Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops
Abstract
:1. Introduction
2. Mapping and Cloning of the Ogura CMS Gene
2.1. Identification of the Ogura Sterility Gene orf138
2.2. Functional Verification of the Sterility Gene orf138
3. Mapping and Cloning of Ogura CMS Fertility Restorer Genes in Cruciferous Crops
3.1. Ogura CMS Fertility Restorer Genes in Raphanus Sativus
3.2. Ogura CMS Fertility Restorer Genes in Other Cruciferous Crops
4. Mechanisms of Ogura CMS in Major Cruciferous Crops
5. Mechanisms of Ogura CMS fertility Restorer Genes in Major Cruciferous Crops
6. Application of Ogura CMS and Creation of Ogura CMS Fertility Restorer Lines
6.1. Brassica Napus
6.2. Brassica Oleracea
6.3. Brassica Rapa
6.4. Brassica Juncea
6.5. Other Cruciferous Crops
7. Discussions
7.1. How Do CMS Sterility Genes and Fertility Restorer Genes Come about?
7.2. What Are the Future Development Directions of Ogura CMS?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, H.; Kong, X.; Chen, F.; Huang, J.; Lou, X.; Zhao, J. Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes. BMC Genom. 2015, 16, 858. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, Q. Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Reprod. 2017, 31, 3–14. [Google Scholar] [CrossRef]
- Mayr, E. Joseph gottlieb kolreuter’s contributions to biology. Osiris 1986, 2, 135–176. [Google Scholar] [CrossRef]
- Kaul, M.L.H. Male Sterility in Higher Plants; Springer: New York, NY, USA, 1988. [Google Scholar]
- Bhatnagar-Mathur, P.; Gupta, R.; Reddy, P.S.; Reddy, B.P.; Reddy, D.S.; Sameerkumar, C.V.; Saxena, R.K.; Sharma, K.K. A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence. Plant Mol. Biol. 2018, 97, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, Y. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, J.; Leino, M.; Sohlberg, J.; Sundström, J.; Glimelius, K. Mitochondrial regulation of flower development. Mitochondrion 2008, 8, 74–86. [Google Scholar] [CrossRef]
- Tang, H.; Zheng, X.; Li, C.; Xie, X.; Chen, Y.; Chen, L.; Zhao, X.; Zheng, H.; Zhou, J.; Ye, S.; et al. Multi-step formation, evolution, and functionalization of new cytoplasmic male sterility genes in the plant mitochondrial genomes. Cell Res. 2017, 27, 130–146. [Google Scholar] [CrossRef]
- Kaminski, P.; Dyki, B.; Stepowska, A.A. Improvement of cauliflower male sterile lines with Brassica nigra cytoplasm, phenotypic expression and possibility of practical application. J. Agric. Sci. 2012, 4, 190. [Google Scholar] [CrossRef]
- Yamagishi, H.; Bhat, S.R. Cytoplasmic male sterility in Brassicaceae crops. Breed. Sci. 2014, 64, 38–47. [Google Scholar] [CrossRef]
- Heng, S.; Gao, J.; Wei, C.; Chen, F.; Li, X.; Wen, J.; Yi, B.; Ma, C.; Tu, J.; Fu, T.; et al. Transcript levels of orf288 are associated with the hau cytoplasmic male sterility system and altered nuclear gene expression in Brassica juncea. J. Exp. Bot. 2018, 69, 455–466. [Google Scholar] [CrossRef]
- Makaroff, C.A.; Palmer, J.D. Mitochondrial DNA rearrangements and transcriptional alterations in the male-sterile cytoplasm of Ogura radish. Mol. Cell. Biol. 1988, 8, 1474–1480. [Google Scholar]
- Makaroff, C.A.; Apel, I.J.; Palmer, J.D. The atp6 coding region has been disrupted and a novel reading frame generated in the mitochondrial genome of cytoplasmic male-sterile radish. J. Biol. Chem. 1989, 264, 11706–11713. [Google Scholar] [CrossRef]
- Bonhomme, S.; Budar, F.; Férault, M.; Pelletier, G.A. 2.5 kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplasmic male-sterility in Brassica cybrids. Curr. Genet. 1991, 19, 121–127. [Google Scholar] [CrossRef]
- Bonhomme, S.; Budar, F.; Lancelin, D.; Small, I.; Defrance, M.C.; Pelletier, G. Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol. Gen. Genet. 1992, 235, 340–348. [Google Scholar] [CrossRef]
- Singh, S.; Dey, S.S.; Bhatia, R.; Kumar, R.; Behera, T.K. Current understanding of male sterility systems in vegetable Brassicas and their exploitation in hybrid breeding. Plant Reprod. 2019, 32, 231–256. [Google Scholar] [CrossRef]
- Grelon, M.; Budar, F.; Bonhomme, S.; Pelletier, G. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol. Gen. Genet. 1994, 243, 540–547. [Google Scholar] [CrossRef]
- Krishnasamy, S.; Makaroff, C.A. Organ-specific reduction in the abundance of a mitochondrial protein accompanies fertility restoration in cytoplasmic male-sterile radish. Plant Mol. Biol. 1994, 26, 935–946. [Google Scholar] [CrossRef]
- Terachi, T.; Yamaguchi, K.; Yamagishi, H. Sequence analysis on the mitochondrial orfB locus in normal and Ogura male-sterile cytoplasms from wild and cultivated radishes. Curr. Genet. 2001, 40, 276–281. [Google Scholar] [CrossRef]
- Tanaka, Y.; Tsuda, M.; Yasumoto, K.; Yamagishi, H.; Terachi, T. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.). BMC Genom. 2012, 13, 352. [Google Scholar] [CrossRef]
- Pelletier, G.; Budar, F. Brassica Ogu-INRA cytoplasmic male sterility: An example of successful plant somatic fusion for hybrid seed production. In Somatic Genome Manipulation; Li, X.Q., Donnelly, D., Jensen, T., Eds.; Springer: New York, NY, USA, 2015. [Google Scholar]
- Landgren, M.; Zetterstrand, M.; Sundberg, E.; Glimelius, K. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3′ of the atp6 gene and a 32 kDa protein. Plant Mol. Biol. 1996, 32, 879–890. [Google Scholar] [CrossRef]
- Brown, G.G. Unique aspects of cytoplasmic male sterility and fertility restoration in Brassica napus. J. Hered. 1999, 90, 351–356. [Google Scholar] [CrossRef]
- Menassa, R.; Homme, Y.L.; Brown, G.G. Post-transcriptional and developmental regulation of a CMS-associated mitochondrial gene region by a nuclear restorer gene. Plant J. 1999, 17, 491–499. [Google Scholar] [CrossRef]
- Brown, G.G.; Domaj, M.; DuPauw, M.; Jean, M.; Li, X.; Landry, B.S. Molecular analysis of Brassica CMS and its application to hybrid seed production. In Proceedings of the International Symposium Brassica 97, Xth Crucifer Genetics Workshop, Rennes, France, 1 April 1998. [Google Scholar]
- Yang, J.; Liu, X.; Yang, X.; Zhang, M. Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC Plant Biol. 2010, 10, 231. [Google Scholar] [CrossRef]
- Jing, B.; Heng, S.; Tong, D.; Wan, Z.; Fu, T.; Tu, J.; Ma, C.; Yi, B.; Wen, J.; Shen, J. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J. Exp. Bot. 2012, 63, 1285–1295. [Google Scholar] [CrossRef]
- Lee, Y.; Park, S.; Lim, C.; Kim, H.; Lim, H.; Ahn, Y.; Sung, S.; Yoon, M.; Kim, S. Discovery of a novel cytoplasmic male-sterility and its restorer lines in radish (Raphanus sativus L.). Theor. Appl. Genet. 2008, 117, 905–913. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, S.; Lim, H.; Ahn, Y.; Sung, S. Identification of mitochondrial genome rearrangements unique to novel cytoplasmic male-sterility in radish (Raphanus sativus L.). Theor. Appl. Genet. 2009, 118, 719–728. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, Y.P.; Lee, J.; Choi, B.S.; Kim, S.; Yang, T.J. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (Raphanus sativus L.) containing DCGMS cytoplasm. Theor. Appl. Genet. 2013, 126, 1763–1774. [Google Scholar] [CrossRef]
- Wan, Z.; Jing, B.; Tu, J.; Ma, C.; Shen, J.; Yi, B.; Wen, J.; Huang, T.; Wang, X.; Fu, T. Genetic characterization of a new cytoplasmic male sterility system (hau) in Brassica juncea and its transfer to B. napus. Theor. Appl. Genet. 2008, 116, 355–362. [Google Scholar] [CrossRef]
- Kang, L.; Li, P.; Wang, A.; Ge, X.; Li, Z. A novel cytoplasmic male sterility in Brassica napus (inap CMS) with carpelloid stamens via protoplast fusion with Chinese woad. Front. Plant Sci. 2017, 8, 529. [Google Scholar] [CrossRef]
- Sakai, T.; Imamura, J. Alteration of mitochondrial genomes containing atpA genes in the sexual progeny of cybrids between Raphanus sativus CMS line and Brassica napus cv. Westar. Theor. Appl. Genet. 1992, 84, 923–929. [Google Scholar] [CrossRef]
- Iwabuchi, M.; Koizuka, N.; Fujimoto, H.; Sakai, T.; Imamura, J. Identification and expression of the kosena radish (Raphanus sativus cv. Kosena) homologue of the Ogura radish CMS-associated gene, orf138. Plant Mol. Biol. 1999, 39, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Oshima, M.; Kikuchi, R.; Imamura, J.; Handa, H. Origin of the CMS gene locus in rapeseed cybrid mitochondria: Active and inactive recombination produces the complex CMS gene region in the mitochondrial genomes of Brassicaceae. Genes Genet. Syst. 2010, 85, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Prakash, S.; Kirti, P.B.; Bhat, S.R.; Gaikwad, K.; Kumar, V.D.; Chopra, V.L. A Moricandia arvensis-based cytoplasmic male sterility and fertility restoration system in Brassica juncea. Theor. Appl. Genet. 1998, 97, 488–492. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, D.V.; Sharma, P.C.; Prakash, S.; Bhat, S.R. A novel orf108 co-transcribed with the atpA gene is associated with cytoplasmic male sterility in Brassica juncea carrying Moricandia arvensis cytoplasm. Plant Cell Physiol. 2008, 49, 284–289. [Google Scholar]
- Ashutosh, P.; Sharma, P.C.; Prakash, S.; Bhat, S.R. Identification of AFLP markers linked to the male fertility restorer gene of CMS (Moricandia arvensis) Brassica juncea and conversion to SCAR marker. Theor. Appl. Genet. 2007, 114, 385–392. [Google Scholar] [CrossRef]
- Bisht, D.S.; Chamola, R.; Nath, M.; Bhat, S.R. Molecular mapping of fertility restorer gene of an alloplasmic CMS system in Brassica juncea containing Moricandia arvensis cytoplasm. Mol. Breed. 2015, 35, 14. [Google Scholar] [CrossRef]
- Bang, S.W.; Kaneko, Y.; Matsuzawa, Y.; Bang, K.S. Breeding of Moricandia arvensis monosomic chromosome addition lines (2n = 19) of alloplasmic (M. arvensis) Raphanus sativus. Breed. Sci. 2002, 52, 193–199. [Google Scholar] [CrossRef]
- Tsutsui, K.; Jeong, B.H.; Ito, Y.; Bang, S.W.; Kaneko, Y. Production and characterization of an alloplasmic and monosomic addition line of Brassica rapa carrying the cytoplasm and one chromosome of Moricandia arvensis. Breed. Sci. 2011, 61, 373–379. [Google Scholar] [CrossRef]
- Shinada, T.; Kikucho, Y.; Fujimoto, R.; Kishitani, S. An alloplasmic male-sterile line of Brassica oleracea harboring the mitochondria from Diplotaxis muralis expresses a novel chimeric open reading frame, orf72. Plant Cell Physiol. 2006, 47, 549–555. [Google Scholar] [CrossRef]
- L’Homme, Y.; Stahl, R.J.; Li, X.; Hameed, A.; Brown, G.G. Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS associated orf224 gene. Curr. Genet. 1997, 31, 325–335. [Google Scholar]
- Huq, M.A.; Akter, S.; Jung, Y.J.; Nou, I.S.; Cho, Y.G.; Kang, K.K. Genome sequencing, a milestone for genomic research and plant breeding. Plant Breed. Biotechnol. 2016, 4, 29–39. [Google Scholar] [CrossRef]
- Liu, J.; Xiang, R.; Wang, W.; Mei, D.; Li, Y.; Mason, A.S.; Fu, L.; Hu, Q. Cytological and molecular analysis of Nsa CMS in Brassica napus L. Euphytica 2015, 206, 279–286. [Google Scholar] [CrossRef]
- Hu, Q.; Andersen, S.B.; Dixelius, C.; Hansen, L.N. Production of fertile intergeneric somatic hybrids between B. napus and S. arvensis for the enrichment of rapeseed gene pool. Plant Cell Rep. 2002, 21, 147–152. [Google Scholar]
- Wei, W.L.; Wang, H.Z.; Liu, G.H. Anatomical observations of anther development of NCa, a cytoplasmic male sterile line in rapeseed (Brassica napus L.). Sci. Agric. Sin. 2005, 38, 1232–1237. [Google Scholar]
- Nahm, S.H.; Lee, H.J.; Lee, S.W.; Joo, G.Y.; Harn, C.H.; Yang, S.G.; Min, B.W. Development of a molecular marker specific to a novel CMS line in radish (Raphanus sativus L.). Theor. Appl. Genet. 2005, 111, 1191–1200. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, M.; Yu, J. Mitochondrial nad2 gene is cotranscripted with CMS-associated orfB gene in cytoplasmic male-sterile stem mustard (Brassica juncea). Mol. Biol. Rep. 2009, 36, 345–351. [Google Scholar] [CrossRef]
- Yasumoto, K.; Terachi, T.; Yamagishi, H. A novel Rf gene controlling fertility restoration of Ogura male sterility by RNA processing of orf138 found in Japanese wild radish and its STS markers. Genome 2009, 52, 495–504. [Google Scholar] [CrossRef]
- Desloire, S.; Gherbi, H.; Laloui, W.; Marhadour, S.; Clouet, V.; Cattolico, L.; Falentin, C.; Giancola, S.; Renard, M.; Budar, F. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep. 2003, 4, 588–594. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, J.; Chang, P.; Shi, Y.; Yuan, Z.; Guo, P.; Wang, T. A new fertility restorer locus linked closely to the Rfo locus for cytoplasmic male sterility in radish. Theor. Appl. Genet. 2008, 117, 313–320. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Cai, Q.; Mei, S.; Gao, L.; Zhou, Y.; Wang, T. Identification of promoter exchange at a male fertility restorer locus for cytoplasmic male sterility in radish (Raphanus sativus L.). Mol. Breed. 2017, 37, 82. [Google Scholar] [CrossRef]
- Yamagishi, H.; Jikuya, M.; Okushiro, K.; Hashimoto, A.; Fukunaga, A.; Takenaka, M.; Terachi, T. A single nucleotide substitution in the coding region of Ogura male sterile gene, orf138, determines effectiveness of a fertility restorer gene, Rfo, in radish. Mol. Genet. Genom. 2021, 296, 705–717. [Google Scholar] [CrossRef]
- Yang, S.; Terachi, T.; Yamagishi, H. Inhibition of chalcone synthase expression in anthers of Raphanus sativus with Ogura male sterile cytoplasm. Ann. Bot. 2008, 102, 483–489. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Chen, Y.; Xu, L.; Jiang, L.; Gong, Y.; Wang, L.; Liu, L. Differential gene expression profiling of Ogura CMS line and its maintainer in radish (Raphanus sativus L.). Acta Physiol. Plant. 2013, 35, 3413–3425. [Google Scholar] [CrossRef]
- Uyttewaal, M.; Arnal, N.; Quadrado, M.; Martin-Canadell, A.; Vrielynck, N.; Hiard, S.; Gherbi, H.; Bendahmane, A.; Budar, F.; Mireau, H. Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility. Plant Cell 2009, 20, 3331–3345. [Google Scholar] [CrossRef]
- Bannerot, H.; Boulidard, L.; Cauderon, Y.; Tempe, J. Transfer of cytoplasmic male sterility from Raphanus sativus to Brassica oleracea. Proc. Eucarpia Meet. Crucif. 1974, 25, 52–54. [Google Scholar]
- Murayama, S.; Habuchi, T.; Yamagishi, H.; Terachi, T. Identification of a sequence-tagged site (STS) marker linked to a restorer gene for Ogura cytoplasmic male sterility in radish (Raphanus sativus L.) by non-radioactive AFLP analysis. Euphytica 2002, 129, 61–68. [Google Scholar] [CrossRef]
- Kim, S.; Lim, H.; Park, S.; Cho, K.H.; Sung, S.K.; Oh, D.G.; Kim, K.T. Identification of a novel mitochondrial genome type and development of molecular markers for cytoplasm classification in radish (Raphanus sativus L.). Theor. Appl. Genet. 2007, 115, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, Q.; Wang, Y. Molecular marker assisted selective breeding of radish male sterile line. China Veg. 2020, 2, 40–44. [Google Scholar]
- Ogura, H. Studies on the new male sterility in Japanese radish, with special references to the utilization of this sterility towards the practical raising of hybrid seeds. Mem. Fac. Agric. Kagoshima Univ. 1967, 6, 39–78. [Google Scholar]
- Kim, Y.J.; Zhang, D. Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci. 2017, 23, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Forsythe, E.S.; Nelson, A.; Beilstein, M.A. Biased gene retention in the face of introgression obscures species relationships. Genome Biol. Evol. 2020, 12, 1646–1663. [Google Scholar] [CrossRef]
- Pelletier, G.; Primard, C.; Vedel, F.; Chetrit, P.; Remy, R.; Rousselle; Renard, M. Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol. Gen. Genet. 1983, 191, 244–250. [Google Scholar] [CrossRef]
- Li, Y.; Cai, M.; Zheng, Y.; Hu, Q.; Liu, G. Systematic study on Ogu CMS and test for restorer-maintenancer relationship in B. napus. Chin. J. Oil Crop Sci. 1993, 3, 8–11. [Google Scholar]
- Li, X.; Li, L.; Qin, J.; Wu, S.; Yuan, X.; Wang, J.; Yang, F. Cytogenetic study on the restored material F2 (TC1) from test cross progenies of B. napus with Ogu CMS. Sci. Agric. Sin. 2001, 34, 108–110. [Google Scholar]
- Wen, Y.; Zhang, S.; Wang, J.; Zhu, J.; Zhao, L.; Cao, J. Screening and preliminary studies of restorers of radish cytoplasmic male sterile lines in Brassica napus L. Acta Agric. Boreali Sin. 2010, 25, 102–106. [Google Scholar]
- Chen, W.; Li, M.; Wang, T.; Hui, R.; Tu, J.; Fu, T. Creative process of a new restorer material with Ogu CMS in Brassica nupus. Sci. Agric. Sin. 2012, 45, 1465–1474. [Google Scholar]
- Wen, Y.; Zhang, S.; Wang, J.; Zhu, J.; He, J.; Cai, D.; Cao, J.; Zhao, L.; Wang, D. Studies on rapid improvement techniques of radish cytoplasmic male sterile restorers in Brassica napus L. Acta Agric. Boreali Sin. 2016, 31, 102–109. [Google Scholar]
- Heyn, F.W. Transfer of restorer genes from Raphanus to cytoplasmic male sterile Brassica napus. Eucarpia Crucif. Newsl. 1976, 1, 15–16. [Google Scholar]
- Delourme, R.; Eber, F. Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor. Appl. Genet. 1992, 85, 222–228. [Google Scholar] [CrossRef]
- Delourme, R.; Eber, F.; Renard, M. Breeding double low restorer lines in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). In Proceedings of the 9 International Rapeseed Congress, Cambridge, UK, 4 July 1995. [Google Scholar]
- Primard-Brisset, C.; Poupard, J.P.; Horvais, R.; Eber, F.; Pelletier, G.; Renard, M.; Delourme, R. A new recombined double low restorer line for the Ogu-INRA CMS in rapeseed (Brassica napus L.). Theor. Appl. Genet. 2005, 111, 736–746. [Google Scholar] [CrossRef]
- Zhang, Y.; Patel, J.; Tulsieram, L. Brassica Ogura Restorer Lines with Shortened Raphanus Fragment (SRF). U.S. Patent 8466347B2, 13 August 2009. [Google Scholar]
- Li, X.; Yang, Y.; Wang, Y.; Luo, P. Rapeseed (Brassica napus L) chromosome enineering—transferring characters of Raphanus sativus L. var. raphanistroides makino to B. napus. J. Sichuan Agric. Univ. 1995, 32, 599–604. [Google Scholar]
- Walters, T.W.; Mutschler, M.A.; Earle, E.D. Protoplast fusion-derived Ogura male sterile cauliflower with cold tolerance. Plant Cell Rep. 1992, 10, 624–628. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y.; Wang, X.; Sun, P.; Zhuang, M.; Fang, Z. Preliminary observation on main botanical characters of cytoplasmic male sterility (CMS) materials in Cabbage. China Veg. 1997, 6, 24–25. [Google Scholar]
- Yang, L.; Fang, Z.; Liu, Y.; Zhuang, M.; Wang, X.; Zhang, Y.; Sun, P. Several new F1 hybrid varieties and hybrid crossing lines bred with male sterile lines and hybrid lines. China Veg. 2005, 1, 23–25. [Google Scholar]
- Yu, H.; Fang, Z.; Liu, Y.; Yang, L.; Zhuang, M.; Lv, H.; Li, Z.; Han, F.; Liu, X.; Zhang, Y. Development of a novel allele-specific Rfo marker and creation of Ogura CMS fertility-restored interspecific hybrids in Brassica oleracea. Theor. Appl. Genet. 2016, 129, 1625–1637. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Ren, W.; Han, F.; Yang, L.; Zhuang, M.; Lv, H.; Liu, Y.; Fang, Z.; Zhang, Y. Creation of fertility-restored materials for Ogura CMS in Brassica oleracea by introducing Rfo gene from Brassica napus via an allotriploid strategy. Theor. Appl. Genet. 2020, 133, 2825–2837. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Yang, L.; Liu, Y.; Zhuang, M.; Zhang, L.; Lv, H.; Li, Z.; Han, F.; Liu, X.; et al. Morphological and molecular characterization of the second backcross progenies of Ogu-CMS Chinese kale and rapeseed. Euphytica 2017, 213, 55. [Google Scholar] [CrossRef]
- Ren, W.; Li, Z.; Han, F.; Zhang, B.; Li, X.; Fang, Z.; Yang, L.; Zhuang, M.; Lv, H.; Liu, Y.; et al. Utilization of Ogura CMS germplasm with the clubroot resistance gene by fertility restoration and cytoplasm replacement in Brassica oleracea L. Hortic. Res. 2020, 7, 61. [Google Scholar] [CrossRef]
- Li, Q.F.; Xu, B.B.; Du, Y.M.; Peng, A.; Ren, X.S.; Si, J.; Song, H.Y. Development of Ogura CMS restorers in Brassica oleracea subspecies via direct RfoB gene transformation. Theor. Appl. Genet. 2021, 134, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Jourdan, P.S.; Earle, E.D.; Mutschler, M.A. Synthesis of male sterile, triazine-resistant Brassica napus by somatic hybridization between cytoplasmic male sterile B. oleracea and atrazine-resistant B. campestris. Theor. Appl. Genet. 1989, 78, 445–455. [Google Scholar] [CrossRef]
- Jiang, P.; Zhu, Z.; Zheng, Y.; Chen, J.; Chen, W. Selection of alloplasmic cytoplasmic male sterility line C50-2 in cauliflower. Fujian J. Agric. Sci. 2001, 16, 39–41. [Google Scholar]
- Dey, S.S.; Sharma, S.R.; Bhatia, R.; Kumar, P.R.; Parkash, C. Development and characterization of “Ogura” based improved CMS lines of cauliflower (Brassica oleracea var. botrytis L.). Indian J. Genet. 2011, 71, 37–42. [Google Scholar]
- He, C.; Guo, S.; Zhang, Z.; Li, W.; Qi, J. Preliminary studies on the alloplasmic male sterile materials in cauliflower. Acta Hortic. 1999, 26, 125–127. [Google Scholar]
- Zhu, Y.; Wu, X.; Gong, J.; Jin, H.; Yao, W.; Li, S.; Wu, Q. Breeding and utilization of a male sterile line with radish cytoplasm in broccoli. J. Nanjing Agric. Univ. 2001, 24, 15–18. [Google Scholar]
- Huang, J.; Liu, W.; Liu, Y.; Han, F.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H.; Wang, Y.; et al. Creation of fertility restorer materials for Ogura CMS broccoli and the study of its genetic background. Acta Hortic. 2022, 49, 533–547. [Google Scholar]
- Delourme, R.; Eber, F.; Renard, M. Transfer of radish cytoplasmic male sterility from Brassica napus to B. juncea and B. rapa. Crucif. Newsl. 1994, 16, 79. [Google Scholar]
- Williams, P.H.; Heyn, F.W.; Talekar, N.S.; Griggs, T.D. The Origin and Development of Cytoplasmic Male Sterile Chinese Cabbage; AVRDC: Tainan City, China, 1981. [Google Scholar]
- Wei, B.; Wei, Y. Selection and breeding of Ogura male sterile lines of Chinese cabbage. China Veg. 1995, 1, 18–21. [Google Scholar]
- Sun, R. Studies on Male Sterility of Radish Cytoplasmic Chinese Cabbage. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 1999. [Google Scholar]
- Jiang, S.; Chen, H.; Yang, X.; Yin, Y.; Dong, J. Study on the introgression of cytoplasmic male sterlity in Brassica campestris spp. chinensis. China Veg. 2002, 1, 28–29. [Google Scholar]
- Hou, X.; Cao, S.; She, J.; Lu, W. Synthesis of cytoplasm hybrid of non-heading Chinese cabbage through asymmetric electric fusion of protoplast cell. Acta Hortic. 2001, 28, 532–537. [Google Scholar]
- Cui, H.; Cao, J.; Zhang, M.; Yao, X.; Xiang, X. Production of the Ogura cytoplasmic male sterile (CMS) lines of Chinese cabbage-pak-choi (Brassica campestris L. ssp. chinensis var. communis) and turnip (B. campestris L. ssp. rapifera) and cytological observation of their sterile organs. Acta Hortic. 2004, 31, 467–471. [Google Scholar]
- Zhao, L.; Ke, G. Breeding of a radish CMS in Chinese cabbage (RC_7) and the research of its traits. Acta Bot. Boreali Occident. Sin. 2007, 27, 2404–2410. [Google Scholar]
- Tian, E.; Roslinsky, V.; Cheng, B. Molecular marker-assisted breeding for improved Ogura CMS restorer line (RfoRfo) and mapping of the restorer gene (Rfo) in Brassica juncea. Mol. Breed. 2014, 34, 1361–1371. [Google Scholar] [CrossRef]
- Prakash, S.; Kirti, P.; Chopra, V. Cytoplasmic male sterility (CMS) systems other than Ogu and Polima in Brassica: Current status. In Proceedings of the International Rapeseed Congress, Cambridge, UK, 4 July 1995. [Google Scholar]
- Kirti, P.B.; Banga, S.S.; Prakash, S.; Chopra, V.L. Transfer of Ogu cytoplasmic male sterility to Brassica juncea and improvement of the male sterile line through somatic cell fusion. Theor. Appl. Genet. 1995, 91, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.U.; Batra-Sarup, V.; Prakash, S.; Shivanna, K.R. Development of a new cytoplasmic male-sterility system in Brassica juncea through wide hybridization. Plant Breed. 1994, 112, 171–174. [Google Scholar] [CrossRef]
- Rawat, D.S.; Anand, I.J. Male sterility in Indian mustard. Indian J. Genet. Plant Breed. 1979, 39, 412–414. [Google Scholar]
- Prakash, S.; Chopra, V.L. Synthesis of alloplasmic Brassica campestris as a new source of cytoplasmic male sterility. Plant Breed. 2010, 101, 253. [Google Scholar] [CrossRef]
- Huang, B.; Li, W.; Ju, C.; Zhou, Y. Introduction of Ogura male sterile cytoplasm into Brassica rapa L. ssp. chinensis var. purpurea Baile. and heterosis utilization report. Seed 1999, 3, 57. [Google Scholar]
- Witt, U.; Hansen, S.; Albaum, M.; Abel, W.O. Molecular analyses of the CMS-inducing ‘Polima’ cytoplasm in Brassica napus L. Curr. Genet. 1991, 19, 323–327. [Google Scholar] [CrossRef]
- Yarrow, S.A.; Burnett, L.A.; Wildeman, R.P.; Kemble, R.J. The transfer of ‘Polima’ cytoplasmic male sterility from oilseed rape (Brassica napus) to broccoli (B. oleracea) by protoplast fusion. Plant Cell Rep. 1990, 9, 185–188. [Google Scholar] [CrossRef]
- Wang, H.M.; Ketela, T.; Keller, W.A.; Gleddie, S.C.; Brown, G.G. Genetic correlation of the orf224/atp6 gene region with Polima CMS in Brassica somatic hybrids. Plant Mol. Biol. 1995, 27, 801–807. [Google Scholar] [CrossRef]
- Ke, G.; Song, Y. Breeding of alloplasmic male sterile line in Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour) olsson) and its application. Shaanxi J. Agric. Sci. 1989, 3, 9–11. [Google Scholar]
- Ke, G.; Zhao, Z.; Song, Y.; Zhang, L.; Zhao, L. Breeding of alloplasmic male sterile line CMS3411-7 in Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour) olsson) and its application. Acta Hortic. Sin. 1992, 19, 333–340. [Google Scholar]
- Stiewe, G.; Robbelen, G. Establishing cytoplasmic male sterility in Brassica napus by mitochondrial recombination with Brassica tournefortii. Plant Breed. 1994, 113, 294–304. [Google Scholar] [CrossRef]
- Dieterich, J.H.; Braun, H.P.; Schmitz, U.K. Alloplasmic male sterility in Brassica napus (CMS ‘Tournefortii-Stiewe’) is associated with a special gene arrangement around a novel atp9 gene. Mol. Genet. Genom. 2003, 269, 723–731. [Google Scholar] [CrossRef]
- Zhong, X.H.; Chen, D.H.; Cui, J.; Li, H.L.; Huang, Y.X.; Kang, J.G. Comparative analysis of the complete mitochondrial genome sequences and anther development cytology between maintainer and Ogura-type cytoplasm male-sterile cabbage (B. oleracea Var. capitata). BMC Genom. 2021, 22, 646. [Google Scholar] [CrossRef]
- Chen, L.; Ren, W.; Zhang, B.; Chen, W.; Fang, Z.; Yang, L.; Zhuang, M.; Lv, H.; Wang, Y.; Ji, J.; et al. Organelle comparative genome analysis reveals novel alloplasmic male sterility with orf112 in Brassica oleracea L. Int. J. Mol. Sci. 2021, 22, 13230. [Google Scholar] [CrossRef]
- Vasupalli, N.; Kumar, V.; Bhattacharya, R.; Bhat, S.R. Analysis of mitochondrial recombination in the male sterile Brassica juncea cybrid Og1 and identification of the molecular basis of fertility reversion. Plant Mol. Biol. 2021, 106, 109–122. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, J.; Li, X.; Li, A.; Zhang, Y.; Guan, R.; Wang, Y. Complete sequence of heterogenous-composition mitochondrial genome (Brassica napus) and its exogenous source. BMC Genom. 2012, 13, 675. [Google Scholar] [CrossRef]
- He, S.; Abad, A.R.; Gelvin, S.B.; Mackenzie, S.A. A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc. Natl. Acad. Sci. USA 1996, 93, 11763–11768. [Google Scholar] [CrossRef]
- Hu, J.; Wang, K.; Huang, W.; Liu, G.; Gao, Y.; Wang, J.; Huang, Q.; Ji, Y.; Qin, X.; Wan, L.; et al. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 2012, 24, 109–122. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, X.W.; Yuan, Y.X.; Yao, Q.J.; Zhao, Y.Y.; Jiang, W.S.; Wei, X.C.; Wang, Z.Y. Study on molecular mechanism of homeosis in cabbage Ogura CMS. J. Henan Agric. Sci. 2015, 44, 111–116. [Google Scholar]
- Kazama, T.; Okuno, M.; Watari, Y.; Yanase, S.; Koizuka, C.; Tsuruta, Y.; Sugaya, H.; Toyoda, A.; Itoh, T.; Tsutsumi, N.; et al. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. Nat. Plants 2019, 5, 722–730. [Google Scholar] [CrossRef]
- Bohra, A.; Jha, U.C.; Adhimoolam, P.; Bisht, D.; Singh, N.P. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep. 2016, 35, 967–993. [Google Scholar] [CrossRef]
- Brown, G.G.; Formanová, N.; Jin, H.; Wargachuk, R.; Dendy, C.; Patil, P.; Laforest, M.; Zhang, J.; Cheung, W.Y.; Landry, B.S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 2003, 35, 262–272. [Google Scholar] [CrossRef]
- Koizuka, N.; Imai, R.; Fujimoto, H.; Hayakawa, T.; Kimura, Y.; KohnoMurase, J.; Sakai, T.; Imamura, J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J. 2003, 34, 407–415. [Google Scholar] [CrossRef]
- Bett, K.E.; Lydiate, D.J. Mapping and genetic characterization of loci controlling the restoration of male fertility in Ogura CMS radish. Mol. Breed. 2004, 13, 125–133. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Gao, L.; Mei, S.; Zhou, Y.; Xiang, C.; Wang, T. Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish (Raphanus sativus L.): A case of overdominance. J. Exp. Bot. 2013, 64, 2041–2048. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Mei, S.; Gao, L.; Zhou, Y.; Wang, T. An insertion-deletion at a pentatricopeptide repeat locus linked to fertility transition to cytoplasmic male sterility in radish (Raphanus sativus L.). Mol. Breed. 2015, 35, 108. [Google Scholar] [CrossRef]
- Giancola, S.; Marhadour, S.; Desloire, S.; Clouet, V.; Falentin-Guyomarc’h, H.; Laloui, W.; Falentin, C.; Pelletier, G.; Renard, M.; Bendahmane, A. Characterization of a radish introgression carrying the Ogura fertility restorer gene Rfo in rapeseed, using the Arabidopsis genome sequence and radish genetic mapping. Theor. Appl. Genet. 2003, 107, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, L.; Wen, C.; Yang, J. Development and application of high-throughput SNP markers for Ogura-CMS fertility restorer gene in radish. Acta Hortic. Sin. 2017, 44, 1309–1318. [Google Scholar]
- Feng, J.; Primomo, V.; Li, Z.; Zhang, Y.; Jan, C.C.; Tulsieram, L.; Xu, S.S. Physical localization and genetic mapping of the fertility restoration gene Rfo in canola (Brassica napus L.). Genome 2009, 52, 401–407. [Google Scholar] [CrossRef]
- Wang, T.; Guo, Y.; Wu, Z.; Xia, S.; Hua, S.; Tu, J.; Li, M.; Chen, W. Genetic characterization of a new radish introgression line carrying the restorer gene for Ogura CMS in Brassica napus. PLoS ONE 2020, 15, e0236273. [Google Scholar] [CrossRef]
- Wei, W.; Wang, H.; Liu, G. Molecular identification of the sterile cytoplasm of NCa of a cytoplasmic male sterile line in rapeseed (Brassica napus L.). Sci. Agric. Sin. 2005, 38, 1965–1972. [Google Scholar]
- Zhang, S.H. Identification of New Restored Lines in Ogura CMS and Analysis of Transfer of the Gene Rfo in Brassica napus. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2013. [Google Scholar]
- Szała, L.; Sosnowska, K.; Popławska, W.; Liersch, A.; Olejnik, A.; Kozłowska, K.; Bocianowski, J.; Cegielska-Taras, T. Development of new restorer lines for CMS ogura system with the use of resynthesized oilseed rape (Brassica napus L.). Breed. Sci. 2016, 66, 516–521. [Google Scholar] [CrossRef]
- Zhu, Q.; Kang, Z.L.; Jian, Y.; Ding, Y.; Kang, J. The molecular characteristics of Ogura cytoplasmic male sterility related gene orf138 in cabbage (Brassica oleracea var. capitata). Sci. Bull. 2012, 28, 104–109. [Google Scholar]
- Zhang, Y.; Wang, X.; Li, C.; Song, H.; Ren, X.; Si, J. Molecular identification of Brassica oleracea CMS and the morphology response of flower to nuclear background. Acta Hortic. Sin. 2010, 37, 915–922. [Google Scholar]
- Shu, J.; Liu, Y.; Li, Z.; Zhang, L.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. Detection of the diversity of cytoplasmic male sterility sources in broccoli (Brassica oleracea var. italica) using mitochondrial markers. Front. Plant Sci. 2016, 7, 927. [Google Scholar] [CrossRef]
- Zhang, R.; Hu, S.; Yan, J.; Sun, G. Cytoplasmic diversity in Brassica rapa L. investigated by mitochondrial markers. Genet. Resour. Crop Evol. 2013, 60, 967–974. [Google Scholar] [CrossRef]
- Niemelä, T.; Seppänen, M.; Badakshi, F.; Rokka, V.M.; Heslop-Harrison, J.P. Size and location of radish chromosome regions carrying the fertility restorer Rfk1 gene in spring turnip rape. Chromosome Res. 2012, 20, 353–361. [Google Scholar] [CrossRef]
- Niemelä, T.; Seppänen, M.; Jauhiainen, L.; Tulisalo, U. Transfer of the Kosena Rfk1 gene, required in hybrid seed production, from oilseed rape to turnip rape. Euphytica 2010, 175, 1–12. [Google Scholar] [CrossRef]
- Gudi, S.; Atri, C.; Goyal, A.; Kaur, N.; Akhtar, J.; Mittal, M.; Kaur, K.; Kaur, G.; Banga, S.S. Physical mapping of introgressed chromosome fragment carrying the fertility restoring (Rfo) gene for Ogura CMS in Brassica juncea L. Czern & Coss. Theor. Appl. Genet. 2020, 133, 2949–2959. [Google Scholar]
- Hu, X.; Sullivan-Gilbert, M.; Kubik, T.; Danielson, J.; Hnatiuk, N.; Marchione, W.; Greene, T.; Thompson, S.A. Mapping of the Ogura fertility restorer gene Rfo and development of Rfo allele-specific markers in canola (Brassica napus L.). Mol. Breed. 2008, 22, 663–674. [Google Scholar] [CrossRef]
- Liu, Z.H.; Shi, X.Y.; Li, S.; Hu, G.; Zhang, L.L.; Song, X.Y. Tapetal-delayed programmed cell death (PCD) and oxidative stress-induced male sterility of Aegilops uniaristata cytoplasm in wheat. Int. J. Mol. Sci. 2018, 19, 1708. [Google Scholar] [CrossRef]
- Hanson, M.R.; Bentolila, S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 2004, 16, 154–169. [Google Scholar] [CrossRef]
- Warmke, H.E.; Lee, S.J. Pollen abortion in T cytoplasmic male sterility corn (Zea mays): A suggested machanism. Science 1978, 200, 561–563. [Google Scholar] [CrossRef]
- Duroc, Y.; Hiard, S.; Vrielynck, N.; Ragu, S.; Budar, F. The Ogura sterility-inducing protein forms a large complex without interfering with the oxidative phosphorylation components in rapeseed mitochondria. Plant Mol. Biol. 2009, 70, 123–137. [Google Scholar] [CrossRef]
- Melonek, J.; Duarte, J.; Martin, J.; Beuf, L.; Murigneux, A.; Varenne, P.; Comadran, J.; Specel, S.; Levadoux, S.; Bernath-Levin, K.; et al. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat. Commun. 2021, 12, 1036. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.J.; Khan, A.; Li, Z.L.; You, J.Y.; Munsif, F.; Kang, H.D.; Zhou, R.Y. Identification of chalcone synthase genes and their expression patterns reveal pollen abortion in cotton. Saudi J. Biol. Sci. 2020, 27, 3691–3699. [Google Scholar] [CrossRef] [PubMed]
- González-Melendi, P.; Uyttewaal, M.; Morcillo, C.N.; Hernández Mora, J.R.; Fajardo, S.; Budar, F.; Lucas, M.M. A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRA CMS of rapeseed (Brassica napus). J. Exp. Bot. 2008, 59, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Guo, Y.; Chen, Y.; Li, H.; Zhang, L.; Liu, H. Upregulation of the AT-hook DNA binding gene BoMF2 in OguCMS anthers of Brassica oleracea suggests that it encodes a transcriptional regulatory factor for anther development. Mol. Biol. Rep. 2014, 41, 2005–2014. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, W.; Wang, Y.; Xu, L.; Zhu, X.; Muleke, E.; Liu, L. Comprehensive transcriptome-based characterization of differentially expressed genes involved in microsporogenesis of radish CMS line and its maintainer. Funct. Integr. Genom. 2016, 16, 529–543. [Google Scholar] [CrossRef]
- Yamagishi, H. Distribution and allelism of restorer genes for Ogura cytoplasmic male sterility in wild and cultivated radishes. Genes Genet. Syst. 1998, 73, 79–83. [Google Scholar] [CrossRef]
- Duroc, Y.; Gaillard, C.; Hiard, S.; Defrance, M.C.; Pelletier, G.; Budar, F. Biochemical and functional characterization of orf138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie 2005, 87, 1089–1100. [Google Scholar] [CrossRef]
- Duroc, Y.; Gaillard, C.; Hiard, S.; Tinchant, C.; Berthomé, R.; Pelletier, R.; Budar, F. Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells. Plant Sci. 2006, 170, 755–767. [Google Scholar] [CrossRef]
- Sara, Z.; Alberto, F.; Enrico, G.; Luciano, X.; Marianna, F.; Giovanni, M.; Diana, B.; Mario, P.; Massimo, D. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq. Plant Physiol. 2010, 152, 1787–1795. [Google Scholar]
- Guo, J.; Wang, P.; Cheng, Q.; Sun, L.; Wang, H.; Wang, Y.; Kao, L.; Li, Y.; Qiu, T.; Yang, W.; et al. Proteomic analysis reveals strong mitochondrial involvement in cytoplasmic male sterility of pepper (Capsicum annuum L.). J. Proteom. 2017, 168, 15–27. [Google Scholar] [CrossRef]
- Wang, P.; Lu, Q.; Ai, Y.; Wang, Y.; Li, T.; Wu, L.; Liu, J.; Cheng, Q.; Sun, L.; Shen, H. Candidate gene selection for cytoplasmic male sterility in pepper (Capsicum annuum L.) through whole mitochondrial genome sequencing. Int. J. Mol. Sci. 2019, 20, 578. [Google Scholar] [CrossRef]
- Yang, Z.; Li, G.; Tieman, D.; Zhu, G. Genomics approaches to domestication studies of horticultural crops. Hortic. Plant J. 2019, 5, 240–246. [Google Scholar] [CrossRef]
- Lv, J.; Liu, Z.; Liu, Y.; Ou, L.; Deng, M.; Wang, J.; Song, J.; Ma, Y.; Chen, W.; Zhang, Z.; et al. Comparative transcriptome analysis between cytoplasmic male-sterile line and its maintainer during the floral bud development of pepper. Hortic. Plant J. 2020, 6, 89–98. [Google Scholar] [CrossRef]
- Lin, S.; Miao, Y.; Su, S.; Xu, J.; Jin, L.; Sun, D.; Peng, R.; Huang, L.; Cao, J. Comprehensive analysis of Ogura cytoplasmic male sterility-related genes in turnip (Brassica rapa ssp. rapifera) using RNA sequencing analysis and bioinformatics. PLoS ONE 2019, 14, e0218029. [Google Scholar] [CrossRef]
- Dong, X.; Kim, W.; Lim, Y.; Kim, Y.; Hur, Y. Ogura-CMS in Chinese cabbage (Brassica rapa ssp. pekinensis) causes delayed expression of many nuclear genes. Plant Sci. 2013, 199–200, 7–17. [Google Scholar] [CrossRef]
- Sheoran, I.S.; Sawhney, V.K. Proteome analysis of the normal and Ogura (ogu) CMS anthers of Brassica napus to identify proteins associated with male sterility. Botany 2010, 88, 217–230. [Google Scholar] [CrossRef]
- Mei, S.; Liu, T.; Wang, Z. Comparative transcriptome profile of the cytoplasmic male sterile and fertile floral buds of radish (Raphanus sativus L.). Int. J. Mol. Sci. 2016, 17, 42. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.; Zhang, X.; Chen, X.; Liu, J.; Jia, X.; Jia, S. Transcriptome de novo assembly and analysis of differentially expressed genes related to cytoplasmic male sterility in cabbage. Plant Physiol. Biochem. 2016, 105, 224–232. [Google Scholar] [CrossRef]
- Shu, J.; Zhang, L.; Liu, Y.; Li, Z.; Fang, Z.; Yang, L.; Zhuang, M.; Zhang, Y.; Lv, H. Normal and abortive buds transcriptomic profiling of broccoli ogu cytoplasmic male sterile line and its maintainer. Int. J. Mol. Sci. 2018, 19, 2501. [Google Scholar] [CrossRef]
- Xing, M.; Sun, C.; Li, H.; Hu, S.; Lei, L.; Kang, J. Integrated analysis of transcriptome and proteome changes related to the Ogura cytoplasmic male sterility in cabbage. PLoS ONE 2018, 13, e0193462. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Zhang, X.; Yang, L.; Zhuang, M.; Zhang, Y.; Li, Z.; Fang, Z.; Lv, H. iTRAQ-based proteomic analysis of Ogura-CMS cabbage and its maintainer line. Int. J. Mol. Sci. 2018, 19, 3180. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Qi, L.; Hou, X.; Shi, G.; Zhang, J. Differential gene expression analysis of a new Ogura CMS line and its maintainer in non-heading Chinese cabbage by cDNA-AFLP. Acta Physiol. Plant. 2010, 32, 781–787. [Google Scholar] [CrossRef]
- Jeong, S.W.; Yi, H.; Song, H.; Lee, S.S.; Hur, Y. Chlorosis of Ogura-CMS Brassica rapa is due to down-regulation of genes for chloroplast proteins. J. Plant Biotechnol. 2017, 44, 115–124. [Google Scholar] [CrossRef]
- Fujii, S.; Yamada, M.; Fujita, M.; Itabashi, E.; Hamada, K.; Yano, K.; Kurata, N.; Toriyama, K. Cytoplasmic-nuclear genomic barriers in rice pollen development revealed by comparison of global gene expression profiles among five independent cytoplasmic male sterile lines. Plant Cell Physiol. 2010, 51, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Lavy, M.; Prigge, M.J.; Tao, S.; Shain, S.; Kuo, A.; Kirchsteiger, K.; Estelle, M. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. eLife 2016, 5, e13325. [Google Scholar] [CrossRef]
- Ding, B.; Hao, M.; Mei, D.; Zaman, Q.; Sang, S.; Wang, H.; Wang, W.; Fu, L.; Cheng, H.; Hu, Q. Transcriptome and hormone comparison of three cytoplasmic male sterile systems in Brassica napus. Int. J. Mol. Sci. 2018, 19, 4022. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, X.; Yao, Q.; Yuan, Y.; Li, X.; Wei, F.; Zhao, Y.; Zhang, Q.; Wang, Z.; Jiang, W.; et al. The miRNAs and their regulatory networks responsible for pollen abortion in Ogura-CMS Chinese cabbage revealed by high-throughput sequencing of miRNAs, degradomes, and transcriptomes. Front. Plant Sci. 2015, 6, 894. [Google Scholar] [CrossRef]
- Wei, X.; Lv, Y.; Zhao, Y.; Nath, U.; Yuan, Y.; Wang, Z.; Yang, S.; Jia, H.; Wei, F.; Zhang, X. Comparative transcriptome analysis in Chinese cabbage (Brassica rapa ssp. pekinesis) for DEGs of Ogura-, Polima-CMS and their shared maintainer. Mol. Biol. Plants 2020, 26, 719–731. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, X.; Yuan, Y.; Wang, Z.; Yang, S.; Li, R.; Nath, U.; Zhao, Y.; Tian, B.; Shi, G.; et al. Comparative transcriptome identifies gene expression networks regulating developmental pollen abortion in Ogura cytoplasmic male sterility in Chinese cabbage (Brassica rapa ssp. pekinensis). Horticulturae 2021, 7, 157. [Google Scholar] [CrossRef]
- Imai, R.; Koizuka, N.; Fujimoto, H.; Hayakawa, T.; Sakai, T.; Imamura, J. Delimitation of the fertility restorer locus Rfk1 to a 43-kb contig in Kosena radish (Raphanus sativus L.). Mol. Genet. Genom. 2003, 269, 388–394. [Google Scholar] [CrossRef]
- Fujii, S.; Bond, C.S.; Small, I.D. Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc. Natl. Acad. Sci. USA 2011, 108, 1723–1728. [Google Scholar] [CrossRef]
- Ning, L.; Wang, H.; Li, D.; Li, Y.; Chen, K.; Chao, H.; Li, H.; He, J.; Li, M. Genome-wide identification of the restorer-of-fertility-like (RFL) gene family in Brassica napus and expression analysis in Shaan2a cytoplasmic male sterility. BMC Genom. 2020, 21, 765. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, X.; Wang, Y.; Wu, J.; Gu, X.; Lu, T. The RNA editing factor WSP1 is essential for chloroplast development in rice. Mol. Plant 2017, 10, 86–98. [Google Scholar] [CrossRef]
- Ito, A.; Sugita, C.; Ichinose, M.; Kato, Y.; Yamamoto, H.; Shikanai, T.; Sugita, M. An evolutionarily conserved P-subfamily pentatricopeptide repeat protein is required to splice the plastid ndhA transcript in the moss Physcomitrella patens and Arabidopsis thaliana. Plant J. 2018, 94, 638–648. [Google Scholar] [CrossRef]
- McCormick, S. Binding sites for pentatricopeptide repeat proteins differentially activate chloroplast transgenes. Plant J. 2018, 94, 6–7. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, J.; Zhong, S.; Gu, H.; He, S.; Qu, L. Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. J. Genet. Genom. 2018, 45, 155–168. [Google Scholar] [CrossRef]
- Qin, X.; Warguchuk, R.; Arnal, N.; Gaborieau, L.; Mireau, H.; Brown, G.G. In vivo functional analysis of a nuclear restorer PPR protein. BMC Plant Biol. 2014, 14, 313. [Google Scholar] [CrossRef]
- Imai, R.; Koizuka, N.; Fujimoto, H.; Hayakawa, T.; Kimura, Y.; KohnoMurase, J.; Sakai, T.; Imamura, J. Identification and characterization of a fertility restorer gene, rfk1, for Kosena cms. (3) Analysis of allelic polymorphism relevant to rfk1 gene function. Breed. Res. 2002, 4, 184. [Google Scholar]
- Wang, C.; Lezhneva, L.; Arnal, N.; Quadrado, M.; Mireau, H. The radish Ogura fertility restorer impedes translation elongation along its cognate CMS-causing mRNA. Proc. Natl. Acad. Sci. USA 2021, 118, e2105274118. [Google Scholar] [CrossRef]
- Bellaoui, M.; Pelletier, G.; Budar, F. The steady-state level of mRNA from the Ogura cytoplasmic male sterility locus in Brassica cybrids is determined post-transcriptionally by its 3′ region. EMBO J. 1997, 16, 5057–5068. [Google Scholar] [CrossRef] [PubMed]
- Bellaoui, M.; Grelon, M.; Pelletier, G.; Budar, F. The restorer Rfo gene acts post-translationally on the stability of the ORF138 Ogura CMS-associated protein in reproductive tissues of rapeseed cybrids. Plant Mol. Biol. 1999, 40, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.S.; Liu, Y.M.; Zhang, L.L.; Li, Z.S.; Fang, Z.Y.; Yang, L.M.; Zhuang, M.; Zhang, Y.Y.; Lv, H.H. Evaluation and selection of sources of cytoplasmic male sterility in broccoli. Euphytica 2019, 215, 125. [Google Scholar] [CrossRef]
- Singh, S.; Bhatia, R.; Kumar, R.; Das, A.; Ghemeray, H.; Behera, T.K.; Dey, S.S. Characterization and genetic analysis of OguCMS and doubled haploid based large genetic arsenal of Indian cauliflowers (Brassica oleracea var. botrytis L.) for morphological, reproductive and seed yield traits revealed their breeding potential. Genet. Resour. Crop Evol. 2021, 68, 1603–1623. [Google Scholar] [CrossRef]
- Mower, J.P.; Sloan, D.; Alverson, A. Plant mitochondrial genome diversity: The genomics revolution. In Plant Genome Diversity; Springer: Vienna, Austria, 2012; Volume 1, pp. 123–144. [Google Scholar]
- Bi, C.W.; Paterson, A.H.; Wang, X.L.; Xu, Y.Q.; Wu, D.Y.; Qu, Y.S.; Jiang, A.N.; Ye, Q.L.; Ye, N. Analysis of the complete mitochondrial genome sequence of the diploid cotton gossypium raimondii by comparative genomics approaches. BioMed Res. Int. 2016, 2016, 5040598. [Google Scholar] [CrossRef]
- Ducos, E.; Touzet, P.; Boutry, M. The male sterility G cytoplasm of wild beet displays modified mitochondrial respiratory complexes. Plant J. 2001, 26, 171–180. [Google Scholar] [CrossRef]
- Kubo, T.; Kitazaki, K.; Matsunaga, M.; Kagami, H.; Mikami, T. Male sterility-inducing mitochondrial genomes: How do they differ? Crit. Rev. Plant Sci. 2011, 30, 378–400. [Google Scholar] [CrossRef]
- Heng, S.P.; Wei, C.; Jing, B.; Wan, Z.J.; Wen, J.; Yi, B.; Ma, C.Z.; Tu, J.X.; Fu, T.D.; Shen, J.X. Comparative analysis of mitochondrial genomes between the hau cytoplasmic male sterility (CMS) line and its iso-nuclear maintainer line in Brassica juncea to reveal the origin of the CMS-associated gene orf288. BMC Genom. 2014, 15, 322. [Google Scholar] [CrossRef]
- Chen, Z.W.; Zhao, N.; Li, S.S.; Grover, C.E.; Nie, H.; Wendel, J.F.; Hua, J.P. Plant mitochondrial genome evolution and cytoplasmic male sterility. Crit. Rev. Plant Sci. 2017, 36, 55–69. [Google Scholar] [CrossRef]
- Jo, Y.D.; Choi, Y.; Kim, D.H.; Kim, B.D.; Kang, B.C. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing. BMC Genom. 2014, 15, 561. [Google Scholar] [CrossRef]
- Wallet, C.; Le Ret, M.; Bergdoll, M.; Bichara, M.; Dietrich, A.; Gualberto, J.M. The RECG1 DNA translocase is a key factor in recombination surveillance, repair, and segregation of the mitochondrial DNA in Arabidopsis. Plant Cell 2015, 27, 2907–2925. [Google Scholar] [CrossRef]
- Tkadlec, J.; Pavlogiannis, A.; Chatterjee, K.; Nowak, M.A. Population structure determines the tradeoff between fixation probability and fixation time. Commun. Biol. 2019, 2, 138. [Google Scholar] [CrossRef]
- Rubanova, N.; Pinna, G.; Kropp, J.; Campalans, A.; Radicella, J.P.; Polesskaya, A.; Harel-Bellan, A.; Morozova, N. MasterPATH: Network analysis of functional genomics screening data. BMC Genom. 2020, 21, 632. [Google Scholar] [CrossRef]
- Takatsuka, A.; Kazama, T.; Arimura, S.I.; Toriyama, K. TALEN-mediated depletion of the mitochondrial gene orf312 proves that it is a Tadukan-type cytoplasmic male sterility-causative gene in rice. Plant J. 2022, 110, 994–1004. [Google Scholar] [CrossRef]
- Badhan, S.; Ball, A.S.; Mantri, N. First report of CRISPR/Cas9 mediated DNA-free editing of 4CL and RVE7 genes in Chickpea Protoplasts. Int. J. Mol. Sci. 2021, 22, 396. [Google Scholar] [CrossRef]
- Yoo, B.C.; Yadav, N.S.; Orozco, E.M., Jr.; Sakai, H. Cas9/gRNA-mediated genome editing of yeast mitochondria and Chlamydomonas chloroplasts. PeerJ 2020, 8, e8362. [Google Scholar] [CrossRef]
- Kang, B.C.; Bae, S.J.; Lee, S.; Lee, J.S.; Kim, A.; Lee, H.; Baek, G.; Seo, H.; Kim, J.; Kim, J.S. Chloroplast and mitochondrial DNA editing in plants. Nat. Plants 2021, 7, 899–905. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Cao, D.; Zong, Y.; Fan, S.; Jiang, Y. Methods for Breeding Male Sterile Lines of Plants Using Mitochondrial Gene Editing System. China Patent 25217475, 28 May 2021. [Google Scholar]
- Xiao, S.; Zang, J.; Pei, Y.; Liu, J.; Liu, J.; Song, W.; Shi, Z.; Su, A.; Zhao, J.R.; Chen, H. Activation of mitochondrial orf355 gene expression by a nuclear-encoded DREB transcription factor causes cytoplasmic nale sterility in maize. Mol. Plant 2020, 13, 1270–1283. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.; Hu, D.; Li, B.; Lin, Y.; Yao, W.; Guo, Z.; Li, H.; Ding, D.; Zhang, Z.; et al. Single-cell RNA sequencing of meiocytes and microspores reveals the involvement of the Rf4 gene in redox homeostasis of CMS-C maize. Crop J. 2021, 9, 1237–1247. [Google Scholar] [CrossRef]
- Su, A.; Song, W.; Xing, J.; Zhao, Y.; Zhang, R.; Li, C.; Duan, M.; Luo, M.; Shi, Z.; Zhao, J. Identification of genes potentially associated with the fertility instability of S-type cytoplasmic male sterility in maize via bulked segregant RNA-Seq. PLoS ONE 2016, 11, e0163489. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ji, Y.; Feng, S.; Liu, C.; Xiao, Z.; Wang, X.; Wang, Y.; Xia, G. The non-random patterns of genetic variation induced by asymmetric somatic hybridization in wheat. BMC Plant Biol. 2018, 18, 244. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Li, Y.; Li, Y.; Liu, C.; Wang, Y.; Xia, G.; Wang, M.C. Asymmetric somatic hybridization affects synonymous codon usage bias in wheat. Front. Genet. 2021, 12, 682324. [Google Scholar] [CrossRef] [PubMed]
Cruciferae Crop | Material | Genome (bp) | Accession No. | Genes | Unique Regions | Reference |
---|---|---|---|---|---|---|
Raphanus sativus | Ogu CMS maintainer | 244,036 | AB694743 | 33 protein-coding genes, 3 rRNA genes and 17 tRNA sequences | / | [20] |
Raphanus sativus | Ogu CMS | 258,426 | AB694744 | Same genes with its maintainer line and additional atp9 and tRNA gene trnfM | Four | [20] |
Brassica oleracea | Ogu CMS maintainer | 219,962 | MW423604 | 31 known genes, 67 ORFs, 3 rRNA genes and 25 tRNA genes | / | [113] |
Brassica oleracea | Ogu CMS | 236,648 | MW423605 | 30 known genes (lost rps7 gene compared with the maintainer line), 69 ORFs, 3 rRNA genes and 25 tRNA genes | Five | [113] |
Brassica oleracea | Ogu CMS maintainer | 219,969 | ON758774 | 33 protein-coding genes, 3 rRNA genes and 18 tRNA genes | / | [114] |
Brassica oleracea | Ogu CMS | 71,998, 185,431 | ON758776, ON758777 | Same genes with its maintainer line and additional orf138 and three tRNA genes (trnfM-CAU, trnN-GUU and trnY-GUA) | Nine | [114] |
Brassica juncea | Ogu CMS maintainer (RLM198) | 219,776 | MT675103 | / | / | [115] |
Brassica juncea | Ogu CMS (OgRLM) | 258,462 | MT675104 | / | / | [115] |
Brassica juncea | Ogu CMS (Og1) | 250,999, 96,185 | MT675105, MT675106 | 34 protein-coding genes, 3 rRNA genes and 15 tRNA genes | / | [115] |
Brassica juncea | Ogu CMS revertant line (Og1-rt) | 250,999 | MT675105 | 33 protein-coding genes (lost the orf138 gene compared with the sterile line Og1), 3 rRNA genes and 15 tRNA genes | / | [115] |
Brassica napus | Ogu CMS | 258,473 | Unknown | 33 protein-coding genes, 3 rRNA sequences and 23 tRNA sequences | Nine | [116] |
Cruciferae Crops | Sterility Gene Markers | FR Genes | FR Gene Loci | Linked FR Gene or Intragenic Molecular Markers | Advantages | Limitations | References |
---|---|---|---|---|---|---|---|
Raphanus sativus | Primer A/B, CMSF/R, orf138-F/R | Rfo (Rfk), RF1, RF2, RF3, Rfob, Rfoc, RsRf3-1/RsRf3-2, RsRf3-4~RsRf3-7, Rft, Rfs | C3 | R3, R15, R5, AFLP190, Rfo-SNP1, RFLP-PCR2F/1R with the Ssp1 restriction enzyme site, OPA-14600,OPK-17440, STS-A14, STS-K17 | (1) The most studied male sterility type in radish (2) Complete and stable sterility (3) Many FR genes in European radish, Japanese radish and Chinese radish varieties | (1) Low distribution frequency of the rfrf genotype (2) Maintainer line selection requires a large number of backcross offspring | [51,52,53,54,59,60,61] |
Brassica napus | P51/P52 | Rfo, Rfob, Rft (introduced from R. sativus) | N19, C3, A genome | PGI-2, OPC021150, OPD021000, OPF061200, OPG02700 | (1) Long history of creation and thorough study in Ogura CMS lines and restorer lines (2) The safest and most effective way to utilize heterosis (3) Three-line breeding and commercial production have been achieved | (1) Large radish alien genome segments around the FR gene and poor agronomic traits of restorer lines (2) Restorer lines and breeding methods with low glucosinolate content have been submitted for long-term patent protection, which greatly limits the application | [20,72,73,129,130,131,132,133] |
Brassica oleracea | Bo138300BF/R; P1/P2; P12F/R; P13F/R; OKB-F/R | Rfo (introduced from R. sativus) | / | BnRFO-AS2F/BnRFO-NEW-R, Rfo-6F/R, Rfo-6eF/R, Rfo-8F/R, Rfo-11F/R, Rfo-page-4eF/R | (1) Complete and stable sterility (2) Fertility-restored materials have been created with 18 normal chromosomes, a normal seed setting rate and a closer genetic background to the parent cabbage | (1) Varied fertility restoration levels (pollen vitality) of fertility restorer lines (2) Low and abnormal Rfo gene transmission rate (3) Large proportion of radish and rapeseed genomic components | [80,81,82,83,114,134,135,136] |
Brassica rapa | F/R; P11/P12; orf138 primer F/R | Rfk1 (introduced from radish and homolog of Rfo) | Additional radish chromosome | F/R | (1) Fertility of Ogura CMS can be restored by the Rfk1 gene | (1) Restorer gene was unstable in the turnip rape genome (2) Fertility restoration trait was unstable in subsequent generations | [137,138,139] |
Brassica juncea | / | Rfo (introduced from R. sativus) | A09 | KASP-RFO-1814 | (1) Good seed set and agronomic performance in restorer lines | (1) A large radish introgression alien segment carrying the Rfo gene and linkage drag exist (2) Pollen contamination and impaired transmission frequency of the Rfo gene | [99,140] |
Cruciferae Crops | Materials | Omics Technologies | Functions of DEGs | Reference |
---|---|---|---|---|
Raphanus sativus | Sterile line, maintainer line | Transcriptomics | Fatty acid metabolism, pollen development and tapetum development | [56] |
Sterile line, maintainer line | Transcriptomics | Binding, catalytic activity, metabolic process, cellular process and response to stimulus | [162] | |
Brassica napus | Sterile line | Proteomics | Carbohydrate and energy metabolism, aldehyde dehydrogenase (ALDH), photosynthesis and flavonoid synthesis | [161] |
Sterile line, maintainer line | Transcriptomics | Plant hormone signal transduction, plant–pathogen interaction, peroxisome, pentose–glucuronate interconversions and starch–sucrose metabolism | [171] | |
Brassica oleracea | Sterile line, maintainer line | Transcriptomics | Biosynthesis of secondary metabolites, starch and sucrose metabolism, plant–pathogen interaction and glycerophospholipid metabolism | [163] |
Sterile line, maintainer line | Transcriptomics | Polygalacturonase metabolism, glycosyl hydrolases, oxidation reduction process, phenylalanine metabolism and phenylpropanoid biosynthesis | [164] | |
Sterile line, fertile line | Transcriptomics and proteomics | Gibberellin-mediated signaling pathways regulating tapetum programmed cell death and sporopollenin synthesis | [165] | |
Sterile line, maintainer line | Transcriptomics and proteomics | Sporopollenin synthesis, callose wall degeneration and oxidative phosphorylation | [166] | |
Sterile line, maintainer line | Transcriptomics | Energy metabolic pathways | [113] | |
Brassica rapa | Sterile line, maintainer line | Transcriptomics | Mitochondrial retrograde signaling pathway, auxin response, ATP synthesis, pollen development and stress response | [160] |
Sterile line, maintainer line | Degradome analysis, miRNA analysis and transcriptomics | Pollen-development-related genes | [172] | |
Sterile line | Transcriptomics | Stress-response genes, mitochondrial protein genes, ascorbic acid biosynthesis and thylakoid protein gene | [169] | |
Sterile line, maintainer line | Transcriptomics | Anther development and microspore formation | [159] | |
Sterile line, maintainer line | Transcriptomics | Pollen development, carbon metabolism, lipase activity, lipid binding, citrate cycle and oxidative phosphorylation | [173] | |
Sterile line, maintainer line | Transcriptomics | Phenylpropane synthesis pathway and glutathione oxidation–reduction | [174] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, W.; Si, J.; Chen, L.; Fang, Z.; Zhuang, M.; Lv, H.; Wang, Y.; Ji, J.; Yu, H.; Zhang, Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. Int. J. Mol. Sci. 2022, 23, 9099. https://doi.org/10.3390/ijms23169099
Ren W, Si J, Chen L, Fang Z, Zhuang M, Lv H, Wang Y, Ji J, Yu H, Zhang Y. Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. International Journal of Molecular Sciences. 2022; 23(16):9099. https://doi.org/10.3390/ijms23169099
Chicago/Turabian StyleRen, Wenjing, Jinchao Si, Li Chen, Zhiyuan Fang, Mu Zhuang, Honghao Lv, Yong Wang, Jialei Ji, Hailong Yu, and Yangyong Zhang. 2022. "Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops" International Journal of Molecular Sciences 23, no. 16: 9099. https://doi.org/10.3390/ijms23169099
APA StyleRen, W., Si, J., Chen, L., Fang, Z., Zhuang, M., Lv, H., Wang, Y., Ji, J., Yu, H., & Zhang, Y. (2022). Mechanism and Utilization of Ogura Cytoplasmic Male Sterility in Cruciferae Crops. International Journal of Molecular Sciences, 23(16), 9099. https://doi.org/10.3390/ijms23169099