Upconversion Nanostructures Applied in Theranostic Systems
Abstract
:1. Introduction
2. Current Progress in the Design, Synthesis and Surface Modifications of UC Nanostructures
2.1. Lanthanide (Ln)-Doped UC Nanostructures
2.1.1. Structures, Properties and Upconversion (UC) Mechanisms of Ln-Doped UC Nanostructures
2.1.2. Synthesis Processing of Ln-Doped UC Nanostructures
2.1.3. Surface Modification of Ln-Doped UC Nanostructures for Theranostic Applications
2.2. Organic Molecular-Based UC Nanostructures Using the Triplet-Triplet Annihilation Upconversion Mechanism
2.2.1. Triplet-Triplet Annihilation-Based Upconversion Nanostructures
2.2.2. Design of TTA-UC-Based Nanostructures for Theranostic Applications
3. Current Process for UC Nanostructures for Theranostic Applications
3.1. Multifunctional Carriers for Therapy, Diagnosis and Bioimaging
3.2. NIR-Driven Photodynamic and Photothermal Therapy and Diagnosis for Tumor Theranostics
3.3. NIR-Triggered Theranostic System
3.4. Biocompatibility of UC Nanostructures
4. Future Perspective
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Jeyamogan, S.; Khan, N.A.; Siddiqui, R. Application and Importance of Theranostics in the Diagnosis and Treatment of Cancer. Arch. Med. Res. 2021, 52, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chem. Rev. 2014, 114, 5161–5214. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, J.X. Upconversion Nanomaterials: Synthesis, Mechanism, and Applications in Sensing. Sensors 2012, 12, 2414–2435. [Google Scholar] [CrossRef]
- Dubey, N.; Chandra, S. Upconversion nanoparticles: Recent strategies and mechanism based applications. J. Rare Earths 2022, 40, 1343–1359. [Google Scholar] [CrossRef]
- Wang, M.; Abbineni, G.; Clevenger, A.; Mao, C.; Xu, S. Upconversion nanoparticles: Synthesis, surface modification and biological applications. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 710–729. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Liu, R.; Qiao, C.; Lu, Z.; Shi, Y.; Fan, Z.; Zhang, Z.; Zhang, X. Dual-targeting theranostic system with mimicking apoptosis to promote myocardial infarction repair via modulation of macrophages. Theranostics 2017, 7, 4149. [Google Scholar] [CrossRef]
- Gui, C.; Zhao, E.; Kwok, R.T.; Leung, A.C.; Lam, J.W.; Jiang, M.; Deng, H.; Cai, Y.; Zhang, W.; Su, H. AIE-active theranostic system: Selective staining and killing of cancer cells. Chem. Sci. 2017, 8, 1822–1830. [Google Scholar] [CrossRef]
- Wang, C.; Chen, S.; Yu, F.; Lv, J.; Zhao, R.; Hu, F.; Yuan, H. Dual-channel theranostic system for quantitative self-indication and low-temperature synergistic therapy of cancer. Small 2021, 17, 2007953. [Google Scholar] [CrossRef]
- Wyszogrodzka, G.; Dorożyński, P.; Gil, B.; Roth, W.J.; Strzempek, M.; Marszałek, B.; Węglarz, W.P.; Menaszek, E.; Strzempek, W.; Kulinowski, P. Iron-based metal-organic frameworks as a theranostic carrier for local tuberculosis therapy. Pharm. Res. 2018, 35, 1–11. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Yu, Q.; Wei, H.; Liu, S.; Zhao, Q.; Huang, W. Long-lived emissive probes for time-resolved photoluminescence bioimaging and biosensing. Chem. Rev. 2018, 118, 1770–1839. [Google Scholar] [CrossRef] [PubMed]
- Clement, M.; Daniel, G.; Trelles, M. Optimising the design of a broad-band light source for the treatment of skin. J. Cosmet. Laser Ther. 2005, 7, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Barolet, D. Light-Emitting Diodes (LEDs) in Dermatology. Semin. Cutan. Med. Surg. 2008, 27, 227–238. [Google Scholar] [CrossRef]
- Teng, B.; Ding, B.; Shao, S.; Wang, Z.; Tong, W.; Wang, S.; Cheng, Z.; Lin, J. Intracellular RNA and nuclear DNA-dual-targeted tumor therapy via upconversion nanoplatforms with UCL/MR dual-mode bioimaging. Chem. Eng. J. 2021, 405, 126606. [Google Scholar] [CrossRef]
- Shen, S.; Guo, X.; Wu, L.; Wang, M.; Wang, X.; Kong, F.; Shen, H.; Xie, M.; Ge, Y.; Jin, Y. Dual-core@ shell-structured Fe3O4–NaYF4@TiO2 nanocomposites as a magnetic targeting drug carrier for bioimaging and combined chemo-sonodynamic therapy. J. Mater. Chem. B 2014, 2, 5775–5784. [Google Scholar] [CrossRef]
- Zheng, W.; Huang, P.; Tu, D.; Ma, E.; Zhu, H.; Chen, X. Lanthanide-doped upconversion nano-bioprobes: Electronic structures, optical properties, and biodetection. Chem. Soc. Rev. 2015, 44, 1379–1415. [Google Scholar] [CrossRef]
- Lin, G.; Jin, D. Responsive Sensors of Upconversion Nanoparticles. ACS Sens. 2021, 6, 4272–4282. [Google Scholar] [CrossRef] [PubMed]
- Joubert, M.-F. Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 1999, 11, 181–203. [Google Scholar] [CrossRef]
- Zou, Q.; Huang, P.; Zheng, W.; You, W.; Li, R.; Tu, D.; Xu, J.; Chen, X. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles. Nanoscale 2017, 9, 6521–6528. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Liu, X. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 7456–7460. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, H.; Ptacek, P.; Zerzouf, O.; Haase, M. Synthesis and optical properties of KYF4/Yb, Er nanocrystals, and their surface modification with undoped KYF4. Adv. Funct. Mater. 2008, 18, 2913–2918. [Google Scholar] [CrossRef]
- Xue, M.; Zhu, X.; Qiu, X.; Gu, Y.; Feng, W.; Li, F. Highly enhanced cooperative upconversion luminescence through energy transfer optimization and quenching protection. Acs Appl. Mater. Interfaces 2016, 8, 17894–17901. [Google Scholar] [CrossRef] [PubMed]
- Kuk, S.K.; Jang, J.; Han, H.J.; Lee, E.; Oh, H.; Kim, H.Y.; Jang, J.; Lee, K.T.; Lee, H.; Jung, Y.S. Siloxane-encapsulated upconversion nanoparticle hybrid composite with highly stable photoluminescence against heat and moisture. ACS Appl. Mater. Interfaces 2019, 11, 15952–15959. [Google Scholar] [CrossRef]
- Chen, G.; Damasco, J.; Qiu, H.; Shao, W.; Ohulchanskyy, T.Y.; Valiev, R.R.; Wu, X.; Han, G.; Wang, Y.; Yang, C. Energy-cascaded upconversion in an organic dye-sensitized core/shell fluoride nanocrystal. Nano Lett. 2015, 15, 7400–7407. [Google Scholar] [CrossRef]
- Liang, Z.-Q.; Zou, Z.-Y.; Yan, X.; Zhang, X.-B.; Song, D.-D.; Ye, C.-Q.; Wang, X.-M.; Tao, X.-T. Conjugate and non-conjugate controls of a sensitizer to enhance dye-sensitized upconversion luminescence. J. Mater. Chem. C 2022, 10, 2205–2212. [Google Scholar] [CrossRef]
- Wang, X.; Valiev, R.R.; Ohulchanskyy, T.Y.; Ågren, H.; Yang, C.; Chen, G. Dye-sensitized lanthanide-doped upconversion nanoparticles. Chem. Soc. Rev. 2017, 46, 4150–4167. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, Y.; Takle, K.; Bilsel, O.; Li, Z.; Lee, H.; Zhang, Z.; Li, D.; Fan, W.; Duan, C. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 2016, 10, 1060–1066. [Google Scholar] [CrossRef]
- Liang, T.; Wang, Q.; Li, Z.; Wang, P.; Wu, J.; Zuo, M.; Liu, Z. Removing the obstacle of dye-sensitized upconversion luminescence in aqueous phase to achieve high-contrast deep imaging in vivo. Adv. Funct. Mater. 2020, 30, 1910765. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, L.; Zhang, F. Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures. Nano Today 2019, 25, 68–84. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Zhang, Y. Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications. ACS Nano 2021, 15, 3709–3735. [Google Scholar] [CrossRef]
- Li, X.; Shen, D.; Yang, J.; Yao, C.; Che, R.; Zhang, F.; Zhao, D. Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties. Chem. Mater. 2013, 25, 106–112. [Google Scholar] [CrossRef]
- Hu, M.; Liu, W. Application of lanthanide-doped luminescence nanoparticles in imaging and therapeutics. In Photonanotechnology for Therapeutics and Imaging; Elsevier: Amsterdam, The Netherlands, 2020; pp. 205–241. [Google Scholar]
- Sedlmeier, A.; Gorris, H.H. Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem. Soc. Rev. 2015, 44, 1526–1560. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Xi, W.; Wang, H.; Liu, J.; Mayr, T.; Shi, L.; Sun, L. In situ crystal growth of gold nanocrystals on upconversion nanoparticles for synergistic chemo-photothermal therapy. Nanoscale 2017, 9, 12885–12896. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, Y.; Li, C.; He, F.; Hou, Z.; Huang, S.; Zhu, H.; Chen, X.; Lin, J. Poly (Acrylic acid) modification of Nd3+-sensitized upconversion nanophosphors for highly efficient UCL imaging and pH-responsive drug delivery. Adv. Funct. Mater. 2015, 25, 4717–4729. [Google Scholar] [CrossRef]
- Chen, G.; Ohulchanskyy, T.Y.; Law, W.C.; Ågren, H.; Prasad, P.N. Monodisperse NaYbF4:Tm3+/NaGdF4 core/shell nanocrystals with near-infrared to near-infrared upconversion photoluminescence and magnetic resonance properties. Nanoscale 2011, 3, 2003–2008. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Dai, Y.; Yang, P.; Xu, J.; Yang, D.; Gai, S.; He, F.; Liu, B.; Zhong, C.; An, G. Glutathione mediated size-tunable UCNPs-Pt (IV)-ZnFe2O4 nanocomposite for multiple bioimaging guided synergetic therapy. Small 2018, 14, 1703809. [Google Scholar] [CrossRef]
- Dai, Y.; Xiao, H.; Liu, J.; Yuan, Q.; Ma, P.; Yang, D.; Li, C.; Cheng, Z.; Hou, Z.; Yang, P. In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. J. Am. Chem. Soc. 2013, 135, 18920–18929. [Google Scholar] [CrossRef]
- Teng, B.; Yu, C.; Zhang, X.; Feng, Q.; Wen, L.; Li, C.; Cheng, Z.; Jin, D.; Lin, J. Upconversion nanoparticles loaded with eIF4E siRNA and platinum (IV) prodrug to sensitize platinum based chemotherapy for laryngeal cancer and bioimaging. J. Mater. Chem. B 2017, 5, 307–317. [Google Scholar] [CrossRef]
- Zhou, A.G.; Wei, Y.C.; Wu, B.Y.; Chen, Q.; Xing, D. Pyropheophorbide A and c(RGDyK) Comodified Chitosan-Wrapped Upconversion Nanoparticle for Targeted Near-Infrared Photodynamic Therapy. Mol. Pharm. 2012, 9, 1580–1589. [Google Scholar] [CrossRef]
- Nyk, M.; Kumar, R.; Ohulchanskyy, T.Y.; Bergey, E.J.; Prasad, P.N. High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 2008, 8, 3834–3838. [Google Scholar] [CrossRef]
- Shen, J.; Sun, L.-D.; Zhang, Y.-W.; Yan, C.-H. Superparamagnetic and upconversion emitting Fe3O4/NaYF4:Yb, Er hetero-nanoparticles via a crosslinker anchoring strategy. Chem. Commun. 2010, 46, 5731–5733. [Google Scholar] [CrossRef]
- Ren, W.; Tian, G.; Jian, S.; Gu, Z.; Zhou, L.; Yan, L.; Jin, S.; Yin, W.; Zhao, Y. TWEEN coated NaYF4:Yb,Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. Rsc Adv. 2012, 2, 7037–7041. [Google Scholar] [CrossRef]
- Kumar, B.; Murali, A.; Bharath, A.; Giri, S. Guar gum modified upconversion nanocomposites for colorectal cancer treatment through enzyme-responsive drug release and NIR-triggered photodynamic therapy. Nanotechnology 2019, 30, 315102. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhu, L.; Pu, Y.; Wang, J.-X.; Chen, J.-F.; Dai, L. Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging. Nanoscale 2017, 9, 11214–11221. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-Q.; Niu, L.-Y.; Chen, Y.-Z.; Wu, L.-Z.; Tung, C.-H.; Yang, Q.-Z. Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer. Chem. Rev. 2015, 115, 7502–7542. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, K.; Yang, W.; Wang, Z.; Zhong, F. The triplet excited state of Bodipy: Formation, modulation and application. Chem. Soc. Rev. 2015, 44, 8904–8939. [Google Scholar] [CrossRef]
- Zhu, X.; Su, Q.; Feng, W.; Li, F. Anti-Stokes shift luminescent materials for bio-applications. Chem. Soc. Rev. 2017, 46, 1025–1039. [Google Scholar] [CrossRef]
- Filatov, M.A.; Baluschev, S.; Landfester, K. Protection of densely populated excited triplet state ensembles against deactivation by molecular oxygen. Chem. Soc. Rev. 2016, 45, 4668–4689. [Google Scholar] [CrossRef]
- Monguzzi, A.; Mezyk, J.; Scotognella, F.; Tubino, R.; Meinardi, F. Upconversion-induced fluorescence in multicomponent systems: Steady-state excitation power threshold. Phys. Rev. B 2008, 78, 195112. [Google Scholar] [CrossRef]
- Islangulov, R.R.; Kozlov, D.V.; Castellano, F.N. Low power upconversion using MLCT sensitizers. Chem. Commun. 2005, 30, 3776–3778. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, S.; Guo, H. Triplet–triplet annihilation based upconversion: From triplet sensitizers and triplet acceptors to upconversion quantum yields. Rsc Adv. 2011, 1, 937–950. [Google Scholar] [CrossRef]
- Huang, L.; Le, T.; Huang, K.; Han, G. Enzymatic enhancing of triplet–triplet annihilation upconversion by breaking oxygen quenching for background-free biological sensing. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Bharmoria, P.; Bildirir, H.; Moth-Poulsen, K. Triplet–triplet annihilation based near infrared to visible molecular photon upconversion. Chem. Soc. Rev. 2020, 49, 6529–6554. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Kakadiaris, E.; Vaneckova, T.; Huang, K.; Vaculovicova, M.; Han, G. Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles. Biomaterials 2019, 201, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Q.; Wang, X.; Chang, H.; Zhang, S.; Tang, Y.; Xu, J.; Qi, R.; Cheng, Y. Dynamic Modulation of Enzyme Activity by Near-Infrared Light. Angew. Chem. Int. Ed. 2017, 56, 6767–6772. [Google Scholar] [CrossRef]
- Jing, T.; Dai, Y.; Wei, W.; Ma, X.; Huang, B. Near-infrared photocatalytic activity induced by intrinsic defects in Bi2MO6 (M = W, Mo). Phys. Chem. Chem. Phys. 2014, 16, 18596–18604. [Google Scholar] [CrossRef] [PubMed]
- Singh-Rachford, T.N.; Haefele, A.; Ziessel, R.; Castellano, F.N. Boron dipyrromethene chromophores: Next generation triplet acceptors/annihilators for low power upconversion schemes. J. Am. Chem. Soc. 2008, 130, 16164–16165. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2015, 115, 395–465. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, T.; Feng, W.; Li, F. Blue-emissive upconversion nanoparticles for low-power-excited bioimaging in vivo. J. Am. Chem. Soc. 2012, 134, 5390–5397. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, J.-H. Triple-emulsion microcapsules for highly efficient multispectral upconversion in the aqueous phase. Acs Photonics 2015, 2, 633–638. [Google Scholar] [CrossRef]
- Monguzzi, A.; Frigoli, M.; Larpent, C.; Tubino, R.; Meinardi, F. Low-Power-Photon Up-Conversion in Dual-Dye-Loaded Polymer Nanoparticles. Adv. Funct. Mater. 2012, 22, 139–143. [Google Scholar] [CrossRef]
- Wohnhaas, C.; Turshatov, A.; Mailänder, V.; Lorenz, S.; Baluschev, S.; Miteva, T.; Landfester, K. Annihilation upconversion in cells by embedding the dye system in polymeric nanocapsules. Macromol. Biosci. 2011, 11, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.-L.; Wu, J.; Lin, B.-L.; Cui, S.; Liu, H.-M.; Yu, R.-T.; Shen, X.-D.; Wang, T.-W.; Xia, W. Near-infrared light-activated red-emitting upconverting nanoplatform for T1-weighted magnetic resonance imaging and photodynamic therapy. Acta Biomater. 2018, 74, 360–373. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Zhu, X.; Li, Y.; Zhang, S.; Chen, X.; Gao, Y.; Li, F. 17β-estradiol-loaded peglyated upconversion nanoparticles as a bone-targeted drug nanocarrier. ACS Appl. Mater. Interfaces 2015, 7, 15803–15811. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.J.; Sangeetha, N.M.; Boyer, J.-C.; van Veggel, F.C. Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting β-NaYF 4: Yb3+/Er3+ nanoparticles. Nanoscale 2010, 2, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011, 32, 1110–1120. [Google Scholar] [CrossRef]
- Yan, B.; Boyer, J.-C.; Branda, N.R.; Zhao, Y. Near-infrared light-triggered dissociation of block copolymer micelles using upconverting nanoparticles. J. Am. Chem. Soc. 2011, 133, 19714–19717. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Zheng, M.; Tao, W.; Chung, R.; Jin, D.; Ghaffari, D.; Farokhzad, O.C. Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems. Biomacromolecules 2017, 18, 2231–2246. [Google Scholar] [CrossRef] [PubMed]
- Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov. 2019, 18, 273–294. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.-S.; Chow, G.-M. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341–343. [Google Scholar] [CrossRef]
- Bogdan, N.; Vetrone, F.; Ozin, G.A.; Capobianco, J.A. Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett. 2011, 11, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Cheng, L.; Wang, C.; Ma, X.; Li, Y.; Liu, Z. Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 2011, 32, 9364–9373. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Li, C.; Yang, D.; Hou, Z.; Ma, P.A.; Cheng, Z.; Lian, H.; Huang, S.; Lin, J. Upconversion-Luminescent Core/Mesoporous-Silica-Shell-Structured β-NaYF4:Yb3+,Er3+@SiO2@mSiO2 Composite Nanospheres: Fabrication and Drug-Storage/Release Properties. Eur. J. Inorg. Chem. 2014, 2014, 1906–1913. [Google Scholar] [CrossRef]
- Kumar, B.; Rathnam, V.S.; Kundu, S.; Saxena, N.; Banerjee, I.; Giri, S. White-light-emitting NaYF4 Nanoplatform for NIR Upconversion-mediated Photodynamic Therapy and Bioimaging. ChemNanoMat 2018, 4, 583–595. [Google Scholar] [CrossRef]
- Xu, J.; Yang, P.; Sun, M.; Bi, H.; Liu, B.; Yang, D.; Gai, S.; He, F.; Lin, J. Highly emissive dye-sensitized upconversion nanostructure for dual-photosensitizer photodynamic therapy and bioimaging. Acs Nano 2017, 11, 4133–4144. [Google Scholar] [CrossRef]
- Liang, L.E.; Care, A.; Zhang, R.; Lu, Y.Q.; Packer, N.H.; Sunna, A.; Qian, Y.; Zvyagin, A.V. Facile Assembly of Functional Upconversion Nanoparticles for Targeted Cancer Imaging and Photodynamic Therapy. Acs Appl. Mater. Interfaces 2016, 8, 11945–11953. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Astruc, D. State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chem. Rev. 2019, 120, 1438–1511. [Google Scholar] [CrossRef]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Chu, C.C.; Liu, G.; Wáng, Y.X.J. Metal–organic framework-based nanomedicine platforms for drug delivery and molecular imaging. Small 2015, 11, 4806–4822. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.; Li, S.; Guo, Z.; Farha, O.K.; Hauser, B.G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-G.; Dong, Z.-Y.; Cheng, H.; Wan, S.-S.; Chen, W.-H.; Zou, M.-Z.; Huo, J.-W.; Deng, H.-X.; Zhang, X.-Z. A multifunctional metal–organic framework based tumor targeting drug delivery system for cancer therapy. Nanoscale 2015, 7, 16061–16070. [Google Scholar] [CrossRef]
- Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.; Lin, W. Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634. [Google Scholar] [CrossRef]
- Wang, Q.-X.; Yang, Y.-F.; Yang, X.-F.; Pan, Y.; Sun, L.-D.; Zhang, W.-Y.; Shao, Y.; Shen, J.; Lin, J.; Li, L. Upconverted/downshifted NaLnF4 and metal-organic framework heterostructures boosting NIR-II imaging-guided photodynamic immunotherapy toward tumors. Nano Today 2022, 43, 101439. [Google Scholar] [CrossRef]
- Yuan, Z.; Zhang, L.; Li, S.; Zhang, W.; Lu, M.; Pan, Y.; Xie, X.; Huang, L.; Huang, W. Paving metal–organic frameworks with upconversion nanoparticles via self-assembly. J. Am. Chem. Soc. 2018, 140, 15507–15515. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qiao, X.; He, G.; Sun, X.; Feng, D.; Hu, L.; Xu, H.; Xu, H.-B.; Ma, S.; Tian, J. Core-satellite metal-organic framework@ upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 2020, 13, 3377–3386. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, Q.; Qin, S.; Fu, Y.; Liu, R.; Zhi, J.; Shan, C. Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. J. Colloid Interface Sci. 2019, 537, 316–324. [Google Scholar] [CrossRef]
- Tian, G.; Duan, L.; Zhang, X.; Yin, W.; Yan, L.; Zhou, L.; Liu, X.; Zheng, X.; Li, J.; Gu, Z. One-Pot Template-Free Synthesis of NaYF4 Upconversion Hollow Nanospheres for Bioimaging and Drug Delivery. Chem. Asian J. 2014, 9, 1655–1662. [Google Scholar] [CrossRef]
- Panikar, S.S.; Ramírez-García, G.; Vallejo-Cardona, A.A.; Banu, N.; Patrón-Soberano, O.A.; Cialla-May, D.; Camacho-Villegas, T.A.; de la Rosa, E. Novel anti-HER2 peptide-conjugated theranostic nanoliposomes combining NaYF4:Yb,Er nanoparticles for NIR-activated bioimaging and chemo-photodynamic therapy against breast cancer. Nanoscale 2019, 11, 20598–20613. [Google Scholar] [CrossRef]
- Cong, H.-L.; Jia, F.-F.; Wang, S.; Yu, M.-T.; Shen, Y.-Q.; Yu, B. Core–shell upconversion nanoparticle@ metal–organic framework nanoprobes for targeting and drug delivery. Integr. Ferroelectr. 2020, 206, 66–78. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Dai, Y.; Yang, Q.; Zhang, Y.; Yang, P.; Cheng, Z.; Lian, H.; Li, C.; Hou, Z. Efficient gene delivery and multimodal imaging by lanthanide-based upconversion nanoparticles. Langmuir 2014, 30, 13042–13051. [Google Scholar] [CrossRef]
- Narendra; Mehata, A.K.; Viswanadh, M.K.; Sonkar, R.; Pawde, D.M.; Priya, V.; Singh, M.; Koch, B.; Muthu, M.S. Formulation and in vitro evaluation of upconversion nanoparticle-loaded liposomes for brain cancer. Ther. Deliv. 2020, 11, 557–571. [Google Scholar] [CrossRef]
- Lovell, J.F.; Liu, T.W.; Chen, J.; Zheng, G. Activatable photosensitizers for imaging and therapy. Chem. Rev. 2010, 110, 2839–2857. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Chen, G.; Shen, J.; Li, Z.; Zhang, Y.; Han, G. Upconversion nanoparticles: A versatile solution to multiscale biological imaging. Bioconjugate Chem. 2015, 26, 166–175. [Google Scholar] [CrossRef]
- Qian, Z.M.; Li, H.; Sun, H.; Ho, K. Targeted Drug Delivery via the Transferrin Receptor-Mediated Endocytosis Pathway. Pharmacol. Rev. 2002, 54, 561–587. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Xian, M.; Dong, C.; Shuang, S. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 2018, 183, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.T.; Wang, K.Q.; Zhu, P.Y.; Zou, X.W.; Ma, G.Q.; Zhang, W.X.; Wang, D.Q.; Wan, J.P.; Ma, Y.L.; Sun, X.; et al. A near-infrared triggered upconversion/MoS2 nanoplatform for tumour-targeted chemo-photodynamic combination therapy. Colloids Surf. B-Biointerfaces 2022, 213, 112393. [Google Scholar] [CrossRef]
- Ling, D.; Li, H.; Xi, W.; Wang, Z.; Bednarkiewicz, A.; Dibaba, S.T.; Shi, L.; Sun, L. Heterodimers made of metal–organic frameworks and upconversion nanoparticles for bioimaging and pH-responsive dual-drug delivery. J. Mater. Chem. B 2020, 8, 1316–1325. [Google Scholar] [CrossRef]
- Xu, J.; Han, W.; Yang, P.; Jia, T.; Dong, S.; Bi, H.; Gulzar, A.; Yang, D.; Gai, S.; He, F. Tumor microenvironment-responsive mesoporous MnO2-coated upconversion nanoplatform for self-enhanced tumor theranostics. Adv. Funct. Mater. 2018, 28, 1803804. [Google Scholar] [CrossRef]
- Sun, Q.; He, F.; Sun, C.; Wang, X.; Li, C.; Xu, J.; Yang, D.; Bi, H.; Gai, S.; Yang, P. Honeycomb-satellite structured pH/H2O2-responsive degradable nanoplatform for efficient photodynamic therapy and multimodal imaging. ACS Appl. Mater. Interfaces 2018, 10, 33901–33912. [Google Scholar] [CrossRef]
- Jia, T.; Xu, J.; Dong, S.; He, F.; Zhong, C.; Yang, G.; Bi, H.; Xu, M.; Hu, Y.; Yang, D. Mesoporous cerium oxide-coated upconversion nanoparticles for tumor-responsive chemo-photodynamic therapy and bioimaging. Chem. Sci. 2019, 10, 8618–8633. [Google Scholar] [CrossRef]
- Chien, Y.-H.; Chou, Y.-L.; Wang, S.-W.; Hung, S.-T.; Liau, M.-C.; Chao, Y.-J.; Su, C.-H.; Yeh, C.-S. Near-infrared light photocontrolled targeting, bioimaging, and chemotherapy with caged upconversion nanoparticles in vitro and in vivo. Acs Nano 2013, 7, 8516–8528. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; An, D.; Gong, M.; Lu, Y.; Gao, H.L.; Xu, Y.J.; Yu, S.H. PEGylated upconverting luminescent hollow nanospheres for drug delivery and in vivo imaging. Small 2013, 9, 3235–3241. [Google Scholar] [CrossRef] [PubMed]
- Ai, F.; Sun, T.; Xu, Z.; Wang, Z.; Kong, W.; To, M.W.; Wang, F.; Zhu, G. An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance. Dalton Trans. 2016, 45, 13052–13060. [Google Scholar] [CrossRef] [PubMed]
- Krylov, I.V.; Akasov, R.A.; Rocheva, V.V.; Sholina, N.V.; Khochenkov, D.A.; Nechaev, A.V.; Melnikova, N.V.; Dmitriev, A.A.; Ivanov, A.V.; Generalova, A.N. Local overheating of biotissue labeled with upconversion nanoparticles under Yb3+ resonance excitation. Front. Chem. 2020, 8, 295. [Google Scholar] [CrossRef]
- Gulzar, A.; Xu, J.; Yang, D.; Xu, L.; He, F.; Gai, S.; Yang, P. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy. Dalton Trans. 2018, 47, 3931–3939. [Google Scholar] [CrossRef]
- Lin, H.C.; Li, W.T.; Madanayake, T.W.; Tao, C.; Niu, Q.; Yan, S.Q.; Gao, B.A.; Zhao, P. Aptamer-guided upconversion nanoplatform for targeted drug delivery and near-infrared light-triggered photodynamic therapy. J. Biomater. Appl. 2020, 34, 875–888. [Google Scholar] [CrossRef]
- Jia, X.; Ye, H.N.; Weng, H.L.; Huang, N.; Yu, Y.; Xue, J.P. Small molecular target-based multifunctional upconversion nanocomposites for targeted and in-depth photodynamic and chemo-anticancer therapy. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 104, 109849. [Google Scholar] [CrossRef]
- Yin, W.; Tian, G.; Ren, W.; Yan, L.; Jin, S.; Gu, Z.; Zhou, L.; Li, J.; Zhao, Y. Design of multifunctional alkali ion doped CaF2 upconversion nanoparticles for simultaneous bioimaging and therapy. Dalton Trans. 2014, 43, 3861–3870. [Google Scholar] [CrossRef]
- Li, H.; Wei, R.; Yan, G.-H.; Sun, J.; Li, C.; Wang, H.; Shi, L.; Capobianco, J.A.; Sun, L. Smart self-assembled nanosystem based on water-soluble pillararene and rare-earth-doped upconversion nanoparticles for ph-responsive drug delivery. ACS Appl. Mater. Interfaces 2018, 10, 4910–4920. [Google Scholar] [CrossRef]
- Yang, D.; Dai, Y.; Liu, J.; Zhou, Y.; Chen, Y.; Li, C.; Lin, J. Ultra-small BaGdF5-based upconversion nanoparticles as drug carriers and multimodal imaging probes. Biomaterials 2014, 35, 2011–2023. [Google Scholar] [CrossRef]
- Thanasekaran, P.; Chu, C.-H.; Wang, S.-B.; Chen, K.-Y.; Gao, H.-D.; Lee, M.M.; Sun, S.-S.; Li, J.-P.; Chen, J.-Y.; Chen, J.-K. Lipid-wrapped upconversion nanoconstruct/photosensitizer complex for near-infrared light-mediated photodynamic therapy. ACS Appl. Mater. Interfaces 2018, 11, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Muddineti, O.S.; Kumari, P.; Ghosh, B.; Torchilin, V.P.; Biswas, S. d-α-Tocopheryl Succinate/Phosphatidyl Ethanolamine Conjugated Amphiphilic Polymer-Based Nanomicellar System for the Efficient Delivery of Curcumin and To Overcome Multiple Drug Resistance in Cancer. ACS Appl. Mater. Interfaces 2017, 9, 16778–16792. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Peng, K.; Han, L.; Yang, J. Photothermal and Photodynamic Therapies via NIR-Activated Nanoagents in Combating Alzheimer’s Disease. ACS Biomater. Sci. Eng. 2021, 7, 3573–3585. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, T.J.; Marcus, S.L. Photodynamic therapy. Eur. J. Cancer 1992, 28, 1734–1742. [Google Scholar] [CrossRef]
- Huang, Z. A review of progress in clinical photodynamic therapy. Technol. Cancer Res. Treat. 2005, 4, 283–293. [Google Scholar] [CrossRef]
- Fan, W.; Huang, P.; Chen, X. Overcoming the Achilles’ heel of photodynamic therapy. Chem. Soc. Rev. 2016, 45, 6488–6519. [Google Scholar] [CrossRef]
- Wang, C.; Cheng, L.; Liu, Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317. [Google Scholar] [CrossRef]
- Yin, Z.; Ji, Q.; Wu, D.; Li, Z.; Fan, M.; Zhang, H.; Zhao, X.; Wu, A.; Cheng, L.; Zeng, L. H2O2-responsive gold nanoclusters@ mesoporous silica@ manganese dioxide nanozyme for “off/on” modulation and enhancement of magnetic resonance imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 2021, 13, 14928–14937. [Google Scholar] [CrossRef]
- Yin, T.; Xie, W.; Sun, J.; Yang, L.; Liu, J. Penetratin Peptide-Functionalized Gold Nanostars: Enhanced BBB Permeability and NIR Photothermal Treatment of Alzheimer’s Disease Using Ultralow Irradiance. ACS Appl. Mater. Interfaces 2016, 8, 19291–19302. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Y.; Chen, J.; Zhu, S.; Liu, X.; Zhou, L.; Shi, P.; Niu, D.; Gu, J.; Shi, J. Multifunctional gold nanostar-based nanocomposite: Synthesis and application for noninvasive MR-SERS imaging-guided photothermal ablation. Biomaterials 2015, 60, 31–41. [Google Scholar] [CrossRef]
- Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov. Today 2017, 22, 1302–1317. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yang, X.; Ren, J.; Qu, K.; Qu, X. Using Graphene Oxide High Near-Infrared Absorbance for Photothermal Treatment of Alzheimer’s Disease. Adv. Mater. 2012, 24, 1722–1728. [Google Scholar] [CrossRef] [PubMed]
- Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. 2016, 60, 569–578. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Chen, X.; Ying, M.; Lu, W. Brain tumor-targeted drug delivery strategies. Acta Pharm. Sin. 2014, 4, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V.C.; Huang, Y. Blood–Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy. ACS Nano 2016, 10, 9999–10012. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA A Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Ifkovits, J.L.; Burdick, J.A. Photopolymerizable and Degradable Biomaterials for Tissue Engineering Applications. Tissue Eng. 2007, 13, 2369–2385. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Sterner, E.S.; Coughlin, E.B.; Theato, P. o-Nitrobenzyl Alcohol Derivatives: Opportunities in Polymer and Materials Science. Macromolecules 2012, 45, 1723–1736. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Gao, C. Shape Transformation of Light-Responsive Pyrene-Containing Micelles and Their Influence on Cytoviability. Biomacromolecules 2015, 16, 2276–2281. [Google Scholar] [CrossRef]
- Pelliccioli, A.P.; Wirz, J. Photoremovable protecting groups: Reaction mechanisms and applications. Photochem. Photobiol. Sci. 2002, 1, 441–458. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Z.; Li, J.; Ao, Y.; Xue, J.; Zeng, Z.; Yang, X.; Tan, T.T.Y. Ultrasmall-superbright neodymium-upconversion nanoparticles via energy migration manipulation and lattice modification: 808 nm-activated drug release. ACS Nano 2017, 11, 2846–2857. [Google Scholar] [CrossRef]
- He, S.; Krippes, K.; Ritz, S.; Chen, Z.; Best, A.; Butt, H.-J.; Mailänder, V.; Wu, S. Ultralow-intensity near-infrared light induces drug delivery by upconverting nanoparticles. Chem. Commun. 2015, 51, 431–434. [Google Scholar] [CrossRef]
- Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol. 2001, 19, 316–317. [Google Scholar] [CrossRef]
- Barhoumi, A.; Liu, Q.; Kohane, D.S. Ultraviolet light-mediated drug delivery: Principles, applications, and challenges. J. Control. Release 2015, 219, 31–42. [Google Scholar] [CrossRef]
- Zhao, H.; Hu, W.; Ma, H.; Jiang, R.; Tang, Y.; Ji, Y.; Lu, X.; Hou, B.; Deng, W.; Huang, W. Photo-induced charge-variable conjugated polyelectrolyte brushes encapsulating upconversion nanoparticles for promoted siRNA release and collaborative photodynamic therapy under NIR light irradiation. Adv. Funct. Mater. 2017, 27, 1702592. [Google Scholar] [CrossRef]
- Zhou, S.; Ding, C.D.; Wang, Y.; Jiang, W.; Fu, J.J. Supramolecular Valves Functionalized Rattle-Structured UCNPs@hm-SiO2 Nanoparticles with Controlled Drug Release Triggered by Quintuple Stimuli and Dual-Modality Imaging Functions: A Potential Theranostic Nanomedicine. Acs Biomater. Sci. Eng. 2019, 5, 6022–6035. [Google Scholar] [CrossRef]
- Zhou, M.; Ge, X.; Ke, D.-M.; Tang, H.; Zhang, J.-Z.; Calvaresi, M.; Gao, B.; Sun, L.; Su, Q.; Wang, H. The bioavailability, biodistribution, and toxic effects of silica-coated upconversion nanoparticles in vivo. Front. Chem. 2019, 7, 218. [Google Scholar] [CrossRef]
- Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J.; Han, G. Expanding anti-Stokes shifting in triplet–triplet annihilation upconversion for in vivo anticancer prodrug activation. Angew. Chem. 2017, 129, 14592–14596. [Google Scholar] [CrossRef]
- Ma, J.; Chen, S.; Ye, C.; Li, M.; Liu, T.; Wang, X.; Song, Y. A green solvent for operating highly efficient low-power photon upconversion in air. Phys. Chem. Chem. Phys. 2019, 21, 14516–14520. [Google Scholar] [CrossRef]
- Mangubat-Medina, A.E.; Ball, Z.T. Triggering biological processes: Methods and applications of photocaged peptides and proteins. Chem. Soc. Rev. 2021, 50, 10403–10421. [Google Scholar] [CrossRef]
- Wang, C.; Tao, H.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 2011, 32, 6145–6154. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Z.; Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349. [Google Scholar] [CrossRef]
- Shikha, S.; Salafi, T.; Cheng, J.; Zhang, Y. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev. 2017, 46, 7054–7093. [Google Scholar] [CrossRef]
- Chen, G.; Ågren, H.; Ohulchanskyy, T.Y.; Prasad, P.N. Light upconverting core–shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680–1713. [Google Scholar] [CrossRef]
- Tu, L.; Liu, X.; Wu, F.; Zhang, H. Excitation energy migration dynamics in upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1331–1345. [Google Scholar] [CrossRef]
- Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. Chem. Rev. 2016, 116, 2826–2885. [Google Scholar] [CrossRef]
- Dong, H.; Du, S.-R.; Zheng, X.-Y.; Lyu, G.-M.; Sun, L.-D.; Li, L.-D.; Zhang, P.-Z.; Zhang, C.; Yan, C.-H. Lanthanide Nanoparticles: From Design toward Bioimaging and Therapy. Chem. Rev. 2015, 115, 10725–10815. [Google Scholar] [CrossRef]
- Punjabi, A.; Wu, X.; Tokatli-Apollon, A.; El-Rifai, M.; Lee, H.; Zhang, Y.; Wang, C.; Liu, Z.; Chan, E.M.; Duan, C. Amplifying the red-emission of upconverting nanoparticles for biocompatible clinically used prodrug-induced photodynamic therapy. ACS Nano 2014, 8, 10621–10630. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Xu, M.; Zou, X.; Su, Q.; Yuan, W.; Cao, C.; Wang, Q.; Zhu, X.; Feng, W.; Li, F. Ratiometric nanothermometer in vivo based on triplet sensitized upconversion. Nat. Commun. 2018, 9, 1–7. [Google Scholar] [CrossRef]
- Amemori, S.; Sasaki, Y.; Yanai, N.; Kimizuka, N. Near-infrared-to-visible photon upconversion sensitized by a metal complex with spin-forbidden yet strong S0–T1 absorption. J. Am. Chem. Soc. 2016, 138, 8702–8705. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, X.; Mahboub, M.; Hanson, K.M.; Nichols, V.M.; Le, H.; Tang, M.L.; Bardeen, C.J. Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 2015, 15, 5552–5557. [Google Scholar] [CrossRef] [PubMed]
- Okumura, K.; Mase, K.; Yanai, N.; Kimizuka, N. Employing core-shell quantum dots as triplet sensitizers for photon upconversion. Chem. –A Eur. J. 2016, 22, 7721–7726. [Google Scholar] [CrossRef]
- Wu, M.; Congreve, D.N.; Wilson, M.W.; Jean, J.; Geva, N.; Welborn, M.; Van Voorhis, T.; Bulović, V.; Bawendi, M.G.; Baldo, M.A. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics 2016, 10, 31–34. [Google Scholar] [CrossRef]
- VanOrman, Z.A.; Conti III, C.R.; Strouse, G.F.; Nienhaus, L. Red-to-Blue photon upconversion enabled by one-dimensional CdTe nanorods. Chem. Mater. 2020, 33, 452–458. [Google Scholar] [CrossRef]
- Roy, I.; Goswami, S.; Young, R.M.; Schlesinger, I.; Mian, M.R.; Enciso, A.E.; Zhang, X.; Hornick, J.E.; Farha, O.K.; Wasielewski, M.R. Photon upconversion in a glowing metal–organic framework. J. Am. Chem. Soc. 2021, 143, 5053–5059. [Google Scholar] [CrossRef]
- Joarder, B.; Mallick, A.; Sasaki, Y.; Kinoshita, M.; Haruki, R.; Kawashima, Y.; Yanai, N.; Kimizuka, N. Near-Infrared-to-Visible Photon Upconversion by Introducing an S− T Absorption Sensitizer into a Metal-Organic Framework. ChemNanoMat 2020, 6, 916–919. [Google Scholar] [CrossRef]
- Jia, X.; Li, J.; Wang, E. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale 2012, 4, 5572–5575. [Google Scholar] [CrossRef]
- Su, Y.; Xie, M.; Lu, X.; Wei, H.; Geng, H.; Yang, Z.; Zhang, Y. Facile synthesis and photoelectric properties of carbon dots with upconversion fluorescence using arc-synthesized carbon by-products. RSC Adv. 2014, 4, 4839–4842. [Google Scholar] [CrossRef]
- Tan, D.; Zhou, S.; Qiu, J. Comment on “upconversion and downconversion fluorescent graphene quantum dots: Ultrasonic preparation and photocatalysis”. ACS Nano 2012, 6, 6530–6531. [Google Scholar] [CrossRef]
- Gan, Z.; Wu, X.; Zhou, G.; Shen, J.; Chu, P.K. Is there real upconversion photoluminescence from graphene quantum dots? Adv. Opt. Mater. 2013, 1, 554–558. [Google Scholar] [CrossRef]
- Mohapatra, S.; Rout, S.R.; Das, R.K.; Nayak, S.; Ghosh, S.K. Highly hydrophilic luminescent magnetic mesoporous carbon nanospheres for controlled release of anticancer drug and multimodal imaging. Langmuir 2016, 32, 1611–1620. [Google Scholar] [CrossRef] [PubMed]
Surface Modification Strategies | Composition of Upconversion Nanostructures | Therapy | Diagnosis | Ref. | |
---|---|---|---|---|---|
In Vitro | In Vivo Bioimaging | ||||
Mesoporous silica coating | NaYF4:20%Yb,2%Er@NaGdF4 NPs | Loading cis-platinum pro-drugs and cytotoxic protein ribonuclease A for RNA-targeted tumor therapy and proteins-based therapies. | HepG2 cells | H22 tumor-bearing Balb/c mice (UCL and T1-weighted MRI) | [13] |
NaYF4:17%Yb,3%Er NPs | Adsorption of ibuprofen. | HeLa cells | - | [74] | |
NaYF4:25%Yb,2%Er,0.5%Tm NPs | Rose Bengal and zinc(II)phthalocyanine for PDT. | HeLa cells | - | [75] | |
NaGdF4:20%Yb,2%Er@NaGdF4:30%Nd,10%Yb | Chlorin e6 and merocyanine 540 for PDT. | HeLa cells | U14 tumor-bearing Balb/c mouse (UCL and CT imaging) | [76] | |
NaGdF4:18%Yb,2%Er@NaGdF4: | Rose Bengal for PDT. Conjugation with Linker-Protein G for tumor targeting. | HT-29 cells | - | [77] | |
Silica and manganese dioxide coating, PEGylated surface | NaGdF4:20%Yb,2%Er@ NaGdF4:20%Yb NPs | Loading DOX for chemotherapy. Loading chlorin e6 for PDT. | HeLa cells | U14 tumor bearing mice (UCL, T1-weighted MR and CT imaging) | [99] |
Silica and manganese dioxide coating | NaGdF4:19%Yb,1%Er,1%Tm@NaGdF4:10%Yb@NaNdF4:10%Yb | Chlorin e6 for PDT. | L929 cells and HeLa cells | U14 tumor-bearing Kunming mice (UCL, T1-weighted MR and CT imaging) | [100] |
Silica and cerium oxide coating, PEGylated surface | NaGdF4:20%Yb,1%Tm@NaGdF4 | Cerium oxide for PDT. DOX for chemotherapy. | L929 cells and HeLa cells | U14 tumor-bearing mice. (UCL, T1-weighted MR and CT imaging) | [101] |
Silica coating, followed by hyaluronic acid modification | NaYF4:20%Yb,2%Er | Titanium dioxide and DOX for sonodynamic therapy and chemotherapy, respectively. | KB and MCF-7 cells | S180 tumor-bearing mice (UCL) | [14] |
Silica coating, PEGylated surface | NaYF4:24.7%Yb,0.3%Tm NPs | DOX for chemotherapy.Folic acid for tumor targeting. | HeLa cells | HeLa cells of tumor-bearing nude mice (UCL) | [102] |
PEGylated | Y2O3:Yb3+/Er3+ hollow nanospheres | DOX loaded for chemotherapy. | HeLa cells | UCL imaging in anaesthetized white ICR mice (UCL) | [103] |
NaGdF4Yb/Nd@NaGdF4:Yb/Er@NaGdF4 | Rose Bengal for PDT, and Pt(IV) prodrugs for chemotherapy. | A2780 cells | - | [104] | |
NaYF4:18%Yb,0.6%Tm@NaYF4 | Resonant excitation 2F5/2 → 2F7/2 of Yb3+ for PTT. | A375 and HEK 293 cells | A375 Male Balb/c nu/nu mice | [105] | |
NaGdF4:20%Yb,2%Er@NaGdF4:25%Yb,25%Nd | Cerium oxide for PDT. Nanographene oxide for PTT. | L929 cells and HeLa cells | U14 tumor bearing mice (UCL imaging) | [106] | |
NaYF4:20%Yb,2%Er | protoporphyrin IX for PDT. Conjugate to AS1411 for cancerous cells targeting. | MCF-7 and HeLa cells | - | [107] | |
NaYF4:27%Yb,2%Er | Phthalocyanine zinc for PDT. Conjugate with Gefitinib (G) to target the ATP binding domain of the tyrosine kinase. | HepG2 cells and HELF cells | - | [108] | |
PEG and folic acid-modified | NaYF4:25%Yb,0.3%Tm NPs | DOX for chemotherapy. MoS2 for PDT. | HeLa and HepG2 cells | - | [97] |
Stabilization by polyetherimide, followed by PEG modification | NaGdF4:40%Yb,0.5%Tm@NaGdF4:2%Yb NPs | ZnFe2O4 for PDT. Pt(IV) prodrugs for Glutathione-mediated cancer cell killing. | HeLa cells | U14 cells (cervical carcinoma cells) of female Balb/c mice (UCL) | [36] |
NaYF4:40%Yb,0.5%Tm@NaGdF4:2%Yb NPs | Trans-platinum(IV) prodrug triggered by upconverted emission UV light. | HeLa cells | H22 tumor-bearing female Balb/c mice (UCL) | [37] | |
NaGdF4:17%Yb,3%Er NPs | Platinum(IV) prodrug for chemotherapy. Delivery of siRNA to the silence gene (eukaryotic translation initiation factor 4E). | Hep-2 cells and L929 cells | Anesthetized Balb/C nude mice (UCL) | [38] | |
Stabilization by polyetherimide, followed by chitosan wrapped surface | NaYF4:Yb/Er | Pyropheophorbide a for PDT. Conjugate with RGD peptide c for targeting. | U87-MG cells | - | [39] |
Polyetherimide-modified | NaYF4:20%Yb,2%Er hollow nanospheres | DOX for chemotherapy. | KB cells | - | [88] |
NaGdF4:17%Yb,3%Er NPs | Delivery of bcl-2 siRNA for gene therapy for tumors. | HeLa cells | Anesthetized Kunming mouse (UCL, T1-weighted MR and CT imaging) | [91] | |
Surface coated by TWEEN | NaYF4:20%Yb,2%Er @ NaYF4 NPs | Doxorubicin (DOX) loaded for chemotherapy. | HeLa cells. | - | [42] |
Transferrin-coated | NaYF4:30%Gd,18%Yb,2%Er NPs | Protoporphyrin IX for PDT. Magnetically assisted tumor cell targeting. | MDA-MB-231 and HeLa cells | - | [44] |
Alpha-cyclodextrin-modified | CaF2:20%Yb,2%Er NPs | DOX for chemotherapy. | HeLa cells | Anaesthetized Kunming mouse (UCL and CT imaging) | [109] |
Surface functionalized by 15-carboxy-N,N,N-trialkylpentadecan-1-ammonium bromide | NaYF4:Yb/Er@ NaGdF4 NPs | DOX for chemotherapy. pH responsive. | HeLa cells | - | [110] |
Gelatin-modified | BaGdF5:20%Yb3+,2%Tm3+@BaGdF5:x%Yb3+ Ultra-small NPs | DOX for chemotherapy. pH triggered drug releasing. | HeLa cells | Anesthetized white Kunming mice (UCL) | [111] |
Polysaccharide polymer (guar gum)-coated | NaYF4:20%Yb,2%Er@ NaYbF4 NPs | Rose Bengal for PDT. 5-fluorouracil for chemotherapy. Target releasing in the colon. | HT-29 colon carcinoma cells | - | [43] |
Poly(acrylic acid)-modified | NaYF4:18%Yb,2%Er@NaYF4:10%Yb NPs | DOX for chemotherapy. | MCF-7 cells | H22 tumor-bearing female Kunming mice (UCL) | [34] |
Citric acid modification, followed by a growing gold shell on the surface | NaYF4:20%Yb,2%Er@NaGdF4 NPs | DOX for chemotherapy. Gold shell for PTT. | HeLa cells | - | [33] |
Formation of MOFs on the surface | NaYF4:20%Yb,1.5%Er,0.5%Tm NPs | DOX and 5-fluorouracil for chemotherapy. | HeLa cells | - | [98] |
Formation of MOFs(MIL-53-NH2) on the surface, and PEG-functionalized | NaGdF4:20%Yb,2%Er@NaGdF4:30%Nd NPs | DOX loaded for chemotherapy. Folic acid for tumor targeting. | HeLa cells | - | [90] |
Formation of Zr (IV)-based porphyrin MOFs on the core surface | NaYbF4:80%Er@NaGdF4:20%Yb,2%Er@NaGdF4 | The composition of MOFs (Zr6 clusters) for PDT. Conjugated with anti-programmed death ligand 1 for immunotherapy. | CT26 cells | CT26 tumor-bearing female BALB/c mice (NIR-II imagining) | [84] |
Encapsulation into MOFs (UiO-68-NH2) | NaGdF4:20%Yb,2%Er@NaGdF4:40%Nd,10%Yb NP | Chlorin e6 and Rose Bengal for PDT. | 4T1 cells | 4T1 tumor-bearing female Balb/C mice | [86] |
Encapsulation into nano-phospholipids | NaYF4:20%Yb,2%Er NPs. | Loading various PDT reagents. | HeLa cells, KB cells and REF52 cells | - | [112] |
Encapsulation into liposomes | NaYF4:60%Yb,2%Er | DOX and methylene blue for chemotherapy and PDT, respectively. Conjugated to the anti-HER2 peptide to target breast cancer cells. | SKBR-3 breast cancer cell lines | - | [89] |
NaGdF4:20%Yb,2%Er | Loading docetaxel for treating gliomas. | C6 glioma cells | - | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, C.; Joulin, E.; Tang, H.; Pouri, H.; Zhang, J. Upconversion Nanostructures Applied in Theranostic Systems. Int. J. Mol. Sci. 2022, 23, 9003. https://doi.org/10.3390/ijms23169003
Lu C, Joulin E, Tang H, Pouri H, Zhang J. Upconversion Nanostructures Applied in Theranostic Systems. International Journal of Molecular Sciences. 2022; 23(16):9003. https://doi.org/10.3390/ijms23169003
Chicago/Turabian StyleLu, Chao, Etienne Joulin, Howyn Tang, Hossein Pouri, and Jin Zhang. 2022. "Upconversion Nanostructures Applied in Theranostic Systems" International Journal of Molecular Sciences 23, no. 16: 9003. https://doi.org/10.3390/ijms23169003
APA StyleLu, C., Joulin, E., Tang, H., Pouri, H., & Zhang, J. (2022). Upconversion Nanostructures Applied in Theranostic Systems. International Journal of Molecular Sciences, 23(16), 9003. https://doi.org/10.3390/ijms23169003