, 32, 760–772. [Google Scholar] [CrossRef]
- Esch, E.W.; Bahinski, A.; Huh, D. Organs-on-Chips at the Frontiers of Drug Discovery. Nat. Rev. Drug Discov. 2015, 14, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Pardridge, W.M. Blood-Brain Barrier Drug Targeting: The Future of Brain Drug Development. Mol. Interv. 2003, 3, 90. [Google Scholar] [CrossRef]
- Abbott, N.J.; Patabendige, A.A.K.; Dolman, D.E.M.; Yusof, S.R.; Begley, D.J. Structure and Function of the Blood–Brain Barrier. Neurobiol. Dis. 2010, 37, 13–25. [Google Scholar] [CrossRef]
- Hirrlinger, J.; Dringen, R. The Cytosolic Redox State of Astrocytes: Maintenance, Regulation and Functional Implications for Metabolite Trafficking. Brain Res. Rev. 2010, 63, 177–188. [Google Scholar] [CrossRef]
- Scheiber, I.F.; Dringen, R. Astrocyte Functions in the Copper Homeostasis of the Brain. Neurochem. Int. 2013, 62, 556–565. [Google Scholar] [CrossRef]
- Zhang, W.; Mehta, A.; Tong, Z.; Esser, L.; Voelcker, N.H. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. Adv. Sci. 2021, 8, 2003937. [Google Scholar] [CrossRef]
- Bowman, P.D.; Ennis, S.R.; Rarey, K.E.; Betz, A.L.; Goldstein, G.W. Brain Microvessel Endothelial Cells in Tissue Culture: A Model for Study of Blood-Brain Barrier Permeability. Ann. Neurol. 1983, 14, 396–402. [Google Scholar] [CrossRef] [Green Version]
- Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; López-Iglesias, C.; Teixidó, M.; et al. Delivery of Gold Nanoparticles to the Brain by Conjugation with a Peptide That Recognizes the Transferrin Receptor. Biomaterials 2012, 33, 7194–7205. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Lee, C.-L. Methylmethacrylate–Sulfopropylmethacrylate Nanoparticles with Surface RMP-7 for Targeting Delivery of Antiretroviral Drugs across the Blood–Brain Barrier. Colloids Surf. B Biointerfaces 2012, 90, 75–82. [Google Scholar] [CrossRef]
- Kuo, Y.-C.; Shih-Huang, C.-Y. Solid Lipid Nanoparticles Carrying Chemotherapeutic Drug across the Blood-Brain Barrier through Insulin Receptor-Mediated Pathway. J. Drug Target. 2013, 21, 730–738. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Tan, Y.-Z.; Hu, K.-L.; Jiang, X.-G. Cationic Albumin Conjugated Pegylated Nanoparticle with Its Transcytosis Ability and Little Toxicity against Blood–Brain Barrier. Int. J. Pharm. 2005, 295, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wei, F.; Wang, T.; Wang, P.; Lin, X.; Wang, J.; Wang, D.; Ren, L. In Vitro and in Vivo Studies on Gelatin-Siloxane Nanoparticles Conjugated with SynB Peptide to Increase Drug Delivery to the Brain. Int. J. Nanomed. 2012, 7, 1031–1041. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Garcia, E.; Gil, S.; Andrieux, K.; Desmaële, D.; Nicolas, V.; Taran, F.; Georgin, D.; Andreux, J.P.; Roux, F.; Couvreur, P. A Relevant in Vitro Rat Model for the Evaluation of Blood-Brain Barrier Translocation of Nanoparticles. Cell Mol. Life Sci. 2005, 62, 1400–1408. [Google Scholar] [CrossRef] [Green Version]
- Grover, A.; Hirani, A.; Pathak, Y.; Sutariya, V. Brain-Targeted Delivery of Docetaxel by Glutathione-Coated Nanoparticles for Brain Cancer. AAPS PharmSciTech 2014, 15, 1562–1568. [Google Scholar] [CrossRef] [Green Version]
- Heggannavar, G.B.; Vijeth, S.; Kariduraganavar, M.Y. Preparation of Transferrin-Conjugated Poly-ε-Caprolactone Nanoparticles and Delivery of Paclitaxel to Treat Glioblastoma across Blood–Brain Barrier. Emergent Mater. 2019, 2, 463–474. [Google Scholar] [CrossRef]
- Mészáros, M.; Porkoláb, G.; Kiss, L.; Pilbat, A.-M.; Kóta, Z.; Kupihár, Z.; Kéri, A.; Galbács, G.; Siklós, L.; Tóth, A.; et al. Niosomes Decorated with Dual Ligands Targeting Brain Endothelial Transporters Increase Cargo Penetration across the Blood-Brain Barrier. Eur. J. Pharm. Sci. 2018, 123, 228–240. [Google Scholar] [CrossRef]
- Hanada, S.; Fujioka, K.; Inoue, Y.; Kanaya, F.; Manome, Y.; Yamamoto, K. Cell-Based in Vitro Blood–Brain Barrier Model Can Rapidly Evaluate Nanoparticles’ Brain Permeability in Association with Particle Size and Surface Modification. Int. J. Mol. Sci. 2014, 15, 1812–1825. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Dan, M.; Shao, A.; Cheng, X.; Zhang, C.; Yokel, R.A.; Takemura, T.; Hanagata, N.; Niwa, M.; Watanabe, D. Silver Nanoparticles Induce Tight Junction Disruption and Astrocyte Neurotoxicity in a Rat Blood-Brain Barrier Primary Triple Coculture Model. Int. J. Nanomed. 2015, 10, 6105–6118. [Google Scholar] [CrossRef] [Green Version]
- Bergmann, S.; Lawler, S.E.; Qu, Y.; Fadzen, C.M.; Wolfe, J.M.; Regan, M.S.; Pentelute, B.L.; Agar, N.Y.R.; Cho, C.-F. Blood–Brain-Barrier Organoids for Investigating the Permeability of CNS Therapeutics. Nat. Protoc. 2018, 13, 2827–2843. [Google Scholar] [CrossRef] [Green Version]
- Hudecz, D.; Khire, T.; Chung, H.L.; Adumeau, L.; Glavin, D.; Luke, E.; Nielsen, M.S.; Dawson, K.A.; McGrath, J.L.; Yan, Y. Ultrathin Silicon Membranes for in Situ Optical Analysis of Nanoparticle Translocation across a Human Blood–Brain Barrier Model. ACS Nano 2020, 14, 1111–1122. [Google Scholar] [CrossRef]
- Gromnicova, R.; Davies, H.A.; Sreekanthreddy, P.; Romero, I.A.; Lund, T.; Roitt, I.M.; Phillips, J.B.; Male, D.K. Glucose-Coated Gold Nanoparticles Transfer across Human Brain Endothelium and Enter Astrocytes In Vitro. PLoS ONE 2013, 8, e81043. [Google Scholar] [CrossRef] [Green Version]
- Sokolova, V.; Mekky, G.; van der Meer, S.B.; Seeds, M.C.; Atala, A.J.; Epple, M. Transport of Ultrasmall Gold Nanoparticles (2 Nm) across the Blood–Brain Barrier in a Six-Cell Brain Spheroid Model. Sci. Rep. 2020, 10, 18033. [Google Scholar] [CrossRef]
- Papademetriou, I.; Vedula, E.; Charest, J.; Porter, T. Effect of Flow on Targeting and Penetration of Angiopep-Decorated Nanoparticles in a Microfluidic Model Blood-Brain Barrier. PLoS ONE 2018, 13, e0205158. [Google Scholar] [CrossRef] [Green Version]
- Englert, C.; Trützschler, A.-K.; Raasch, M.; Bus, T.; Borchers, P.; Mosig, A.S.; Traeger, A.; Schubert, U.S. Crossing the Blood-Brain Barrier: Glutathione-Conjugated Poly(Ethylene Imine) for Gene Delivery. J. Control Release 2016, 241, 1–14. [Google Scholar] [CrossRef]
- Falanga, A.P.; Pitingolo, G.; Celentano, M.; Cosentino, A.; Melone, P.; Vecchione, R.; Guarnieri, D.; Netti, P.A. Shuttle-Mediated Nanoparticle Transport across an in Vitro Brain Endothelium under Flow Conditions. Biotechnol. Bioeng. 2017, 114, 1087–1095. [Google Scholar] [CrossRef]
- Nowak, M.; Brown, T.D.; Graham, A.; Helgeson, M.E.; Mitragotri, S. Size, Shape, and Flexibility Influence Nanoparticle Transport across Brain Endothelium under Flow. Bioeng Transl Med. 2020, 5, e10153. [Google Scholar] [CrossRef] [Green Version]
- Salman, M.M.; Marsh, G.; Kusters, I.; Delincé, M.; Di Caprio, G.; Upadhyayula, S.; de Nola, G.; Hunt, R.; Ohashi, K.G.; Gray, T.; et al. Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging. Front. Bioeng. Biotechnol. 2020, 8, 573775. [Google Scholar] [CrossRef]
- Peng, B.; Tong, Z.; Tong, W.Y.; Pasic, P.J.; Oddo, A.; Dai, Y.; Luo, M.; Frescene, J.; Welch, N.G.; Easton, C.D.; et al. In Situ Surface Modification of Microfluidic Blood–Brain-Barriers for Improved Screening of Small Molecules and Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 56753–56766. [Google Scholar] [CrossRef]
- Lee, S.W.L.; Campisi, M.; Osaki, T.; Possenti, L.; Mattu, C.; Adriani, G.; Kamm, R.D.; Chiono, V. Modeling Nanocarrier Transport across a 3D In Vitro Human Blood-Brain–Barrier Microvasculature. Adv. Healthc. Mater. 2020, 9, 1901486. [Google Scholar] [CrossRef] [Green Version]
- Tricinci, O.; De Pasquale, D.; Marino, A.; Battaglini, M.; Pucci, C.; Ciofani, G. A 3D Biohybrid Real-Scale Model of the Brain Cancer Microenvironment for Advanced In Vitro Testing. Adv. Mater. Technol. 2020, 5, 2000540. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. The Tumor Microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef]
- Abreu, T.R.; Biscaia, M.; Gonçalves, N.; Fonseca, N.A.; Moreira, J.N. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles. Adv. Exp. Med. Biol. 2021, 1295, 271–299. [Google Scholar] [CrossRef]
- Du, A.W.; Lu, H.; Stenzel, M.H. Core-Cross-Linking Accelerates Antitumor Activities of Paclitaxel–Conjugate Micelles to Prostate Multicellular Tumor Spheroids: A Comparison of 2D and 3D Models. Biomacromolecules 2015, 16, 1470–1479. [Google Scholar] [CrossRef]
- Rane, T.D.; Armani, A.M. Two-Photon Microscopy Analysis of Gold Nanoparticle Uptake in 3D Cell Spheroids. PLoS ONE 2016, 11, e0167548. [Google Scholar] [CrossRef]
- Lugert, S.; Unterweger, H.; Mühlberger, M.; Janko, C.; Draack, S.; Ludwig, F.; Eberbeck, D.; Alexiou, C.; Friedrich, R.P. Cellular Effects of Paclitaxel-Loaded Iron Oxide Nanoparticles on Breast Cancer Using Different 2D and 3D Cell Culture Models. Int. J. Nanomed. 2019, 14, 161–180. [Google Scholar] [CrossRef] [Green Version]
- Kostarelos, K.; Emfietzoglou, D.; Papakostas, A.; Yang, W.-H.; Ballangrud, Å.; Sgouros, G. Binding and Interstitial Penetration of Liposomes within Avascular Tumor Spheroids. Int. J. Cancer 2004, 112, 713–721. [Google Scholar] [CrossRef]
- Huang, K.; Ma, H.; Liu, J.; Huo, S.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S.; Gan, Y.; Wang, P.C.; et al. Size-Dependent Localization and Penetration of Ultrasmall Gold Nanoparticles in Cancer Cells, Multicellular Spheroids, and Tumors In Vivo. ACS Nano 2012, 6, 4483–4493. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Jiang, Q.; Han, S.; Wu, Y.; Cui Tomshine, J.; Wang, D.; Gan, Y.; Zou, G.; Liang, X.-J. Multicellular Tumor Spheroids as an in Vivo-like Tumor Model for Three-Dimensional Imaging of Chemotherapeutic and Nano Material Cellular Penetration. Mol. Imaging 2012, 11, 487–498. [Google Scholar] [CrossRef]
- Kim, T.-H.; Mount, C.W.; Gombotz, W.R.; Pun, S.H. The Delivery of Doxorubicin to 3-D Multicellular Spheroids and Tumors in a Murine Xenograft Model Using Tumor-Penetrating Triblock Polymeric Micelles. Biomaterials 2010, 31, 7386–7397. [Google Scholar] [CrossRef]
- Wang, X.; Zhen, X.; Wang, J.; Zhang, J.; Wu, W.; Jiang, X. Doxorubicin Delivery to 3D Multicellular Spheroids and Tumors Based on Boronic Acid-Rich Chitosan Nanoparticles. Biomaterials 2013, 34, 4667–4679. [Google Scholar] [CrossRef] [PubMed]
- Wojnilowicz, M.; Besford, Q.A.; Wu, Y.-L.; Loh, X.J.; Braunger, J.A.; Glab, A.; Cortez-Jugo, C.; Caruso, F.; Cavalieri, F. Glycogen-Nucleic Acid Constructs for Gene Silencing in Multicellular Tumor Spheroids. Biomaterials 2018, 176, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Gibot, L.; Lemelle, A.; Till, U.; Moukarzel, B.; Mingotaud, A.-F.; Pimienta, V.; Saint-Aguet, P.; Rols, M.-P.; Gaucher, M.; Violleau, F.; et al. Polymeric Micelles Encapsulating Photosensitizer: Structure/Photodynamic Therapy Efficiency Relation. Biomacromolecules 2014, 15, 1443–1455. [Google Scholar] [CrossRef] [PubMed]
- Cantisani, M.; Guarnieri, D.; Biondi, M.; Belli, V.; Profeta, M.; Raiola, L.; Netti, P.A. Biocompatible Nanoparticles Sensing the Matrix Metallo-Proteinase 2 for the on-Demand Release of Anticancer Drugs in 3D Tumor Spheroids. Colloids Surf. B Biointerfaces 2015, 135, 707–716. [Google Scholar] [CrossRef]
- Moreira, A.F.; Dias, D.R.; Costa, E.C.; Correia, I.J. Thermo- and PH-Responsive Nano-in-Micro Particles for Combinatorial Drug Delivery to Cancer Cells. Eur. J. Pharm. Sci. 2017, 104, 42–51. [Google Scholar] [CrossRef]
- Sims, L.B.; Huss, M.K.; Frieboes, H.B.; Steinbach-Rankins, J.M. Distribution of PLGA-Modified Nanoparticles in 3D Cell Culture Models of Hypo-Vascularized Tumor Tissue. J. Nanobiotechnol. 2017, 15, 67. [Google Scholar] [CrossRef] [Green Version]
- Goodman, T.T.; Olive, P.L.; Pun, S.H. Increased Nanoparticle Penetration in Collagenase-Treated Multicellular Spheroids. Int. J. Nanomed. 2007, 2, 265–274. [Google Scholar]
- Ho, D.N.; Kohler, N.; Sigdel, A.; Kalluri, R.; Morgan, J.R.; Xu, C.; Sun, S. Penetration of Endothelial Cell Coated Multicellular Tumor Spheroids by Iron Oxide Nanoparticles. Theranostics 2012, 2, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Priwitaningrum, D.L.; Blondé, J.-B.G.; Sridhar, A.; van Baarlen, J.; Hennink, W.E.; Storm, G.; Le Gac, S.; Prakash, J. Tumor Stroma-Containing 3D Spheroid Arrays: A Tool to Study Nanoparticle Penetration. J. Control Release 2016, 244, 257–268. [Google Scholar] [CrossRef]
- Xu, X.; Sabanayagam, C.R.; Harrington, D.A.; Farach-Carson, M.C.; Jia, X. A Hydrogel-Based Tumor Model for the Evaluation of Nanoparticle-Based Cancer Therapeutics. Biomaterials 2014, 35, 3319–3330. [Google Scholar] [CrossRef] [Green Version]
- Belli, V.; Guarnieri, D.; Biondi, M.; Della Sala, F.; Netti, P.A. Dynamics of Nanoparticle Diffusion and Uptake in Three-Dimensional Cell Cultures. Colloids Surf. B Biointerfaces 2017, 149, 7–15. [Google Scholar] [CrossRef]
- Biondi, M.; Guarnieri, D.; Yu, H.; Belli, V.; Netti, P.A. Sub-100 Nm Biodegradable Nanoparticles: In Vitro Release Features and Toxicity Testing in 2D and 3D Cell Cultures. Nanotechnology 2013, 24, 045101. [Google Scholar] [CrossRef]
- Le, V.-M.; Lang, M.-D.; Shi, W.-B.; Liu, J.-W. A Collagen-Based Multicellular Tumor Spheroid Model for Evaluation of the Efficiency of Nanoparticle Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 540–544. [Google Scholar] [CrossRef]
- Brancato, V.; Gioiella, F.; Profeta, M.; Imparato, G.; Guarnieri, D.; Urciuolo, F.; Melone, P.; Netti, P.A. 3D Tumor Microtissues as an in Vitro Testing Platform for Microenvironmentally-Triggered Drug Delivery Systems. Acta Biomater. 2017, 57, 47–58. [Google Scholar] [CrossRef]
- Ng, C.P.; Pun, S.H. A Perfusable 3D Cell-Matrix Tissue Culture Chamber for in Situ Evaluation of Nanoparticle Vehicle Penetration and Transport. Biotechnol. Bioeng. 2008, 99, 1490–1501. [Google Scholar] [CrossRef] [Green Version]
- Albanese, A.; Lam, A.K.; Sykes, E.A.; Rocheleau, J.V.; Chan, W.C.W. Tumour-on-a-Chip Provides an Optical Window into Nanoparticle Tissue Transport. Nat. Commun. 2013, 4, 2718. [Google Scholar] [CrossRef] [Green Version]
- Kwak, B.; Ozcelikkale, A.; Shin, C.S.; Park, K.; Han, B. Simulation of Complex Transport of Nanoparticles around a Tumor Using Tumor-Microenvironment-on-Chip. J. Control Release 2014, 194, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, X.; Zou, J.; Jia, C.; Hu, Y.; Du, H.; Wang, H. Evaluation of Photodynamic Therapy Efficiency Using an in Vitro Three-Dimensional Microfluidic Breast Cancer Tissue Model. Lab. Chip 2015, 15, 735–744. [Google Scholar] [CrossRef]
- Tang, Y.; Soroush, F.; Sheffield, J.B.; Wang, B.; Prabhakarpandian, B.; Kiani, M.F. A Biomimetic Microfluidic Tumor Microenvironment Platform Mimicking the EPR Effect for Rapid Screening of Drug Delivery Systems. Sci. Rep. 2017, 7, 9359. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, D.; Wang, Y.; Lin, S.; Jiang, Y. A Novel 3D Breast-Cancer-on-Chip Platform for Therapeutic Evaluation of Drug Delivery Systems. Anal. Chim. Acta 2018, 1036, 97–106. [Google Scholar] [CrossRef]
- Huang, K.; Boerhan, R.; Liu, C.; Jiang, G. Nanoparticles Penetrate into the Multicellular Spheroid-on-Chip: Effect of Surface Charge, Protein Corona, and Exterior Flow. Mol. Pharm. 2017, 14, 4618–4627. [Google Scholar] [CrossRef]
- Carvalho, M.R.; Barata, D.; Teixeira, L.M.; Giselbrecht, S.; Reis, R.L.; Oliveira, J.M.; Truckenmüller, R.; Habibovic, P. Colorectal Tumor-on-a-Chip System: A 3D Tool for Precision Onco-Nanomedicine. Sci. Adv. 2019, 5, eaaw1317. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-F.; Liu, Y.; Wang, T.; Yang, G.; Zeng, B.; Zhao, C.-X. Tumor-Microenvironment-on-a-Chip for Evaluating Nanoparticle-Loaded Macrophages for Drug Delivery. ACS Biomater. Sci. Eng. 2020, 6, 5040–5050. [Google Scholar] [CrossRef]
- McCormick, S.C.; Stillman, N.; Hockley, M.; Perriman, A.W.; Hauert, S. Measuring Nanoparticle Penetration Through Bio-Mimetic Gels. Int. J. Nanomed. 2021, 16, 2585–2595. [Google Scholar] [CrossRef]
- Kim, Y.; Lobatto, M.E.; Kawahara, T.; Lee Chung, B.; Mieszawska, A.J.; Sanchez-Gaytan, B.L.; Fay, F.; Senders, M.L.; Calcagno, C.; Becraft, J.; et al. Probing Nanoparticle Translocation across the Permeable Endothelium in Experimental Atherosclerosis. Proc. Natl. Acad. Sci. USA 2014, 111, 1078–1083. [Google Scholar] [CrossRef] [Green Version]
- Kiew, S.F.; Ho, Y.T.; Kiew, L.V.; Kah, J.C.Y.; Lee, H.B.; Imae, T.; Chung, L.Y. Preparation and Characterization of an Amylase-Triggered Dextrin-Linked Graphene Oxide Anticancer Drug Nanocarrier and Its Vascular Permeability. Int. J. Pharm. 2017, 534, 297–307. [Google Scholar] [CrossRef]
- Ho, Y.T.; Adriani, G.; Beyer, S.; Nhan, P.T.; Kamm, R.D.; Kah, J.C.Y. A Facile Method to Probe the Vascular Permeability of Nanoparticles in Nanomedicine Applications. Sci. Rep. 2017, 7, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-F.; Ran, R.; Liu, Y.; Hui, Y.; Zeng, B.; Chen, D.; Weitz, D.A.; Zhao, C.-X. Tumor-Vasculature-on-a-Chip for Investigating Nanoparticle Extravasation and Tumor Accumulation. ACS Nano 2018, 12, 11600–11609. [Google Scholar] [CrossRef]
- Moore, T.L.; Hauser, D.; Gruber, T.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A.; Lyck, R. Cellular Shuttles: Monocytes/Macrophages Exhibit Transendothelial Transport of Nanoparticles under Physiological Flow. ACS Appl. Mater. Interfaces 2017, 9, 18501–18511. [Google Scholar] [CrossRef] [PubMed]
- Da Silva-Candal, A.; Brown, T.; Krishnan, V.; Lopez-Loureiro, I.; Ávila-Gómez, P.; Pusuluri, A.; Pérez-Díaz, A.; Correa-Paz, C.; Hervella, P.; Castillo, J.; et al. Shape Effect in Active Targeting of Nanoparticles to Inflamed Cerebral Endothelium under Static and Flow Conditions. J. Control Release 2019, 309, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Paek, J.; Park, S.E.; Lu, Q.; Park, K.-T.; Cho, M.; Oh, J.M.; Kwon, K.W.; Yi, Y.-S.; Song, J.W.; Edelstein, H.I.; et al. Microphysiological Engineering of Self-Assembled and Perfusable Microvascular Beds for the Production of Vascularized Three-Dimensional Human Microtissues. ACS Nano 2019, 13, 7627–7643. [Google Scholar] [CrossRef]
- Schuerle, S.; Soleimany, A.P.; Yeh, T.; Anand, G.M.; Häberli, M.; Fleming, H.E.; Mirkhani, N.; Qiu, F.; Hauert, S.; Wang, X.; et al. Synthetic and Living Micropropellers for Convection-Enhanced Nanoparticle Transport. Sci. Adv. 2019, 5, eaav4803. [Google Scholar] [CrossRef]
- Geys, J.; Coenegrachts, L.; Vercammen, J.; Engelborghs, Y.; Nemmar, A.; Nemery, B.; Hoet, P.H.M. In Vitro Study of the Pulmonary Translocation of Nanoparticles: A Preliminary Study. Toxicol. Lett. 2006, 160, 218–226. [Google Scholar] [CrossRef]
- George, I.; Vranic, S.; Boland, S.; Courtois, A.; Baeza-Squiban, A. Development of an in Vitro Model of Human Bronchial Epithelial Barrier to Study Nanoparticle Translocation. Toxicol. Vitr. 2015, 29, 51–58. [Google Scholar] [CrossRef]
- Brandenberger, C.; Rothen-Rutishauser, B.; Mühlfeld, C.; Schmid, O.; Ferron, G.A.; Maier, K.L.; Gehr, P.; Lenz, A.-G. Effects and Uptake of Gold Nanoparticles Deposited at the Air-Liquid Interface of a Human Epithelial Airway Model. Toxicol. Appl. Pharm. 2010, 242, 56–65. [Google Scholar] [CrossRef]
- Frieke Kuper, C.; Gröllers-Mulderij, M.; Maarschalkerweerd, T.; Meulendijks, N.M.M.; Reus, A.; van Acker, F.; Zondervan-van den Beuken, E.K.; Wouters, M.E.L.; Bijlsma, S.; Kooter, I.M. Toxicity Assessment of Aggregated/Agglomerated Cerium Oxide Nanoparticles in an in Vitro 3D Airway Model: The Influence of Mucociliary Clearance. Toxicol. Vitr. 2015, 29, 389–397. [Google Scholar] [CrossRef]
- Raemy, D.O.; Limbach, L.K.; Rothen-Rutishauser, B.; Grass, R.N.; Gehr, P.; Birbaum, K.; Brandenberger, C.; Günther, D.; Stark, W.J. Cerium Oxide Nanoparticle Uptake Kinetics from the Gas-Phase into Lung Cells in Vitro Is Transport Limited. Eur. J. Pharm. Biopharm. 2011, 77, 368–375. [Google Scholar] [CrossRef]
- Falavigna, M.; Stein, P.C.; Flaten, G.E.; Pio di Cagno, M. Impact of Mucin on Drug Diffusion: Development of a Straightforward In Vitro Method for the Determination of Drug Diffusivity in the Presence of Mucin. Pharmaceutics 2020, 12, 168. [Google Scholar] [CrossRef] [Green Version]
- Huh, D.; Matthews, B.D.; Mammoto, A.; Montoya-Zavala, M.; Hsin, H.Y.; Ingber, D.E. Reconstituting Organ-Level Lung Functions on a Chip. Science 2010, 328, 1662–1668. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Xu, C.; Jiang, L.; Qin, J. A 3D Human Lung-on-a-Chip Model for Nanotoxicity Testing. Toxicol. Res. 2018, 7, 1048–1060. [Google Scholar] [CrossRef] [Green Version]
- Doryab, A.; Taskin, M.B.; Stahlhut, P.; Schröppel, A.; Orak, S.; Voss, C.; Ahluwalia, A.; Rehberg, M.; Hilgendorff, A.; Stöger, T.; et al. A Bioinspired in Vitro Lung Model to Study Particokinetics of Nano-/Microparticles Under Cyclic Stretch and Air-Liquid Interface Conditions. Front. Bioeng. Biotechnol. 2021, 9, 616830. [Google Scholar] [CrossRef]
- Di Tommaso, N.; Gasbarrini, A.; Ponziani, F.R. Intestinal Barrier in Human Health and Disease. Int. J. Env. Res. Public Health 2021, 18, 12836. [Google Scholar] [CrossRef]
- Jin, Y.; Song, Y.; Zhu, X.; Zhou, D.; Chen, C.; Zhang, Z.; Huang, Y. Goblet Cell-Targeting Nanoparticles for Oral Insulin Delivery and the Influence of Mucus on Insulin Transport. Biomaterials 2012, 33, 1573–1582. [Google Scholar] [CrossRef]
- Thomsen, T.B.; Li, L.; Howard, K.A. Mucus Barrier-Triggered Disassembly of SiRNA Nanocarriers. Nanoscale 2014, 6, 12547–12554. [Google Scholar] [CrossRef]
- Jia, Z.; Guo, Z.; Yang, C.-T.; Prestidge, C.; Thierry, B. “Mucus-on-Chip”: A New Tool to Study the Dynamic Penetration of Nanoparticulate Drug Carriers into Mucus. Int. J. Pharm. 2021, 598, 120391. [Google Scholar] [CrossRef]
- des Rieux, A.; Ragnarsson, E.G.E.; Gullberg, E.; Préat, V.; Schneider, Y.-J.; Artursson, P. Transport of Nanoparticles across an in Vitro Model of the Human Intestinal Follicle Associated Epithelium. Eur. J. Pharm. Sci. 2005, 25, 455–465. [Google Scholar] [CrossRef]
- des Rieux, A.; Fievez, V.; Théate, I.; Mast, J.; Préat, V.; Schneider, Y.-J. An Improved in Vitro Model of Human Intestinal Follicle-Associated Epithelium to Study Nanoparticle Transport by M Cells. Eur. J. Pharm. Sci. 2007, 30, 380–391. [Google Scholar] [CrossRef]
- Kadiyala, I.; Loo, Y.; Roy, K.; Rice, J.; Leong, K.W. Transport of Chitosan-DNA Nanoparticles in Human Intestinal M-Cell Model versus Normal Intestinal Enterocytes. Eur. J. Pharm. Sci. 2010, 39, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Schimpel, C.; Teubl, B.; Absenger, M.; Meindl, C.; Fröhlich, E.; Leitinger, G.; Zimmer, A.; Roblegg, E. Development of an Advanced Intestinal in Vitro Triple Culture Permeability Model to Study Transport of Nanoparticles. Mol. Pharm. 2014, 11, 808–818. [Google Scholar] [CrossRef]
- Jaradat, A.; Macedo, M.H.; Sousa, F.; Arkill, K.; Alexander, C.; Aylott, J.; Sarmento, B. Prediction of the Enhanced Insulin Absorption across a Triple Co-Cultured Intestinal Model Using Mucus Penetrating PLGA Nanoparticles. Int. J. Pharm. 2020, 585, 119516. [Google Scholar] [CrossRef]
- Brun, E.; Barreau, F.; Veronesi, G.; Fayard, B.; Sorieul, S.; Chanéac, C.; Carapito, C.; Rabilloud, T.; Mabondzo, A.; Herlin-Boime, N.; et al. Titanium Dioxide Nanoparticle Impact and Translocation through Ex Vivo, In Vivo and In Vitro Gut Epithelia. Part Fibre Toxicol. 2014, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gullberg, E.; Keita, A.V.; Salim, S.Y.; Andersson, M.; Caldwell, K.D.; Söderholm, J.D.; Artursson, P. Identification of Cell Adhesion Molecules in the Human Follicle-Associated Epithelium That Improve Nanoparticle Uptake into the Peyer’s Patches. J. Pharm. Exp. 2006, 319, 632–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Tromp, P.; Helsper, J.P.F.G.; van der Zande, M.; Rietjens, I.M.C.M.; Bouwmeester, H. Translocation of Differently Sized and Charged Polystyrene Nanoparticles in in Vitro Intestinal Cell Models of Increasing Complexity. Nanotoxicology 2015, 9, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Walczak, A.P.; Kramer, E.; Hendriksen, P.J.M.; Helsdingen, R.; van der Zande, M.; Rietjens, I.M.C.M.; Bouwmeester, H. In Vitro Gastrointestinal Digestion Increases the Translocation of Polystyrene Nanoparticles in an in Vitro Intestinal Co-Culture Model. Nanotoxicology 2015, 9, 886–894. [Google Scholar] [CrossRef]
- Liang, D.; Su, W.; Tan, M. Advances of Microfluidic Intestine-on-a-Chip for Analyzing Anti-Inflammation of Food. Crit. Rev. Food Sci. Nutr. 2022, 62, 4418–4434. [Google Scholar] [CrossRef]
- Mitxelena-Iribarren, O.; Olaizola, C.; Arana, S.; Mujika, M. Versatile Membrane-Based Microfluidic Platform for in Vitro Drug Diffusion Testing Mimicking in Vivo Environments. Nanomedicine 2022, 39, 102462. [Google Scholar] [CrossRef]
- Küchler, S.; Wolf, N.B.; Heilmann, S.; Weindl, G.; Helfmann, J.; Yahya, M.M.; Stein, C.; Schäfer-Korting, M. 3D-Wound Healing Model: Influence of Morphine and Solid Lipid Nanoparticles. J. Biotechnol. 2010, 148, 24–30. [Google Scholar] [CrossRef]
- Hao, F.; Jin, X.; Liu, Q.S.; Zhou, Q.; Jiang, G. Epidermal Penetration of Gold Nanoparticles and Its Underlying Mechanism Based on Human Reconstructed 3D Episkin Model. ACS Appl. Mater. Interfaces 2017, 9, 42577–42588. [Google Scholar] [CrossRef]
- Bengalli, R.; Colantuoni, A.; Perelshtein, I.; Gedanken, A.; Collini, M.; Mantecca, P.; Fiandra, L. In Vitro Skin Toxicity of CuO and ZnO Nanoparticles: Application in the Safety Assessment of Antimicrobial Coated Textiles. NanoImpact 2021, 21, 100282. [Google Scholar] [CrossRef]
- Jun, S.-H.; Kim, H.; Lee, H.; Song, J.E.; Park, S.G.; Kang, N.-G. Synthesis of Retinol-Loaded Lipid Nanocarrier via Vacuum Emulsification to Improve Topical Skin Delivery. Polymers 2021, 13, 826. [Google Scholar] [CrossRef]
- Hou, X.; Liu, S.; Wang, M.; Wiraja, C.; Huang, W.; Chan, P.; Tan, T.; Xu, C. Layer-by-Layer 3D Constructs of Fibroblasts in Hydrogel for Examining Transdermal Penetration Capability of Nanoparticles. SLAS Technol. 2017, 22, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Han, B.; Fang, W.H.; Zhao, S.; Yang, Z.; Hoang, B.X. Zinc Sulfide Nanoparticles Improve Skin Regeneration. Nanomedicine 2020, 29, 102263. [Google Scholar] [CrossRef]
- McLaughlin, S.; Ahumada, M.; Franco, W.; Mah, T.-F.; Seymour, R.; Suuronen, E.J.; Alarcon, E.I. Sprayable Peptide-Modified Silver Nanoparticles as a Barrier against Bacterial Colonization. Nanoscale 2016, 8, 19200–19203. [Google Scholar] [CrossRef]
- Brodwolf, R.; Volz-Rakebrand, P.; Stellmacher, J.; Wolff, C.; Unbehauen, M.; Haag, R.; Schäfer-Korting, M.; Zoschke, C.; Alexiev, U. Faster, Sharper, More Precise: Automated Cluster-FLIM in Preclinical Testing Directly Identifies the Intracellular Fate of Theranostics in Live Cells and Tissue. Theranostics 2020, 10, 6322–6336. [Google Scholar] [CrossRef]
- Zheng, K.; Balasubramanian, P.; Paterson, T.E.; Stein, R.; MacNeil, S.; Fiorilli, S.; Vitale-Brovarone, C.; Shepherd, J.; Boccaccini, A.R. Ag Modified Mesoporous Bioactive Glass Nanoparticles for Enhanced Antibacterial Activity in 3D Infected Skin Model. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109764. [Google Scholar] [CrossRef]
- Paterson, T.E.; Bari, A.; Bullock, A.J.; Turner, R.; Montalbano, G.; Fiorilli, S.; Vitale-Brovarone, C.; MacNeil, S.; Shepherd, J. Multifunctional Copper-Containing Mesoporous Glass Nanoparticles as Antibacterial and Proangiogenic Agents for Chronic Wounds. Front. Bioeng. Biotechnol. 2020, 8, 246. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Weldrick, P.J.; Madden, L.A.; Paunov, V.N. Biofilm-Infected Human Clusteroid Three-Dimensional Coculture Platform to Replace Animal Models in Testing Antimicrobial Nanotechnologies. ACS Appl. Mater. Interfaces 2021, 13, 22182–22194. [Google Scholar] [CrossRef]
- Carvalho, V.F.M.; Migotto, A.; Giacone, D.V.; de Lemos, D.P.; Zanoni, T.B.; Maria-Engler, S.S.; Costa-Lotufo, L.V.; Lopes, L.B. Co-Encapsulation of Paclitaxel and C6 Ceramide in Tributyrin-Containing Nanocarriers Improve Co-Localization in the Skin and Potentiate Cytotoxic Effects in 2D and 3D Models. Eur. J. Pharm. Sci. 2017, 109, 131–143. [Google Scholar] [CrossRef]
- Giacone, D.V.; Dartora, V.F.M.C.; de Matos, J.K.R.; Passos, J.S.; Miranda, D.A.G.; de Oliveira, E.A.; Silveira, E.R.; Costa-Lotufo, L.V.; Maria-Engler, S.S.; Lopes, L.B. Effect of Nanoemulsion Modification with Chitosan and Sodium Alginate on the Topical Delivery and Efficacy of the Cytotoxic Agent Piplartine in 2D and 3D Skin Cancer Models. Int. J. Biol. Macromol. 2020, 165, 1055–1065. [Google Scholar] [CrossRef]
- Poulsen, M.S.; Mose, T.; Maroun, L.L.; Mathiesen, L.; Knudsen, L.E.; Rytting, E. Kinetics of silica nanoparticles in the human placenta. Nanotoxicology 2015, 9 (Suppl. 1), 79–86. [Google Scholar] [CrossRef]
- Correia Carreira, S.; Walker, L.; Paul, K.; Saunders, M. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST. Nanotoxicology 2015, 9 (Suppl. S1), 66–78. [Google Scholar] [CrossRef]
- Tutar, R.; Çelebi-Saltik, B. Modeling of Artificial 3D Human Placenta. Cells Tissues Organs 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.; Zhang, K.; Ying, J.Y.; Zink, D. Effects of quantum dots on different renal proximal tubule cell models and on gel-free renal tubules generated in vitro. Nanotoxicology 2012, 6, 121–133. [Google Scholar] [CrossRef]
- Gozalpour, E.; Fenner, K.S. Current State of In vitro Cell-Based Renal Models. Curr. Drug Metab. 2018, 19, 310–326. [Google Scholar] [CrossRef]
- Wang, X.; Guo, C.; Chen, Y.; Tozzi, L.; Szymkowiak, S.; Li, C.; Kaplan, D.L. Developing a self-organized tubulogenesis model of human renal proximal tubular epithelial cells in vitro. J. Biomed. Mater. Res. A 2020, 108, 795–804. [Google Scholar] [CrossRef]
- Mitra, M.; Mohanty, C.; Harilal, A.; Maheswari, U.K.; Sahoo, S.K.; Krishnakumar, S. A novel in vitro three-dimensional retinoblastoma model for evaluating chemotherapeutic drugs. Mol. Vis. 2012, 18, 1361–1378. [Google Scholar]
- Artero Castro, A.; Rodríguez Jimenez, F.J.; Jendelova, P.; Erceg, S. Deciphering retinal diseases through the generation of three dimensional stem cell-derived organoids: Concise Review. Stem Cells 2019, 37, 1496–1504. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.V.; Sarmento, B. Establishment of a multilayered 3D cellular model of the retinal-blood barrier. Int. J. Pharm. 2019, 572, 118811. [Google Scholar] [CrossRef]
- Kaluzhny, Y.; Klausner, M. In vitro reconstructed 3D corneal tissue models for ocular toxicology and ophthalmic drug development. Vitr. Cell Dev. Biol. Anim. 2021, 57, 207–237. [Google Scholar] [CrossRef]
- Zirath, H.; Spitz, S.; Roth, D.; Schellhorn, T.; Rothbauer, M.; Müller, B.; Walch, M.; Kaur, J.; Wörle, A.; Kohl, Y.; et al. Bridging the Academic-Industrial Gap: Application of an Oxygen and PH Sensor-Integrated Lab-on-a-Chip in Nanotoxicology. Lab. Chip 2021, 21, 4237–4248. [Google Scholar] [CrossRef]
BBB MODELS | |||
---|---|---|---|
Model | Cell types | Nanoparticles | References |
Cell culture insert | Co-culture of bovine-brain endothelial cells and rat astrocytes | Gold NPs; Gelatin-siloxane NPs; Polymer NPs | [30,34,35] |
Cell culture insert | Co-culture of HBMEC human brain-microvascular endothelial cells and human astrocytes | Polymer NPs; Lipid NPs | [31,32] |
Cell culture insert | Co-culture of rat brain capillary endothelial cells and rat astrocytes | Cationic bovine serum albumin NPs | [33] |
Cell culture insert | Co-culture of RBE4 rat brain endothelial cells and C6 rat astrocytoma cells | PEG-PLGA NPs | [36] |
Cell culture insert | Co-culture of HBMEC human brain microvascular endothelial cells and U87 MG human glioblastoma cells | Poly-ε-caprolactone NPs | [37] |
Cell culture insert | Co-culture of rat brain endothelial cells and rat brain pericytes | Silica NPs | [39] |
Cell culture insert | Co-culture of rat brain endothelial cells, rat brain pericytes and rat glial cells | Niosomes; Silver NPs | [38,40] |
Spheroid | Co-culture of human astrocytes, pericytes, endothelial cells, microglia cells, oligodendrocytes and neurons | Gold NPs | [44] |
Spheroid | Co-culture of hCMEC/D3 human brain endothelial cells, astrocytes, and U87 MG human gliobastoma cells | Superparamagnetic iron oxide NPs | [52] |
Microfluidic device | bEnd.3 mouse brain endothelial cells | Liposomes; Polystyrene NPs | [45,47] |
Microfluidic device | hCMEC/D3 human brain endothelial cells | Polymer NPs; Polystyrene NPs | [46,48] |
Microfluidic device | Co-culture of hCMEC/D3 human brain endothelial cells and human astrocytes | Polystyrene NPs | [42] |
Microfluidic device | Co-culture of hCMEC/D3 human brain endothelial cells, perycites and astrocytes | Silicon NPs | [50] |
Microfluidic device | Co-culture of human-induced pluripotent stem cell-derived endothelial cells, primary brain pericytes and astrocytes | Polymer NPs | [51] |
TUMOR MICROENVIRONMENT BARRIER | |||
---|---|---|---|
Model | Cell types | Nanoparticles | References |
Spheroid | LNCap-LN3 human prostate cancer cells | Liposomes | [58] |
Spheroid | MCF-7 human breast cancer cells | Gold NPs | [58,59] |
Spheroid | HeLa human cervical cancer cells | Quantum dots; Synthetic micelles; Gold core-mesoporous silica shell rod-like NPs encapsulated in PLGA microparticles; PLGA NPs | [60,66,67] |
Spheroid | SiHa human cervical cancer cells | Triblock copolymers micelles; Polystyrene NPs; PLGA NPs | [61,67,68] |
Spheroid | SH-SY5Y human neuroblastoma cells | Chitosan NPs | [62] |
Spheroid | 293T-luc human kidney epithelial cells; PC3 human prostate epithelial cancer cells | Glycogen-ethylenediamine NPs | [63] |
Spheroid | HCT-116 human colorectal carcinoma; Human dermal fibroblasts | Polymeric micelles | [64] |
Spheroid | U87-MG human glioma cells; Primary human dermal fibroblasts | PLGA-PEG NPs | [65] |
Spheroid | Co-culture of RG2 rat glioblastoma cells and bovine-pulmonary arterial endothelial cells | Iron oxide NPs | [69] |
Spheroid | 4T1 mouse breast cancer cells and 3T3 murine fibroblasts; co-culture of Panc-1 human pancreatic cancer cells and human primary pancreatic stellate cells; Co-culture of MDA-MB-231 human breast tumor cells and BJ-hTert human fibroblasts | Silica NPs | [70] |
3D matrix-based cell culture | HeLa human cervical cancer cells | PLGA-PEG NPs | [73] |
3D matrix-based cell culture | LNCaP human prostate cancer cells | Polymer NPs | [71] |
3D matrix-based cell culture | HT1080 human fibrosarcoma cells; Primary human dermal fibroblasts | Polystyrene NPs | [72] |
3D matrix-based cell culture | 95-D human lung cancer cells; HCT116 human colon cancer cells; U87 human glioblastoma cells | Polymicelles | [74] |
3D matrix-based cell culture | Co-culture of normal human mammary fibroblasts and MCF10 human epithelial breast cells; Co-culture of cancer associated fibroblasts and MCF7 human breast adenocarcinoma cells | PLGA-PEG NPs | [75] |
3D matrix-based cell culture | 3T3 mouse fibroblasts; MDCK dog kidney cells | Carboxylic acid-based NPs | [76] |
Microfluidic device | MDA-MB-435 human melanoma cells | Gold NPs | [77] |
Microfluidic device | Co-culture of MCF-7 human breast cancer cells and human microvascular endothelial cells | Gold NPs | [78] |
Microfluidic device | Co-culture of MCF-7 human breast cancer cells and human primary adipose-derived stromal cells | Gold NPs | [79] |
Microfluidic device | Co-culture of primary human breast tumor associated endothelial cells and MCF-7 or MDA-MB-231 human breast cancer cells | Liposomes | [80] |
Microfluidic device | Co-culture of HUVEC primary human umbilical vein endothelial cells and T47D or BT549 human breast cancer cells | Carbon dots | [81] |
Microfluidic device | HepG2 human hepatocellular carcinoma cells | Polystyrene NPs | [82] |
Microfluidic device | Co-culture of HCT-116 human colorectal carcinoma and human colonic microvascular endothelial cells | Dendrimer NPs | [83] |
Microfluidic device | Co-culture of SKOV3 human ovarian adenocarcinoma cells and RAW 264.7 murine macrophage cells | Polymer NPs | [84] |
Microfluidic device | Cell-mimetic microparticles | Polystyrene NPs | [85] |
ENDOTHELIAL BARRIER | |||
---|---|---|---|
Model | Cell types | Nanoparticles | References |
Microfluidic device | HUVEC human umbilical vein endothelial cells | Gold nanocrystals; Lipid–PLGA NPs; Graphene-oxide NPs; Polystyrene NPs | [86,87,88] |
Microfluidic device | Co-culture of HUVEC human umbilical vein endothelial cells and SKOV3 human ovarian cancer cells | Liposomes; PLGA NPs | [89] |
Microfluidic device | Co-culture of J774A.1 mouse monocytes/macrophages and primary mouse lung endothelial cells | Silica NPs | [90] |
Microfluidic device | hCMEC/D3 human cerebral microvascular endothelial cell | Polystyrene NPs | [91] |
Microfluidic device | Co-culture of HUVEC human umbilical vein endothelial cells and primary normal human lung fibroblasts; Co-culture of hASC human adipose-derived stem cells and hAMEC primary human adipose microvascular endothelial cells; Co-culture of primary human retinal endothelial cells, primary human ocular choroid fibroblasts and induced pluripotent stem cell-derived human retinal pigment epithelial cells; Co-culture of HUVEC human umbilical vein endothelial cells, primary normal human lung fibroblasts and A549 human lung adenocarcinoma cells | Liposomes | [92] |
Microfluidic device | Bacteria-like microrobots | Carboxylate-modified NPs | [93] |
LUNG BARRIER | |||
---|---|---|---|
Model | Cell types | Nanoparticles | References |
Cell culture insert | A549 human alveolar epithelial cells; Calu-3 human bronchial epithelial cells; NCI-H292 human bronchial epithelial cells; Primary rat type II pneumocytes | Polystyrene NPs; Cerium oxide NPs; Silica NPs | [94,95,98] |
Cell culture insert | Co-culture of A549 human alveolar epithelial cells, human blood monocyte derived macrophages and human dendritic cells | Gold NPs | [96] |
Cell culture insert | Fully differentiated bronchial epithelial MucilAir™ model | Cerium oxide NPs | [97] |
Microfluidic device | Co-culture of A549 human alveolar epithelial cells and E10 murine pulmonary microvascular endothelial cells | Silica NPs; Quantum dots; Iron NPs; Polystyrene NPs; Carbon nanotubes; Gold NPs | [100] |
Microfluidic device | Co-culture of HUVEC human umbilical vein endothelial cells and immortalized human alveolar epithelial cells | Titanium oxide NPs; Zinc oxide NPs | [101] |
Bioreactor | A549 human alveolar epithelial cells; 16HBE14o−human bronchial epithelial cells | Polystyrene NPs | [102] |
INTESTINAL BARRIER | |||
---|---|---|---|
Model | Cell types | Nanoparticles | References |
Cell culture insert | Co-culture of Caco-2 human colorectal adenocarcinoma cells and HT29-MTX human colon goblet cells | Chitosan NPs; Polystyrene NPs | [104,114,115] |
Cell culture insert | Co-culture of Caco-2 human colorectal adenocarcinoma cells and Raji B human Burkitt’s lymphoma cells | Latex NPs; Polystyrene NPs | [107,108,113] |
Cell culture insert | Co-culture of Caco-2 human colorectal adenocarcinoma cells and mouse isolated lymphocytes from Peyer’s patches | Chitosan NPs | [109] |
Cell culture insert | Co-culture of Caco-2 human colorectal adenocarcinoma cells, HT29-MTX human colon goblet cells and Raji B human Burkitt’s lymphoma cells | Polystyrene NPs; PLGA NPs | [110,111,114,115] |
Cell culture insert | Caco-2 human colorectal adenocarcinoma cells; Co-culture of Caco-2 and HT29-MTX human colon goblet cells; Co-culture of Caco-2 and Raji B human Burkitt’s lymphoma cells | Titanium oxide NPs; Polystyrene NPs | [112,114,115] |
Microfluidic device | Porcine mucins | Chitosan NPs; Polystyrene NPs | [105,106] |
Microfluidic device | Co-culture of Caco-2 human colorectal adenocarcinoma cells and U-2 OS human osteosarcoma cells | Lecithin-based NPs | [117] |
SKIN BARRIER | |||
---|---|---|---|
Model | Cell types | Nanoparticles | References |
3D model | Reconstructed human epidermis from normal keratinocytes | Solid-lipid NPs; Gold NPs; Copper- and zinc-based NP; Lipid NPs | [118,119,120,121] |
3D model | 3T3 murine fibroblasts | Silica NPs | [122] |
3D model | Primary rat skin fibroblasts | Zinc-based NPs | [123] |
3D model | Primary human skin fibroblasts | Silver NPs | [124] |
3D model | Co-culture of primary human keratinocytes and primary human dermal fibroblasts | Core-multishell NPs | [125] |
3D model | Co-culture of primary human dermal fibroblasts and HaCaT human keratinocytes | Glass NPs | [126,127] |
3D model | Co-culture of HaCaT human keratinocytes, S. aureus and P. aeruginosa | Carbopol nanogel particles | [128] |
3D model | Co-culture of primary human normal fibroblasts, primary human normal keratinocytes and SK-MEL-19 human melanoma cells | Tributyrin-containing NPs; Nanoemulsions | [129,130] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carton, F.; Malatesta, M. In Vitro Models of Biological Barriers for Nanomedical Research. Int. J. Mol. Sci. 2022, 23, 8910. https://doi.org/10.3390/ijms23168910
Carton F, Malatesta M. In Vitro Models of Biological Barriers for Nanomedical Research. International Journal of Molecular Sciences. 2022; 23(16):8910. https://doi.org/10.3390/ijms23168910
Chicago/Turabian StyleCarton, Flavia, and Manuela Malatesta. 2022. "In Vitro Models of Biological Barriers for Nanomedical Research" International Journal of Molecular Sciences 23, no. 16: 8910. https://doi.org/10.3390/ijms23168910
APA StyleCarton, F., & Malatesta, M. (2022). In Vitro Models of Biological Barriers for Nanomedical Research. International Journal of Molecular Sciences, 23(16), 8910. https://doi.org/10.3390/ijms23168910